首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The functional and molecular properties of system L in human mammary cancer cells (MDA-MB-231 and MCF-7) have been examined. All transport experiments were conducted under Na(+)-free conditions. alpha-Aminoisobutyric acid (AIB) uptake by MDA-MB-231 and MCF-7 cells was almost abolished by BCH (2-amino-2-norbornane-carboxylic acid). AIB uptake by MDA-MB-231 cells was also inhibited by L-alanine (83.6%), L-lysine (75.6%) but not by L-proline. Similarly, L-lysine and L-alanine, respectively, reduced AIB influx into MCF-7 cells by 45.3% and 63.7%. The K(m) of AIB uptake into MDA-MB-231 and MCF-7 cells was, respectively, 1.6 and 8.8 mM, whereas the V(max) was, respectively, 9.7 and 110.0 nmol/mg protein/10 min. AIB efflux from MDA-MB-231 and MCF-7 cells was trans-stimulated by BCH, L-glutamine, L-alanine, L-leucine, L-lysine and AIB (all at 2 mM). In contrast, L-glutamate, L-proline, L-arginine and MeAIB had no effect. The interaction between L-lysine and AIB efflux was one of low affinity. The fractional release of AIB from MDA-MB-231 cells was trans-accelerated by D-leucine and D-tryptophan but not by D-alanine. MDA-MB-231 and MCF-7 cells expressed LAT1 and CD98 mRNA. MCF-7 cells also expressed LAT2 mRNA. The results suggest that AIB transport in mammary cancer cells under Na(+)-free conditions is predominantly via system L which acts as an exchange mechanism. The differences in the kinetics of AIB transport between MDA-MB-231 and MCF-7 cells may be due to the differential expression of LAT2.  相似文献   

2.
The transport of l-leucine by two human breast cancer cell lines has been examined. l-Leucine uptake by MDA-MB-231 and MCF-7 cells was via a BCH-sensitive, Na+-independent pathway. l-Leucine uptake by both cell lines was inhibited by l-alanine, d-leucine and to a lesser extent by l-lysine but not by l-proline. Estrogen (17β-estradiol) stimulated l-leucine uptake by MCF-7 but not by MDA-MB-231 cells. l-Leucine efflux from MDA-MB-231 and MCF-7 cells was trans-stimulated by BCH in a dose-dependent fashion. The effect of external BCH on l-leucine efflux from both cell types was almost abolished by reducing the temperature from 37 to 4 °C. There was, however, a significant efflux of l-leucine under zero-trans conditions which was also temperature-sensitive. l-Glutamine, l-leucine, d-leucine, l-alanine, AIB and l-lysine all trans-stimulated l-leucine release from MDA-MB-231 and MCF-7 cells. In contrast, d-alanine and l-proline had little or no effect. The anti-cancer agent melphalan inhibited l-leucine uptake by MDA-MB-231 cells but had no effect on l-leucine efflux. Quantitative real-time PCR revealed that LAT1 mRNA was approximately 200 times more abundant than LAT2 mRNA in MCF-7 cells and confirmed that MDA-MB-231 cells express LAT1 but not LAT2 mRNA. LAT1 mRNA levels were higher in MCF-7 cells than in MDA-MB-231 cells. Furthermore, LAT1 mRNA was more abundant than CD98hc mRNA in both MDA-MB-231 and MCF-7 cells. The results suggest that system L is the major transporter for l-leucine in both MDA-MB-231 and MCF-7 cells. It is possible that LAT1 may be the major molecular correlate of system L in both cell types. However, not all of the properties of system L reflected those of LAT1/LAT2/CD98hc.  相似文献   

