首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A simple and sensitive high-performance liquid chromatographic method for the simultaneous assay of amiodarone and desethylarniodarone in plasma, urine and tissues has been developed. The method for plasma samples and tissue samples after homogenizing with 50% ethanol, involves deproteinization with acetonitrile containing the internal standard followed by centrifugation and direct injection of the supernatant into the liquid chromatograph. The method for urine specimens includes extraction with a diisopropyl ether—acetonitrile (95:5, v/v) mixture at pH 7.0 using disposable Clin-Elut 1003 columns, followed by evaporation of the eluate, reconstitution of the residue in methanol—acetonitrile (1:2, v/v) mixture and injection into the chromatograph. Separation was obtained using a Radial-Pak C18 column operating in combination with a radial compression separation unit and a methanol–25% ammonia (99.3:0.7, v/v) mobile phase. A wavelength of 242 nm was used to monitor amiodarone, desethylamiodarone and the internal standard. The influence of the ammonia concentration in the mobile phase on the capacity factors of amiodarone, desethylamiodarone and two other potential metabolites, monoiodoamiodarone (L6355) and desiodoamiodarone (L3937) were investigated. Endogenous substances or a variety of drugs concomitantly used in amiodarone therapy did not interfere with the assay.The limit of sensitivity of the assay was 0.025 μg/ml with a precision of ± 17%. The inter- and intra-day coefficient of variation for replicate analyses of spiked plasma samples was less than 6%. This method has been demonstrated to be suitable for pharmacokinetic and metabolism studies of amiodarone in man.  相似文献   

2.
A high-performance liquid chromatography coupled with electrospray tandem mass spectrometry (LC/MS/MS) procedure for the simultaneous determination of diazepam from avizafone, atropine and pralidoxime in human plasma is described. Sample pretreatment consisted of protein precipitation from 100microl of plasma using acetonitrile containing the internal standard (diazepam D5). Chromatographic separation was performed on a X-Terra MS C8 column (100mmx2.1mm, i.d. 3.5microm), with a quick stepwise gradient using a formate buffer (pH 3, 2mM) and acetonitrile at a flow rate of 0.2ml/min. The triple quadrupole mass spectrometer was operated in positive ion mode and multiple reaction monitoring was used for drug quantification. The method was validated over the concentration ranges of 1-500ng/ml for diazepam, 0.25-50ng/ml for atropine and 5-1000ng/ml for pralidoxime. The coefficients of variation were always <15% for both intra-day and inter-day precision for each analyte. Mean accuracies were also within +/-15%. This method has been successfully applied to a pharmacokinetic study of the three compounds after intramuscular injection of an avizafone-atropine-pralidoxime combination, in healthy subjects.  相似文献   

3.
A sensitive and specific high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS-MS) method has been developed for the simultaneous determination of amiodarone and desethylamiodarone in human plasma. After the addition of the internal standard tamoxifen, plasma samples were extracted using Oasis MCX solid-phase extraction cartridges. The compounds were separated on a 5 microm Symmetry C18 (Waters) column (150 x 3.0 mm, internal diameter) with a mobile phase of acetonitrile-0.1% forrmic acid (46:54, v/v) at a flow-rate of 0.5 ml/min. The overall extraction efficiency was more than 89% for both compounds. The assay was sensitive down to 1 microg/l for amiodarone and down to 0.5 microg/l for desethylamiodarone. Within-run accuracies for quality-control samples were between 95 and 108% of the target concentration, with coefficients of variation <8%. The proposed method enables the unambiguous identification and quantitation of amiodarone and desethylamiodarone in both clinical and forensic specimens.  相似文献   

