首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photosynthetica - The relationship between soil water availability, physiological responses [leaf chlorophyll (Chl) fluorescence, leaf water potential (Ψ), and stomatal conductance (g s)] and...  相似文献   

2.
Karavatas  S.  Manetas  Y. 《Photosynthetica》1999,36(1-2):41-49
Photochemical efficiency of photosystem 2 (PS2), assessed from in situ chlorophyll (Chl) fluorescence measurements, was seasonally monitored in five evergreen sclerophyll and five malacophyllous drought semi-deciduous species, co-occurring in the same Mediterranean field site. In evergreen sclerophylls, a considerable drop in the variable (Fv) to maximum (Fm) Chl fluorescence ratio coincided with the lowest winter temperatures, indicating low PS2 efficiency during this period. Summer drought caused a comparatively slight decrease in Fv/Fm and only in three of the five evergreen sclerophyll species tested. In drought semi-deciduous shrubs, the winter drop in Fv/Fm was much less conspicuous. During the summer, and in spite of the severe and prolonged desiccation of their malacophyllous leaves, Fv/Fm was maintained high and only in one species the PS2 efficiency was transiently suppressed, when the leaf relative water content became lower than 30 %. Thus evergreen sclerophylls are more prone to photoinhibition by low winter temperatures, while the sensitivity of drought semi-deciduals depends on the extent and duration of summer drought. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

3.
田间大豆叶片成长过程中的光合特性及光破坏防御机制   总被引:9,自引:0,他引:9  
田间大豆叶片在成长进程中光饱和光合速率持续提高,但气孔导度的增加明显滞后.尽管叶片在成长初期就具有较高的最大光化学效率,但是仍略低于发育成熟的叶片.随着叶片的成长,光下叶片光系统Ⅱ实际效率增加;非光化学猝灭下降.幼叶叶黄素总量与叶绿素之比较高,随着叶面积的增加该比值下降,在光下,幼叶的脱环氧化程度较高.因此认为大豆叶片成长初期就能够有效地进行光化学调节;在叶片生长过程中依赖叶黄素循环的热耗散机制迅速建立起来有效抵御强光的破坏.  相似文献   

4.
Shirke  P.A.  Pathre  U.V. 《Photosynthetica》2003,41(1):83-89
The plants of Prosopis juliflora growing in northern India are exposed to large variations of temperature, vapour pressure deficits (VPD), and photosynthetic photon flux density (PPFD) throughout the year. Under these conditions P. juliflora had two short periods of leaf production, one after the winter season and second after summer, which resulted in two distinct even aged cohorts of leaves. In winter with cold nights (2–8 °C) and moderate temperatures during the day, the plants showed high rates of photosynthesis. In summer the midday temperatures often reached <45 °C and plants showed severe inhibition of photosynthesis. The leaves of second cohort appeared in July and showed typical midday depression of photosynthesis. An analysis of diurnal partitioning of the absorbed excitation energy into photochemistry showed that a smaller fraction of the energy was utilised for photochemistry and a greater fraction was dissipated thermally, further the photon utilisation for photochemistry and thermal dissipation is largely affected by the interaction of irradiance and temperature. The plants showed high photochemical efficiency of photosystem 2 (PS2) at predawn and very little photoinhibition in all seasons except in summer. The photoinhibition in summer was pronounced with very poor recovery during night. Since P. juliflora exhibited distinct pattern of senescence and production of new leaves after winter and summer stress period, it appeared that the ontogenic characteristic together with its ability for safe dissipation of excess radiant energy in P. juliflora contributes to its growth and survival.  相似文献   