3.
It has been shown that cell swelling stimulates the efflux of taurine from MCF-7 and MDA-MB-231 cells via a pathway which has channel-like properties. The purpose of this study was to examine the specificity of the volume-activated taurine efflux pathway in both cell lines. A hyposmotic shock increased the efflux of glycine, L-alanine, AIB (α-aminoisobutyric acid), D-aspartate but not L-leucine from MDA-MB-231 and MCF-7 cells. It was evident that the time course of activation/inactivation of those amino acids whose efflux was affected by cell swelling was similar to that of volume-activated taurine efflux. The effect of exogenous ATP on swelling-induced glycine, AIB and D-aspartate efflux from MDA-MB-231 cells was similar to that found on taurine efflux. In addition, volume-activated AIB efflux from MDA-MB-231 cells, like that of swelling-induced taurine efflux, was inhibited by diiodosalicylate. Tamoxifen inhibited volume-activated taurine release from both MDA-MB-231 and MCF-7 cells. The results suggest that neutral and anionic α-amino acids are able to utilize the volume-activated taurine efflux pathway in both cell lines. The effect of tamoxifen on breast cancer growth may, in part, be related to perturbations in cell volume regulation.  相似文献   

4.
The activity and expression of indoleamine 2,3-dioxygenase together with L-tryptophan transport has been examined in cultured human breast cancer cells. MDA-MB-231 but not MCF-7 cells expressed mRNA for indoleamine 2,3-dioxygenase. Kynurenine production by MDA-MB-231 cells, which was taken as a measure of enzyme activity, was markedly stimulated by interferon-gamma (1000 units/ml). Accordingly, L-tryptophan utilization by MDA-MB-231 cells was enhanced by interferon-gamma. 1-Methyl-DL-tryptophan (1 mM) inhibited interferon-gamma induced kynurenine production by MBA-MB-231 cells. Kynurenine production by MCF-7 cells remained at basal levels when cultured in the presence of interferon-gamma. L-Tryptophan transport into MDA-MB-231 cells was via a Na(+)-independent, BCH-sensitive pathway. It appears that system L (LAT1/CD98) may be the only pathway for l-tryptophan transport into these cells. 1-Methyl-D,L-tryptophan trans-stimulated l-tryptophan efflux from MDA-MB-231 cells and thus appears to be a transported substrate of system L. The results suggest that system L plays an important role in providing indoleamine-2,3-dioxygenase with its main substrate, L-tryptophan, and suggest a mechanism by which estrogen receptor-negative breast cancer cells may evade the attention of the immune system.  相似文献   

5.
The present study examined the expression of type 1 L-amino acid transporter (LAT1) and its associated glycoprotein 4F2hc in freshly isolated renal proximal tubules and immortalized renal proximal tubular epithelial (PTE) cells from spontaneously hypertensive (SHR) and normotensive (WKY) rats. The study also examined the inward and outward transport of [(14)C]-L-leucine, the preferred substrate of LAT1. The abundance of LAT1 and 4F2hc was greater in SHR than in WKY, both in freshly isolated renal proximal tubules and immortalized renal proximal tubular cells. In the absence of extracellular Na(+) the BCH (2-aminobicyclo(2,2,1)-heptane-2-carboxylic acid)-sensitive [(14)C]-L-leucine uptake in SHR PTE cells was approximately 50% that observed in WKY PTE cells (77+/-4 vs 164+/-7 pmol/mg protein). In the absence of extracellular Na(+) the affinity of the transporter for the substrate in WKY PTE cells was 7.7-fold that in SHR cells, as evidenced by lower K(0.5) values. Gene silencing with a LAT1 siRNA and a 4F2hc siRNA significantly reduced LAT1 and 4F2hc expression, which was accompanied by a marked reduction in Na(+)-independent [(14)C]-L-leucine uptake in both SHR and WKY PTE cells. The spontaneous and L-leucine-stimulated outward transfer of [(14)C]-L-leucine was Na(+)-independent in both SHR and WKY PTE cells. The spontaneous [(14)C]-L-leucine efflux was higher in WKY than in SHR PTE cells and the potency of L-leucine to stimulate [(14)C]-L-leucine efflux in WKY (EC(50) = 9 microM) was greater than in SHR PTE cells (EC(50) = 41 microM). It is concluded that the SHR kidney overexpress LAT1/4F2hc units which display low affinity for L-leucine transport.  相似文献   