4.
A sensitive and specific HPLC-ESI-MS/MS method for the direct determination of glucosamine in human plasma has been developed and validated. Plasma samples were analyzed after a simple, one-step protein precipitation clean-up with trichloroacetic acid using a polymer-based amino high-performance liquid chromatography (HPLC) column and a water/acetonitrile mobile phase elution gradient, with d-[1-(13)C]glucosamine as the internal standard. Detection was performed by mass spectrometry, using an electrospray source and employing multiple reaction monitoring to separately monitor glucosamine and the internal standard. The limit of quantification of the method was 10ng/ml of glucosamine and the calibration curve showed a good linearity up to 1000ng/ml. The precision (R.S.D.) and the accuracy (bias) of the method at the limit of quantification were 13.8 and 4.0%, respectively, and the mean recovery of glucosamine at three concentration levels was 101.6+/-5.7%. The method was applied for the determination of glucosamine concentrations in human plasma samples collected from untreated healthy volunteers and, in a separate bioavailability study, to evaluate plasma glucosamine pharmacokinetics profiles after oral administration of crystalline glucosamine sulfate.  相似文献   

5.
A new method for the quantification of cidofovir (CDV), an acyclic nucleotide analogue of cytosine with antiviral activity against a broad-spectrum of DNA viruses, in human serum, using high-performance liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) has been developed. A strong anion exchange (SAX) solid-phase extraction procedure was applied for the sample preparation. The tandem mass spectrometer was tuned in the multiple reaction monitoring mode to monitor the m/z 278.1-->234.9 and the m/z 288.1-->133.1 transitions for CDV and the internal standard 9-(2-phosphonylmethoxyethyl)guanine (PMEG), respectively, using negative electrospray ionization. The MS/MS response was linear over the concentration range from 78.125 ng/ml to 10,000 ng/ml, with a lower limit of quantification of 78.125 ng/ml. The intra- and inter-day precisions (relative standard deviation (%)) for CDV were less than 7.8% and the accuracies (% of deviation from nominal level) were within +/-12.1% for quality controls. The novel LC-MS/MS method allowed a specific, sensitive and reliable determination of CDV in human serum and was applied to investigate the yet unknown pharmacokinetic properties of CDV in a paediatric cancer patient.  相似文献   

6.
A sensitive method for the quantification of lidocaine and its metabolites, monoethylglycinexylidide (MEGX) and glycinexylidide (GX), in animal plasma using high-performance liquid chromatography combined with electrospray ionization mass spectrometry is described. The sample preparation includes a liquid-liquid extraction with methyl tert-butylmethyl ether after addition of 2M sodium hydroxide. Ethylmethylglycinexylidide (EMGX) is used as an internal standard. For chromatographic separation, an ODS Hypersil column was used. Isocratic elution was achieved with 0.01 M ammonium acetate and acetonitrile as mobile phases. Good linearity was observed in the range of 2.5-1000 ng ml(-1) for lidocaine in both dog and horse plasma. For MEGX, linear calibration curves were obtained in the range of 5-1000 ng ml(-1) and 20-1000 ng ml(-1) for dog and horse plasma, respectively. In dog and horse plasma good linearity was observed in the range of 200-1500 ng ml(-1) for GX. The limit of quantification (LOQ) in dog plasma for lidocaine, MEGX and GX was set at 2.5 ng ml(-1), 20 ng ml(-1) and 200 ng ml(-1), respectively. For horse plasma a limit of quantification of 2.5 ng ml(-1), 5 ng ml(-1) and 200 ng ml(-1) was achieved for lidocaine, MEGX and GX, respectively. In dog plasma, the limit of detection (LOD) was found to be 0.8 ng ml(-1), 2.3 ng ml(-1) and 55 ng ml(-1) for lidocaine, MEGX and GX, respectively. In horse plasma the LOD's found for lidocaine, MEGX and GX, were 1.1 ng ml(-1), 0.5 ng ml(-1) and 13 ng ml(-1), respectively. The method was shown to be of use in pharmacokinetic studies after application of a transdermal patch in dogs and after an intravenous infusion in horses.  相似文献   