5.
The evergreen species Yucca glauca was characterized at the end of September and following exposure to low temperatures at the end of November. In November the diurnal pattern of xanthophyll cycle-dependent energy dissipation was altered such that this thermal dissipation process was engaged at a high level throughout the day, whereas in September it only became engaged when leaves received direct sunlight. An analysis of the diurnal partitioning of the absorbed excitation energy into photochemistry versus thermal dissipation suggested that a smaller fraction of that energy was utilized in photochemistry and a greater fraction was dissipated thermally at the end of November compared to September. Lower ratios of Chl a / b and β -carotene/xanthophylls both suggested a decrease in the ratio of reaction centre plus core antenna proteins compared to light-harvesting proteins, and a lower leaf chlorophyll content suggested a decrease in light-harvesting capacity in November versus September. Thus adjustments to the photosynthetic apparatus occurred on several levels in response to the increase in excess excitation energy that Y. glauca experienced during the onset of winter.  相似文献   

6.
Bertamini  M.  Nedunchezhian  N. 《Photosynthetica》2002,40(4):597-603
Photoinhibition of photosynthesis was investigated in Vitis berlandieri and Vitis rupestris leaves under field conditions at different sampling time in a day. The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll fluorescence (Fv/Fm) and photosynthetic electron transport measurements. When the photochemical efficiency of PS2, Fv/Fm, markedly declined, F0 increased significantly in leaves of V. berlandieri, while F0 did not increase in V. rupestris leaves. Isolated thylakoids of leaves of V. berlandieri showed significant inhibition of whole chain and PS2 activities at midday. A smaller inhibition was observed for V. rupestris. Later, the leaves reached maximum PS2 efficiencies similar to those observed early in the morning during sampling at evening. The artificial exogenous electron donor Mn2+ failed to restore PS2 activity in both species, while DPC and NH2OH significantly restored PS2 activity in V. rupestris midday leaf samples. Quantification of the PS2 reaction centre protein D1 and 33 kDa protein of water splitting complex following midday exposure of leaves showed pronounced differences between V. berlandieri and V. rupestris leaves. The marked loss of PS2 activity noticed in midday samples was mainly due to the marked loss of D1 protein in V. berlandieri while in V. rupestris it was the 33 kDa protein.  相似文献   

7.
Dai  Xinbin  Xu  Xiaoming  Lu  Wei  Kuang  Tingyun 《Photosynthetica》2003,41(1):57-60
The low chlorophyll b mutant of high yield rice had a lower light-harvesting complex 2 content than the wild type. The stability of oxygen evolution side of photosystem 2 was only slightly lower. A lower photon absorption rate and a stronger xanthophyll cycle capacity of this mutant led to a higher endurance to strong irradiance and a lower photoinhibition as compared with the wild type rice.  相似文献   

8.
在室内砾耕栽培条件下,通过培养液中加入PEG(Polyethylene glycol 分子量为6000)以调节溶液渗透势,设置对照、弱水分胁迫和强水分胁迫3种处理 (培养液渗透势分别为0.02,-0.1,-0.34 MPa), 从1997年开始对臭柏进行长期干旱胁迫模拟实验.2003年测定了臭柏叶片光合色素和光合特性的季节变化.结果表明:对照区气孔导度季节变化在5月和9月份形成了典型的双峰曲线.尽管对照区的气孔导度明显高于其他两个处理,但日光合量却低于弱水分胁迫区.3个处理Chl a/b的比值在11月至翌年3月的低温期内均升高,以强水分胁迫区的增幅最大,其它月份该比值在3个处理之间没有显著的差异.3个处理的叶绿素总量(Chl a+b)在生长季的5~9月份均有不同程度的上升,但其中以强水分胁迫区增幅最小.在11月至翌年3月的低温期,各处理均大幅提高叶黄素总量(V+A+Z)和热耗散色素比例(A+Z)/(V+A+Z) (V:紫黄质、A:单环氧玉米黄质、Z:玉米黄质);在5~7月份的生长高峰期,各处理则明显降低了叶黄素总量和热耗散色素比例.这种趋势在强水分胁迫区表现的更为显著.  相似文献   