6.
System L is a major nutrient transport system responsible for the Na(+)-independent transport of large neutral amino acids including several essential amino acids. In malignant tumors, a system L transporter L-type amino acid transporter 1 (LAT1) is up-regulated to support tumor cell growth. LAT1 is also essential for the permeation of amino acids and amino acid-related drugs through the blood-brain barrier. To search for in vitro assay systems to examine the interaction of chemical compounds with LAT1, we have investigated the expression of system L transporters and the properties of [14C]L-leucine transport in T24 human bladder carcinoma cells. Northern blot, real-time quantitative PCR and immunofluorescence analyses have reveled that T24 cells express LAT1 in the plasma membrane together with its associating protein 4F2hc, whereas T24 cells do not express the other system L isoform LAT2. The uptake of [14C]L-leucine by T24 cells is Na(+)-independent and almost completely inhibited by system L selective inhibitor BCH. The profiles of the inhibition of [14C]L-leucine uptake by amino acids and amino acid-related compounds in T24 cells are comparable with those for the LAT1 expressed in Xenopus oocytes. The majority of [14C]L-leucine uptake is, therefore, mediated by LAT1 in T24 cells. Consistent with LAT1 in Xenopus oocytes, the efflux of preloaded [14C]L-leucine is induced by extracellularly applied substrates of LAT1 in T24 cells. This efflux measurement has been proven to be more sensitive than that in Xenopus oocytes, because triiodothyronine, thyroxine and melphalan were able to induce the efflux of preloaded [14C]L-leucine in T24 cells, which was not detected for Xenopus oocyte expression system. T24 cell is, therefore, proposed to be an excellent tool to examine the interaction of chemical compounds with LAT1.  相似文献   

7.
8.
The properties and regulation of volume-activated taurine efflux from MDA-MB-231 and MCF-7 cells have been investigated. Volume-activated taurine release from both cell lines was almost completely inhibited by diidosalicylate. DIDS , was more effective at inhibiting swelling-induced taurine release from MCF-7 than from MDA-MB-231 cells. On the basis of comparing taurine, Cl(-) and I(-) efflux time courses, it appears that volume-activated taurine efflux does not utilize volume-sensitive anion channels in MDA-MB- 231 and MCF-7 cells. Extracellular ATP stimulated volume-activated taurine release from MDA-MB-231 cells but not from MCF-7 cells. The effect of ATP was mimicked by UTP and was dependent upon external calcium and inhibited by suramin. However, suramin inhibited volume-activated taurine efflux from both MDA-MB-231 and MCF-7 cells even in the absence of exogenously added ATP suggesting that it acts directly on the taurine efflux pathway and/or is inhibiting the effect of ATP released from the cells. Volume-activated taurine efflux from MDA-MB-231 cells was stimulated by ionomycin. In contrast, ionomycin had no effect on taurine release from MCF-7 cells. Adenosine also stimulated volume-activated taurine efflux from MDA-MB-231 cells. The results suggest that purines regulate taurine transport in MDA-MB- 231 cells via more than one type of receptor.  相似文献   

9.
The activity and expression of indoleamine 2,3-dioxygenase together with l-tryptophan transport has been examined in cultured human breast cancer cells. MDA-MB-231 but not MCF-7 cells expressed mRNA for indoleamine 2,3-dioxygenase. Kynurenine production by MDA-MB-231 cells, which was taken as a measure of enzyme activity, was markedly stimulated by interferon-γ (1000 units/ml). Accordingly, l-tryptophan utilization by MDA-MB-231 cells was enhanced by interferon-γ. 1-Methyl-dl-tryptophan (1 mM) inhibited interferon-γ induced kynurenine production by MBA-MB-231 cells. Kynurenine production by MCF-7 cells remained at basal levels when cultured in the presence of interferon-γ. l-Tryptophan transport into MDA-MB-231 cells was via a Na+-independent, BCH-sensitive pathway. It appears that system L (LAT1/CD98) may be the only pathway for l-tryptophan transport into these cells. 1-Methyl-d,l-tryptophan trans-stimulated l-tryptophan efflux from MDA-MB-231 cells and thus appears to be a transported substrate of system L. The results suggest that system L plays an important role in providing indoleamine-2,3-dioxygenase with its main substrate, l-tryptophan, and suggest a mechanism by which estrogen receptor-negative breast cancer cells may evade the attention of the immune system.  相似文献   