7.
BAPTA free acid was identified as the main metabolic product of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(actoxymethyl ester) (BAPTA-AM), a neuroprotective agent in cerebral ischemia, in rats. In this paper, liquid chromatography-ultraviolet (LC-UV) and mass spectrometry/mass spectrometry (LC-MS/MS) methods were employed for the determination of BAPTA free acid in rat urine and feces and rat plasma, respectively. By liquid-liquid extraction and LC-UV analysis, a limit of quantitation of 1000 ng/ml using 0.2 ml rat urine for extraction and 250 ng/ml using 1 ml rat fecal homogenate supernatant for extraction could be reached. The assay was linear in the range of 1000-50,000 ng/ml for rat urine and 250-10,000 ng/ml for rat fecal homogenate supernatant. Because the sensitivity of the LC-UV method was apparently insufficient for evaluating the pharmacokinetic profile of BAPTA in rat plasma, a LC-MS/MS method was subsequently developed for the analysis of BAPTA free acid. By protein precipitation and LC-MS/MS analysis, the limit of quantitation was 5 ng/ml using 0.1 ml rat plasma and the linear range was 5.0-500 ng/ml. Both methods were validated and can be used to support a thorough preclinical pharmacokinetic evaluation of BAPTA-AM liposome injection.  相似文献   

8.
Rimonabant is the first therapeutically relevant cannabinoid antagonist, licensed in Europe for treatment of obesity when a risk factor is associated. The objective of this study was to develop and validate a method for measurement of rimonabant in human plasma and hair using liquid chromatography coupled to mass spectrometry (LC-MS/MS). Rimonabant and AM-251 (internal standard) were extracted from 50muL of plasma or 10mg of hair using diethylether. Chromatography was performed on a 150mmx2.1mm C18 column using a mobile phase constituted of formate buffer/acetonitrile. Rimonabant was ionized by electrospray in positive mode, followed by detection with mass spectrometry. Data were collected either in full-scan MS or in full-scan MS/MS mode, selecting the ion m/z 463.1 for rimonabant and m/z 555.1 for IS. The most intense product ion of rimonabant (m/z 380.9) and IS (m/z 472.8) were used for quantification. Calibration curves covered a range from 2.5 (lower limit of quantification) to 1000.0ng/mL (upper limit of quantification) in plasma and from 2.5 to 1000.0pg/mg in hair. Validation results demonstrated that rimonabant could be accurately and precisely quantified in both matrixes: accuracy and precision were within 85-115% and within 15% of standard deviation, respectively. Stability studies in plasma showed that rimonabant was stable during the assay procedure, but a 30% decrease was observed for one concentration after 3 weeks at -20 degrees C. This simple and robust LC-MS/MS method can be used for measuring rimonabant concentrations in human plasma and hair either in clinical or in forensic toxicology.  相似文献   

9.
A highly precise and sensitive method for the estimation of indapamide in human whole blood using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) is described. The method developed is validated in human whole-blood matrix, with a sensitivity of 0.5 ng/ml as lower limit of quantification. The procedure for the extraction of indapamide and glimepiride as internal standard (IS) involves haemolysis and deprotienation of whole blood using ZnSO(4) followed by liquid-liquid extraction using ethyl acetate. The sample extracts after drying were reconstituted and analysed by LC-MS/MS, equipped with turbo ion spray (TIS) source, operating in the positive ion and selective reaction monitoring (SRM) acquisition mode to quantify indapamide in human whole blood. The mean recovery for indapamide was 82.40 and 93.23% for IS. The total run time was 2.5 min to monitor both indapamide and the IS. The response of the LC-MS/MS method for indapamide was linear over the range of 0.5-80.0 ng/ml with correlation coefficient, r>or=0.9991. The coefficient of variance (% CV) at 0.5 ng/ml was 4.02% and the accuracy was well within the accepted limit of +/-20% at 0.5 ng/ml and +/-15% at all other concentrations in the linear range. This method is fully validated for the accuracy, precision and stability studies and also applied to subject-sample analysis of bioequivalence study for 1.5mg sustained-release (SR) formulations.  相似文献   

10.
A simple, reliable and sensitive liquid chromatography-tandem mass spectrometry method (LC-MS/MS) was developed and validated for quantification of N-acetylglucosamine in human plasma. Plasma samples were pretreated with acetonitrile for protein precipitation. The chromatographic separation was performed on Hypersil Silica column (150mmx2mm, 5microm). The deprotonated analyte ion was detected in negative ionization mode by multiple reaction monitoring mode. The mass transition pairs of m/z 220.3-->118.9 and m/z 226.4-->123.2 were used to detect N-acetylglucosamine and internal standard 13C6-N-acetylglucosamine, respectively. The assay exhibited a linear range from 20 to 1280ng/ml for N-acetylglucosamine in human plasma. Acceptable precision and accuracy were obtained for concentrations of the calibration standard and quality control. The validated method was successfully applied to analyze human plasma samples in a pharmacokinetic study.  相似文献   