9.
干旱条件下冬小麦叶片光化学效率(Fv/Fm)的降低伴随着叶黄素循环组分玉米黄质含量的增加。干旱初期,Fv/Fm 的降低约在暗置过夜后完全恢复。当干旱诱导的玉米黄质含量的增加达最大值时,Fv/Fm 不可逆下降,Fo 上升,表明发生了光破坏。与老叶相比,干旱条件下功能叶具有较高的玉米黄质含量,对光破坏的抗性较强。推测干旱条件下老叶不可逆衰老与其依赖于叶黄素循环的耗散过剩光能能力的下降有关。  相似文献   

10.
The influence of low temperature on the operation of the xanthophyll cycle and energy dissipation activity, as ascertained through measurements of chlorophyll fluorescence, was examined in two broad-leaved evergreen species, Vinca minor L. and Euonymus kiautschovicus Loessner. In leaves examined under laboratory conditions, energy dissipation activity developed more slowly at lower leaf temperatures, but the final, steady-state level of such activity was greater at lower temperatures where the rate of energy utilization (through photosynthetic electron transport) was much lower. The rate at which energy dissipation activity increased was similar to that of the de-epoxidation of violaxanthin to antheraxanthin and zea-xanthin at different temperatures. However, leaves in the field examined prior to sunrise on mornings following cold days and nights exhibited a retention of antheraxanthin and zeaxanthin that was associated with sustained decreases in photosystem II efficiency. We therefore suggest that this phenomenon of ‘photoinhibition’ in response to light and cold temperatures during the winter results from sustained photoprotective thermal energy dissipation associated with the xanthophyll cycle. Such retention of the de-epoxidized components of the xanthophyll cycle responded to day-to-day changes in temperature, being greatest on the coldest mornings (when photoprotective energy dissipation might be most required) and less on warmer mornings when photosynthesis could presumably proceed at higher rates.  相似文献   

11.
Lidon  F.C.  Ribeiro  G.  Santana  H.  Marques  H.  Correia  K.  Gouveia  S. 《Photosynthetica》2001,39(1):17-22
The concentrations of photosynthetic pigments decreased in both chilling stressed species but the ratios of chlorophyll (Chl) a/b and total carotenoids (Car)/Chls were depressed only in faba bean. The contents of + carotene and lutein+lutein-5,6-epoxide remained unaffected in both species, but the de-epoxidation state involving the components of xanthophyll cycle increased in pea. Under chilling stress the photosynthetic electron transport associated with photosystem 2, PS2 (with and without the water oxidising complex) decreased in both plant species, the inhibition being higher in faba bean. The intrachloroplast quinone pool also decreased in both stressed species, yet an opposite trend was found for cytochrome b 559LP. Under stress an increasing peroxidation of thylakoid acyl lipids was detected in pea, but higher protein/Chl ratio was detected in faba bean. Thus the acceptor side of PS2 is mostly affected in both chilling stressed species, but faba bean is more sensitive.  相似文献   

12.
水分胁迫下大丽花光合及叶绿素荧光的日变化特性   总被引:2,自引:0,他引:2  
以大丽花品种‘粉西施’为试验材料,采用盆栽方法,研究了不同土壤含水量处理对‘粉西施’叶片光合及荧光特性日变化的影响。结果表明:随着水分胁迫程度的加深,大丽花叶片的Pn、Tr和Gs日平均值均降低,Ci日平均值在轻度和中度胁迫下降低,在重度胁迫下升高;在轻度和中度水分胁迫下大丽花Pn降低的主要原因是气孔限制,而重度水分胁迫下是非气孔因素;Pn在水分胁迫下的日变化曲线由单峰型变成双峰型,出现"午休"现象,且Tr和Gs在水分胁迫下的日变化曲线和Pn一致,但Ci日变化较平稳,与Pn相反。随着水分胁迫程度的加深,大丽花叶片的初始荧光(F0)日平均值升高,日变化曲线呈倒"V"型,PSⅡ反应中心可能破坏或可逆失活;Fm、Fv/Fm和ΦPSⅡ日平均值均降低,日变化曲线呈"V"型。水分胁迫使大丽花光抑制程度加深,抑制了PSⅡ的光化学活性,致使用于光化学反应的光能及实际光化学效率降低。研究结果发现,大丽花品种‘粉西施’在不同水分胁迫下都产生了光合作用的光抑制而使净光合速率降低;光合机构可适应轻度和中度水分胁迫而发生可逆失活,没有受到不可恢复的伤害,而重度水分胁迫降低了叶片的光合机构活性,加剧了光抑制程度,严重限制了光合作用;适宜大丽花生长的土壤含水量应为田间最大持水量的30%以上。  相似文献   