10.
It has been reported that estrogen receptor-positive MCF-7 cells express TauT, a Na+-dependent taurine transporter. However, there is a paucity of information relating to the characteristics of taurine transport in this human breast cancer cell line. Therefore, we have examined the characteristics and regulation of taurine uptake by MCF-7 cells. Taurine uptake by MCF-7 cells showed an absolute dependence upon extracellular Na+. Although taurine uptake was reduced in Cl- free medium a significant portion of taurine uptake persisted in the presence of NO3 -. Taurine uptake by MCF-7 cells was inhibited by extracellular β-alanine but not by L-alanine or L-leucine. 17β-estadiol increased taurine uptake by MCF-7 cells: the Vmax of influx was increased without affecting the Km. The effect of 17β-estradiol on taurine uptake by MCF-7 cells was dependent upon the presence of extracellular Na+. In contrast, 17β-estradiol had no significant effect on the kinetic parameters of taurine uptake by estrogen receptor-negative MDA-MB-231 cells. It appears that estrogen regulates taurine uptake by MCF-7 cells via TauT. In addition, Na+-dependent taurine uptake may not be strictly dependent upon extracellular Cl-.  相似文献   

11.
System L is a major nutrient transport system responsible for the transport of large neutral amino acids including several essential amino acids. We previously identified a transporter (L-type amino acid transporter 1: LAT1) subserving system L in C6 rat glioma cells and demonstrated that LAT1 requires 4F2 heavy chain (4F2hc) for its functional expression. Since its oncofetal expression was suggested in the rat liver, it has been proposed that LAT1 plays a critical role in cell growth and proliferation. In the present study, we have examined the function of human LAT1 (hLAT1) and its expression in human tissues and tumor cell lines. When expressed in Xenopus oocytes with human 4F2hc (h4F2hc), hLAT1 transports large neutral amino acids with high affinity (K(m)= approximately 15- approximately 50 microM) and L-glutamine and L-asparagine with low affinity (K(m)= approximately 1.5- approximately 2 mM). hLAT1 also transports D-amino acids such as D-leucine and D-phenylalanine. In addition, we show that hLAT1 accepts an amino acid-related anti-cancer agent melphalan. When loaded intracellularly, L-leucine and L-glutamine but not L-alanine are effluxed by extracellular substrates, confirming that hLAT1 mediates an amino acid exchange. hLAT1 mRNA is highly expressed in the human fetal liver, bone marrow, placenta, testis and brain. We have found that, while all the tumor cell lines examined express hLAT1 messages, the expression of h4F2hc is varied particularly in leukemia cell lines. In Western blot analysis, hLAT1 and h4F2hc have been confirmed to be linked to each other via a disulfide bond in T24 human bladder carcinoma cells. Finally, in in vitro translation, we show that hLAT1 is not a glycosylated protein even though an N-glycosylation site has been predicted in its extracellular loop, consistent with the property of the classical 4F2 light chain. The properties of the hLAT1/h4F2hc complex would support the roles of this transporter in providing cells with essential amino acids for cell growth and cellular responses, and in distributing amino acid-related compounds.  相似文献   

12.
《Cellular signalling》2014,26(8):1668-1679
Currently, there is no effective treatment for cholangiocarcinoma (CCA), which is the most prevalent in the northeastern part of Thailand. A new molecular target for the treatment of CCA is, therefore, urgently needed. Although L-type amino acid transporter 1 (LAT1) is highly expressed in CCA cells, its role in malignant phenotypes of CCA cells remains unclear. This study aimed to investigate the impact of LAT1 on proliferation, migration, and invasion of KKU-M213 cells, the CCA cells derived from Thai patients with intrahepatic cholangiocarcinoma. Results showed that KKU-M213 cells expressed all LAT isoforms (LAT1, LAT2, LAT3 and LAT4). The expressions of LAT1 and its associated protein 4F2hc were highest whereas those of LAT2 and LAT4 were extremely low. Treatment with 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) reduced l-leucine uptake concomitant with an inhibition of cell motility and, to a lesser extent, on cell proliferation. It also induced a time dependent up-regulation of LAT1 and 4F2hc expressions. Similarly, cell migration and invasion, but not proliferation, were reduced in LAT1 knockdown KKU-M213 cells. In addition, silencing of LAT1 inhibited the expressions of 4F2hc mRNA and protein whereas the expression of microRNA-7, the 4F2hc down-regulator, was increased. Furthermore, the phosphorylation levels of ERK1/2 and p70S6K were reduced after LAT1 knockdown. Collectively, these results suggest that suppression of cell invasion and migration in LAT1 knockdown KKU-M213 cells may be partly mediated through the inhibition of the 4F2hc-signaling pathway by the up-regulation of microRNA-7. Based on this finding, LAT1 may be a potential therapeutic target for treating CCA.  相似文献   