11.
A simple and sensitive liquid chromatography/tandem mass spectrometry (LC-MS/MS) method using an atmospheric pressure chemical ionization source (APCI) for the quantification of fenretinide (4-HPR) in mouse plasma was developed and validated. After a simple protein precipitation of plasma sample by acetonitrile, 4-HPR was analyzed by LC-APCI-MS/MS. High-performance liquid chromatography (HPLC) separation was conducted on a Hypurity C18 column (50mmx2.1mm, 5microm) with a flow rate 0.60mL/min using a gradient mobile phase comprised of 0.05% formic acid in water (A) and methanol (B), and a run time of 4.5min. The elimination of a tedious sample preparation process and a shorter run time substantially reduced total analysis time. The method was linear over the range 0.5-100ng/mL, with r>0.998. The intra- and inter-assay precisions were 1.4-9.2% and 5.1-8.2%, respectively, and the intra- and inter-assay accuracies were 93.9-98.6% and 92.7-95.3%, respectively. The absolute recoveries were 90.3% (1.5ng/mL), 97.0% (7.5ng/mL) and 92.1% (75.0ng/mL) for 4-HPR, and 99.1% for the internal standard (150ng/mL). The analytical method had excellent sensitivity using a small sample volume (30microL) with the lower limit of quantification (LLOQ) 0.5ng/mL. This method is robust and has been successfully employed in a pharmacokinetic study of 4-HPR in a mouse xenograft model of neuroblastoma.  相似文献   

12.
A sensitive high-performance liquid chromatographic method is described for the quantification of midazolam and 1′-hydroxymidazolam in human plasma. Sample (1 ml plasma) preparation involved a simple solvent extraction step with a recovery of approximately 90% for both compounds. An aliquot of the dissolved residue was injected onto a 3 μm capillary C18 column (150 mm×0.8 mm I.D.). A gradient elution was used. The initial mobile phase composition (phosphate buffer–acetonitrile, 65:35) was maintained during 16 min and was then changed linearly during a 1-min period to phosphate buffer–acetonitrile, 40:60. The flow-rate of the mobile phase was 16 μl/min and the eluate was monitored by UV detection. The limits of quantification for midazolam and 1′-hydroxymidazolam were 1 ng/ml and 0.5 ng/ml, respectively. The applicability of the method was demonstrated by studying the pharmacokinetics of midazolam, and its major metabolite 1′-hydroxymidazolam, in human volunteers following i.v. bolus administration of a subtherapeutic midazolam dose (40 μg/kg).  相似文献   

13.
Dronedarone, a noniodinated benzofuran derivative of amiodarone, is believed to have a better side effect profile, and is currently undergoing phase III clinical trials. A novel method was developed for the determination of dronedarone and its principal metabolite debutyldronedarone in both plasma and myocardial tissue by high-performance liquid chromatography (HPLC) coupled with UV-detection. The assay was also validated for determination of amiodarone and desethylamiodarone. Samples were obtained from healthy humans (plasma) and goats (plasma and myocardium). Sample preparation included deproteinization with acetonitrile and extraction with a mixture of heptane and dichloromethane (50/50, v/v). Chromatographic separation was performed on a Pathfinder PS polymeric C18 column (50 mm × 4.6 mm, 2.5 μm) with a mobile phase of acetonitrile, isopropanol, water and ammonia (80/10/10/0.025, v/v/v/v) at a flow-rate of 1 ml/min. Calibration curves of all analytes were linear in the range of 0.01–5 μg/ml for plasma samples, with a lower limit of quantification (LLOQ) of 0.04 μg/ml. For myocardial tissue samples, linear curves of all analytes were observed in the range of 0.02–500 μg/g, with a LLOQ of 0.08 μg/g. Within- and between-day precision was <18%, and within- and between-day accuracy ranged from 97.5 to 109.7%, with a recovery of 67.6–79.9%. The present method enables sensitive and specific detection of dronedarone, amiodarone and principal metabolites in plasma as well as myocardial tissue.  相似文献   