13.
Subhan  D.  Murthy  S.D.S. 《Photosynthetica》2000,38(2):211-214
Al3+ in combination with kinetin showed more protection against degradation of chlorophyll (Chl) and protein than Al3+ or kinetin alone during dark-induced senescence in wheat primary leaf segments. MV-dependent whole chain electron transport, photosystem (PS) 2 mediated oxygen evolution, and PS1 activities were also delayed to a greater extent. Absorbed excitation energy distribution was more in favour of PS1 in Al3+ plus kinetin-treated leaf thylakoids at 72 h.  相似文献   

14.
The function of chloroplast ferredoxin quinone reductase (FQR)-dependent flow was examined by comparing a wild type tobacco and a tobacco transformant (ΔndhB) in which the ndhB gene had been disrupted with their antimycin A (AA)-fed leaves upon exposure to chilling temperature (4 °C) under low irradiance (100 μmol m−2 s−1 photon flux density). During the chilling stress, the maximum photochemical efficiency of photosystem (PS) 2 (Fv/Fm) decreased markedly in both the controls and AA-fed leaves, and P700+ was also lower in AA-fed leaves than in the controls, implying that FQR-dependent cyclic electron flow around PS1 functioned to protect the photosynthetic apparatus from chilling stress under low irradiance. Under such stress, non-photochemical quenching (NPQ), particularly the fast relaxing NPQ component (qf) and the de-epoxidized ratio of the xanthophyll cycle pigments, (A+Z)/(V+A+Z), formed the difference between AA-fed leaves and controls. The lower NPQ in AA-fed leaves might be related to an inefficient proton gradient across thylakoid membranes (ΔpH) because of inhibiting an FQR-dependent cyclic electron flow around PS1 at chilling temperature under low irradiance.  相似文献   

15.
Two species of eucalypt (Eucalyptus macrorhyncha and E. rossii) were grown under conditions of high temperatures (45 °C, maximum) and high light (1500 μmol m?2 s?1, maximum) at either ambient (350 μL L?1) or elevated (700 μL L?1) CO2 concentrations for 8 weeks. The growth enhancement, in terms of total dry weight, was 41% and 103% for E. macrorhyncha and E. rossii, respectively, when grown in elevated [CO2]. A reduction in specific leaf area and increased concentrations of non-structural carbohydrates were observed for leaves grown in elevated [CO2]. Plants grown in elevated [CO2] had an overall increase in photosynthetic CO2 assimilation rate of 27%; however, when measured at the same CO2 concentration a down-regulation of photosynthesis was evident especially for E. macrorhyncha. During the midday period when temperatures and irradiances were maximal, photosynthetic efficiency as measured by chlorophyll fluorescence (Fv/Fm) was lower in E. macrorhyncha than in E. rossii. Furthermore, Fv/Fm was lower in leaves of E. macrorhyncha grown under elevated than under ambient [CO2]. These reductions in Fv/Fm were accompanied by increases in both photochemical (qP) and nonphotochemical quenching (qN and NPQ), and by increases in the concentrations of xanthophyll cycle pigments with an increased proportion of the total xanthophyll cycle pool comprising of antheraxanthin and zeaxanthin. Thus, increased atmospheric [CO2] may enhance photoinhibition when environmental stresses such as high temperatures limit the capacity of a plant to respond with growth to elevated [CO2].  相似文献   