13.
Glycoprotein-associated amino acid transporters (gpaAT) are permease-related proteins that require heterodimerization to express their function. So far, four vertebrate gpaATs have been shown to associate with 4F2hc/CD98 for functional expression, whereas one gpaAT specifically associates with rBAT. In this study, we characterized a novel gpaAT, LAT2, for which mouse and human cDNAs were identified by expressed sequence tag data base searches. The encoded ortholog proteins are 531 and 535 amino acids long and 92% identical. They share 52 and 48% residues with the gpaATs LAT1 and y(+)LAT1, respectively. When mouse LAT2 and human 4F2hc cRNAs were co-injected into Xenopus oocytes, disulfide-linked heterodimers were formed, and an L-type amino acid uptake was induced, which differed slightly from that produced by LAT1-4F2hc: the apparent affinity for L-phenylalanine was higher, and L-alanine was transported at physiological concentrations. In the presence of an external amino acid substrate, LAT2-4F2hc also mediated amino acid efflux. LAT2 mRNA is expressed mainly in kidney and intestine, whereas LAT1 mRNA is expressed widely. Immunofluorescence experiments showed colocalization of 4F2hc and LAT2 at the basolateral membrane of kidney proximal tubules and small intestine epithelia. In conclusion, LAT2 forms with LAT1 a subfamily of L-type gpaATs. We propose that LAT1 is involved in cellular amino acid uptake, whereas LAT2 plays a role in epithelial amino acid (re)absorption.  相似文献   

14.
The viability, cellular uptake and subcellular distribution of heavy metal Hg, were determined in human mammary cell lines (MCF-7, MDA-MB-231 and MCF-10A). It was observed that Hg had the capacity of being excluded from the cells with a different type of possible transporters. MCF-7 cells showed the lowest viability, while the other two cell lines were much more resistant to Hg treatments. The intracellular concentration of Hg was higher at lower exposure times in MCF-10A cells and MCF-7 cells; but as the time was increased only MDA-MB-231 showed the capacity to continue introducing the metal. In MCF-7 and MCF-10A cells the subcellular distribution of Hg was higher in cytosolic fraction than nucleus and membrane, but MDA-MB-231 showed membrane and nucleus fraction as the enriched one. The analysis of RNA-seq about the genes or family of genes that encode proteins which are related to cytotoxicity of Hg evidenced that MCF-10A cells and MCF-7 cells could have an active transport to efflux the metal. On the contrary, in MDA-MB-231 no genes that could encode active transporters have been found.  相似文献   

15.
16.
The aim of the study was to discover possible differential cytotoxicity of triptolide towards estrogen-sensitive MCF-7 versus estrogen-insensitive MDA-MB-231 human breast cancer cells. Considering that MCF-7 cells express functional Estrogen receptor α (ERα) and wild-type p53, whereas MDA-MB-231 cells which are ERα-negative express mutant p53, the anti-proliferation effect of triptolide on MCF-7 and MDA-MB-231 cells were examined, the apoptotic effect and cell cycle arrest caused by triptolide were investigated, ERα and p53 expression were also observed in this paper. The results showed that the anti-proliferation effects were induced by triptolide in both cell lines. But the value of IC50 in MCF-7 cells for its anti-proliferation effect was about one tenth of that in MDA-MB-231 cells, which indicated that the effect is more potent in MCF-7 cells. Condensed chromatin or fragmented nuclei could be found in MCF-7 cells treated with only 40 nM triptolide but in MDA-MB-231 cells they couldn’t be observed until the concentration reached to 400 nM. Triptolide induced significant S cell cycle arrest along with the presence of sub-G0/G1 peak in MDA-MB-231 cells, whereas there was only slightly S cell cycle arrest on cell cycle distribution in MCF-7 cells. The role of p53 in two breast cancer cells was examined, the results showed that the mutant p53 in MDA-MB-231 cells was suppressed and the wild-type p53 in MCF-7 was increased. Moreover, triptolide could down regulate the expression of ERα in MCF-7 cells. The results showed that triptolide is much more sensitive to ERα-positive MCF-7 cells than to ERα-negative MDA-MB-231 cells, and the sensitivity is significantly associated with the ERα and p53 status.  相似文献   