14.
A simple, accurate and selective LC-MS/MS method was developed and validated for simultaneous quantification of ten antiarrhythic drugs (diltiazem, amiodarone, mexiletine, propranolol, sotalol, verapamil, bisoprolol, metoprolol, atenolol, carvedilol) and a metabolite (norverapamil) in human plasma. Plasma samples were simply pretreated with acetonitrile for deproteinization. Chromatographic separation was performed on a Capcell C(18) column (50mmx2.0mm, 5microm) using a gradient mixture of acetonitrile and water (both containing 0.02% formic acid) as a mobile phase at flow rate of 0.3ml/min. The analytes were protonated in the positive electrospray ionization (ESI) interface and detected in multiple reaction monitoring (MRM) mode. Calibration curves were linear over wide ranges from sub- to over-therapeutic concentration in plasma for all analytes. Intra- and inter-batch precision of analysis was <12.0%, accuracy ranged from 90% to 110%, average recovery from 85.0% to 99.7%. The validated method was successfully applied to therapeutic drug monitoring (TDM) of antiarrhythic drugs in routine clinical practice.  相似文献   

15.
For the first time, a liquid chromatographic method with tandem mass spectrometric detection (LC-MS/MS) for the simultaneous determination of ribavirin and rabavirin base was developed and validated over the concentration range of 10-5,000 ng/ml, respectively, using a 0.025 ml monkey plasma sample. Ribavirin, ribavirin base, and the internal standards were extracted from monkey plasma via protein precipitation. After evaporation of the supernatant, the extract was reconstituted with 5% methanol (containing 0.1% formic acid) and injected onto the LC-MS/MS system. Optimum chromatographic separation was achieved on a Waters Atlantis dc18 (150 mm x 2.1mm, 5 microm) column with mobile phase run in gradient with 100% water containing 0.5% formic acid (A) and 90% acetonitrile (containing 0.5% formic acid (B). The flow rate was 0.4-0.6 ml/min with total cycle time of approximately 7.0 min. Post-column addition of acetonitrile (containing 0.1% formic acid) at 0.3 ml/min was used to increase the ionization efficiency in the MS source. The method was validated for sensitivity, linearity, reproducibility, stability and recovery. Lack of adverse matrix effect and carry-over was also demonstrated. The intra-day and inter-day precision and accuracy of the quality control (QC) samples were <9.0% relative standard deviation (R.S.D.) and 10.8% bias for ribavirin, and 10.3% R.S.D. and 11.3% bias for ribavirin base. The current specific, accurate and precise assay is useful in support of the toxicokinetic and pharmacokinetic studies of these compounds.  相似文献   

16.
A specific high performance liquid chromatography-mass spectrometric (LC-MS/MS) assay was developed for the determination of captopryl in plasma. The retention time was 1.45 and 1.37 min for captopril and enalapril, respectively. The overall mean recovery, using SPE extraction with OASIS HLB cartridges, was found to be 107.2+/-9.5 and 100.04+/-2%, respectively. Calibration curves were linear in the concentration range of 10.00-2000.00 ng/ml, and the lower limit of quantification (LLOQ) was 10.00 ng/ml. The LLOQ was sensitive enough for detecting terminal phase concentrations of the drug. Inter-batch precision of the method ranged from 0.88 to 1.95%. Intra-batch accuracy ranged from 97.15 to 105.77%, while intra-batch precision ranged from 2.49 to 5.66% at concentrations of 30.00, 760.00 and 1500.00 ng/ml. The developed method was applied to study bioequivalence of captopril in a group of 25 human subjects at a single oral dose of a 50mg tablet.  相似文献   