16.
Among three species, Gossypium hirsutum, Rhizophora mangle, and Monstera deliciosa, which were transferred from low to high growth PFD, only small decreases in the efficiency of photochemical energy conversion were observed in those plants which exhibited an increase in photosynthetic capacity. Leaves of plants which showed no increase in photosynthetic capacity experienced a continuous decrease in photochemical efficiency, accompanied by a more pronounced loss of chlorophyll than that observed in the former group. In all species marked increases in the xanthophyll/β-carotene ratio resulted from small increases in lutein, and several-fold increases in the sum of the three components of the xanthophyll cycle, zeaxanthin, antheraxanthin, and violaxanthin. A strong increase in the level of zeaxanthin was only partially matched by a decrease of violaxanthin to zero, and was further paralleled by a decrease in β-carotene. Antiparallel changes in the sum of zeaxanthin + antheraxanthin + violaxanthin and β-carotene between morning and evening were observed in all species. These diel changes were overlaid on a net increase in β-carotene as well as total carotenoid content in those plants in which photosynthetic capacity increased. In those, however, which exhibited no photosynthetic acclimation upon transfer to high light, a decrease in both β-carotene and total carotenoid content was observed. Rhizophora mangle grown at 100 % seawater exhibited a particularly high capacity for increasing the level of zeaxanthin in response to high light.  相似文献   

17.
The function of photosystem II (PSII) during desiccation was investigated via analysis of Chl a fluorescence emission in thalli from Parmelia quercina (Willd.) Vainio, Parmelia acetabulum (Necker) Duby, Ramalina farinacea (L.) Ach., Pseudevernia furfuracea (L.) Zopf., and Evernia prunastri (L.) Ach. Water loss followed the same exponential pattern in all these species, the half time being dependent on species. Desiccation affected the fluorescence parameters. Dark-adapted maximum fluorescence (Fm), instantaneous fluorescence (Fo) and the ratio of variable (Fm–Fo) to Fm were dependent on water content and decreased in two distinct phases: a slow and apparently linear phase, followed by a more steep decline at low water content. Actual PSII photochemical yield (φPSII), non-photochemical quenching (NPQ), efficiency of photon capture (φexc), and photochemical quenching (qp) remained nearly constant until 30% relative water content (RWC), decreasing rapidly thereafter. In contrast, increased NPQ appeared to occur only at water content values lower than 20%. Treatment of thalli with dithiothreitol (DTT) effectively reduced NPQ during desiccation and increased susceptibility to photoinhibition caused by exposure to high light as measured by dark recovery of the FvFm ratio. HPLC analysis showed that the level of the de-epoxidized xanthophyll cycle pigments antheraxanthin (Anth) and zeaxanthin (Zea) increased during lichen desiccation. The results point towards the existence of a photoprotective mechanism with the involvement of Zea and Anth in non-radiative dissipation of the desiccation-induced excess of energy.  相似文献   

18.
Jiang  G.M.  Zhu  G.J. 《Photosynthetica》2001,39(2):257-262
Field studies of gas exchange and chlorophyll fluorescence of three desert shrub species, Hedysarum fruticosum var. mongolicum, Artemisia ordosia, and Salix pasmmophylla, showed different patterns under different leaf temperature (T1) and incident photosynthetic photon flux density (PPFD). H. fruticosum var. mongolicum and A. ordosia exhibited higher P N and g s than S. pasmmophylla, especially under very high T1 (>46 °C) and high PPFD (>2 100 µmol m–2 s–1) in hot summer. The decreases of P N with the diurnal course were due mainly to stomata closure. However, P N of S. pasmmophylla was seriously depressed by very high temperature from midday to evening as shown by the negative P N in hot summer, whereas none of such depression was found in spring. Maximal spring photochemical efficiency of photosystem 2 (PS2), i.e, Fv/Fm, was the lowest at 16:00, indicating the injury of PS2 by heat at this stage. In hot summer again, all the three shrubs underwent pronounced midday depression of P N and g s, while in spring they showed a one-peak response. And the first peak appeared 2 h earlier in hot summer than in spring for all the three shrubs. It was the high temperature that led to the different patterns of gas exchange and the serious depression of P N in S. pasmmophylla. H. fruticosum var. mongolicum and A. ordosia were much more tolerant to heat and high irradiance than S. pasmmophylla, which fixed most of CO2 at the fast growing stage in spring. Nevertheless, in hot summer it had to survive the severe hot environment through strong respiration and storage of CO2 only in the early morning.  相似文献   