17.
18.
Conjugated linoleic acid (CLA) is a collective term for a group of positional and geometric conjugated dienoic isomers of linoleic acid. CLA has been shown to have strong inhibitory effects on mammary carcinogenesis both in vitro and in vivo. In this study, we investigated the regulation of human stearoyl-CoA desaturase (SCD, EC 1.14.99.5) expression by CLA in human breast cancer cell lines, MDA-MB-231 and MCF-7. Treatment of the cells with the cis-9,trans-11 and trans-10,cis-12 CLA isomers (45 microM) did not repress SCD mRNA in both MDA-MB-231 and MCF-7 cells. However, the cis-9,trans-11 and trans-10,cis-12 CLA isomers significantly decreased SCD protein levels and SCD activity in MDA-MB-231 cells. In MCF-7 cells, both isomers did not affect protein levels, but they inhibited SCD activity. These results suggest that in MDA-MB-231 cells the cis-9,trans-11 and trans-10,cis-12 CLA isomers regulate human SCD by reducing SCD protein levels, while in MCF-7 cells both isomers have a direct inhibitory effect on SCD enzyme activity.  相似文献   

19.
Renal brush-border membrane vesicles from rat kidney cortex were irradiated in frozen state with a gamma-radiation source. Initial rates of influx into these vesicles were estimated for substrates such as L-glutamic acid, L-alanine, L-proline and L-leucine to establish the molecular sizes of their carriers. Transport was measured in initial-rate conditions to avoid artifacts arising from a decrease in the driving force caused by a modification of membrane permeability. Initial rates of Na(+)-independent uptakes for those four substrates appeared unaffected in the dose range used (0-6 Mrad), indicating that the passive permeability of the membrane towards these substrates was unaffected. However, at higher doses of irradiation the Na+ influx and the intravesicular volume evaluated by the uptake of glucose at equilibrium were altered by radiation. Thus Na(+)-dependent influx values were corrected for volume changes, and the corrected values were used to compute radiation-inactivation sizes of the transport systems. Their respective values for L-glutamic acid, L-proline, L-leucine and L-alanine carriers were 250, 224, 293 and 274 kDa. The presence of the free-radicals scavenger benzoic acid in the frozen samples during irradiation did not affect the uptake of glucose, phosphate and alkaline phosphatase activity. These results indicate that freezing samples in a cryoprotective medium was enough to prevent secondary inactivation of transporters by free radicals. Uptakes of beta-alanine and L-lysine were much less affected by radiation. The radiation-inactivation size of the Na(+)-dependent beta-alanine carrier was 127 kDa and that of the L-lysine carrier was 90 kDa.  相似文献   

20.
1H high-resolution magic angle spinning nuclear magnetic resonance (1H HR–MAS NMR) spectroscopy was used to analyze the metabolic profile of an intact non-tumor breast cell line (MCF-10A) and intact breast tumor cell lines (MCF-7 and MDA-MB-231). In the spectra of MCF-10A cells, six metabolites were assigned, with glucose and ethanol in higher concentrations. Fifteen metabolites were assigned in MCF-7 and MDA-MB-231 1H HR–MAS NMR spectra. They did not show glucose and ethanol, and the major component in both tumor cells was phosphocholine (higher in MDA-MB-231 than in MCF-7), which can be considered as a tumor biomarker of breast cancer malignant transformation. These tumor cells also show acetone signal that was higher in MDA-MB-231 cells than in MCF-7 cells. The high acetone level may be an indication of high demand for energy in MDA-MB-231 to maintain cell proliferation. The higher acetone and phosphocholine levels in MDA-MB-231 cells indicate the higher malignance of the cell line. Therefore, HR–MAS is a rapid reproducible method to study the metabolic profile of intact breast cells, with minimal sample preparation and contamination, which are critical in the analyses of slow-growth cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号