17.
The use of enzymatic digests of the peptide HIV-1 fusion inhibitor enfuvirtide as a tool for the absolute quantification of this polypeptide (MW 4492 Da) in human plasma by LC-MS/MS has been evaluated. Two different methods applying digestion of enfuvirtide with chymotrypsin after solid phase extraction (SPE) of the plasma samples have therefore been developed and validated. One method used a stable isotopically labeled analog of the complete peptide (d60-enfuvirtide) as internal standard (IS) and could use as much as four different chymotryptic fragments for the quantification of enfuvirtide in a range of 100-10,000 ng/ml. Intra- and inter-assay precisions and deviations from the nominal concentrations varied for the different fragments, but were below 9% when the four results were averaged. The other method used a stable isotopically labeled chymotryptic fragment of the peptide (d10-ASLW) as IS. Although this IS does not correct for variations in digestion recovery, it allows the selective quantification of enfuvirtide (100-10,000 ng/ml), besides the quantification of the sum of enfuvirtide and its de-amidated metabolite M-20 (120-12,000 ng/ml). Both methods were suitable for the absolute quantification of enfuvirtide and M-20 in plasma, but proper selection of the fragment(s) used for the quantification appeared crucial when the deuterated fragment was used as IS.  相似文献   

18.
A sensitive and selective liquid chromatographic method coupled with mass spectrometry (LC-MS) was developed for the quantification of phloroglucinol in human plasma. Resorcinol was used as internal standard, with plasma samples extracted using ethyl acetate. A centrifuged upper layer was then evaporated and reconstituted with mobile phase. The reconstituted samples were injected into a C(18) XTerra MS column (2.1 x 100 mm) with 3.5-microm particle size. The analytical column lasted for at least 500 injections. The mobile phase was 15% acetonitrile (pH 3.0), with flow-rate at 200 microl/min. The mass spectrometer was operated in negative ion mode with selective ion monitoring (SIM). Phloroglucinol was detected without severe interferences from plasma matrix when used negative ion mode. Phloroglucinol produced a parent molecule ([M-H](-)) at m/z 125 in negative ion mode. Detection of phloroglucinol in human plasma was accurate and precise, with quantification limit at 5 ng/ml. This method has been successfully applied to a study of phloroglucinol in human specimens.  相似文献   

19.
A simple, fast and sensitive high-performance liquid chromatography (HPLC)-mass spectrometric (MS) method has been developed for simultaneous determination of amoxicillin and clavulanic acid in human plasma using terbutaline as internal standard. After precipitation of the plasma proteins with acetonitrile, the analytes were separated on a C(8) reversed-phase column with formic acid-water-acetonirile (2:1000:100) and detected using electrospray ionization (ESI) mass spectrometry in negative selected ion monitoring (SIM) mode. The method was validated and successfully applied to analysis of amoxicillin and clavulanic acid in clinical studies. The limit of quantitation, 0.12 microg/ml for amoxicillin and 0.062 microg/ml for clavulanic acid, was five times lower than that of the published HPLC-UV method.  相似文献   

20.
Viramidine is a prodrug of ribavirin. To facilitate pharmacokinetics studies of viramidine in man, a sensitive and specific LC-MS/MS method for the simultaneous analyses of viramidine and ribavirin in human plasma was developed and validated. The method involved the addition of [13C]viramidine and [13C]ribavirin as internal standards, protein precipitation with acetonitrile, HPLC separation, and quantification by MS/MS system using positive electrospray ionization in the multiple reaction monitoring mode (MRM). The precursor-->product ion transitions were monitored at 245-->113, 250-->113, 244-->112, and 249-->112 for ribavirin, [13C]ribavirin, viramidine, and [13C]viramidine, respectively. The calibration curves for viramidine and ribavirin were linear over a concentration range of 1-1000 ng/mL. For both viramidine and ribavirin, the lower limit of quantification (LLOQ) was 1 ng/mL. For viramidine, intra- and inter-day analyses of QC samples at 1, 5, 250, and 1000 ng/mL indicated good precision (%CV between 1.0 and 7.0%) and accuracy (%bias between -4.3 and 5.2%). For ribavirin, intra- and inter-day analyses of QC samples at 1, 5, 250, and 1000 ng/mL indicated similar precision (%CV between 0.8 and 8.3%) and accuracy (%bias between -5.8 and 9.4%). Both viramidine and ribavirin were stable in human plasma stored at room temperature for at least 3 h, 4 degrees C for at least 6 h, and for at least three freeze-thaw cycles. This accurate and highly specific assay provides a useful method for evaluating the pharmacokinetics of viramidine and ribavirin in man following administration of viramidine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号