19.
Castillo  J.M.  Casal  A.E. Rubio  Luque  C.J.  Luque  T.  Figueroa  M.E. 《Photosynthetica》2002,40(1):49-56
Chlorophyll a fluorescence, water potential (s), and root system of Juniperus oxycedrus ssp. macrocarpa, Juniperus phoenicea ssp. turbinata, and Pinus pinea were studied in Mediterranean coastal dunes of SW Spain during summer drought and after fall rains in 1999, the driest year in the 90's. A strong and reversible depression in the photochemical efficiency of photosystem 2 of the three species was recorded, which happened concomitantly with the diurnal increase and decrease in radiation. J. phoenicea, with superficial root system, was the most affected species by summer drought. It showed high rates of down-regulation of photosynthesis by photoinhibition and positive correlation between s and Fv/Fp, with s lower than -7 MPa. However, it tolerated this high stress, showing a fast recovery of its physiological state after fall rains. On the other hand, J. oxycedrus and P. pinea, both with deep root systems, kept their s values up to -3 MPa, showing lower stress during summer drought. On the other hand, J. oxycedrus and J. phoenicea were more sensible to changes in edaphic water content than P. pinea. These specific responses to summer drought would be determined by their root distributions and stomatal control of transpiration, conditioning the efficiency in getting and using the available water resources. Ecophysiological responses indicate that these species are well-adapted to long periods of drought in Mediterranean climate areas, developing different strategies: J. phoenicea tolerates high stress with a fast recovery after fall rains, while J. oxycedrus and P. pinea are less affected by summer drought since their deep root systems would allow them to reach deep water resources.  相似文献   

20.
Four physiologically and phenotypically diversified tobacco (Nicotiana tabacum L. cv. Samsun) plantlet variants had been generated by cultivation on media either lacking or containing sucrose (0 and 3 %, m/v) under two different photon flux densities (PFD), 50 µmol m–2 s–1 (LL) and 200 µmol m–2 s–1 (HL). Plantlets were transferred into soil without any pre-acclimation and grown either under PFD of 200 µmol m–2 s–1 or 700 µmol m–2 s–1. Sucrose feeding in vitro resulted in reduced degree and duration of wilting after transfer. The highest readiness for ex vitro acclimation was found in 3 % HL plants, in which changes of photosynthetic apparatus and stress responses were the smallest. On the contrary, the steepest decline of Fv/Fm ratio on the first day after transplantation, doubled chlorophyll content and almost tripled D1/LHC 2 ratio after 7 d of ex vitro growth under 700 µmol m–2 s–1 characterized 0 % HL plants, which had suffered chronic photoinhibition in vitro. Remarkably high abscisic acid content at the end of in vitro cultivation and during acclimation as well as increased synthesis of both D1 and LHC 2 proteins even at the end of analyzed acclimation period were found only in 0 % LL plants. Increase of D1/LHC 2 ratio and chlorophyll contents demonstrate that in vitro developed leaves of all plant variants are able to acclimate to new environment. The most surprising result in the whole study is the drop of D1 protein synthesis in all plants on the 3rd day. Five times decline of photoprotection level of xanthophylls in plants after ex vitro transfer into the same PFD showed stress character of in vitro cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号