首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To test thehypothesis that muscle O2 uptake(O2) on-kinetics islimited, at least in part, by peripheralO2 diffusion, we determined theO2 on-kinetics in1) normoxia (Control);2) hyperoxic gas breathing(Hyperoxia); and 3) hyperoxia andthe administration of a drug (RSR-13, Allos Therapeutics), whichright-shifts the Hb-O2dissociation curve (Hyperoxia+RSR-13). The study was conducted inisolated canine gastrocnemius muscles(n = 5) during transitions from restto 3 min of electrically stimulated isometric tetanic contractions(200-ms trains, 50 Hz; 1 contraction/2 s; 60-70% peakO2). In all conditions,before and during contractions, muscle was pump perfused withconstantly elevated blood flow (), at a levelmeasured at steady state during contractions in preliminary trials withspontaneous . Adenosine was infusedintra-arterially to prevent inordinate pressure increases with theelevated . was measuredcontinuously, arterial and popliteal venousO2 concentrations were determinedat rest and at 5- to 7-s intervals during contractions, andO2 was calculated as · arteriovenous O2 content difference.PO2 at 50%HbO2saturation (P50) was calculated.Mean capillary PO2(cO2)was estimated by numerical integration.P50 was higher in Hyperoxia+RSR-13[40 ± 1 (SE) Torr] than in Control and in Hyperoxia (31 ± 1 Torr). After 15 s of contractions,cO2was higher in Hyperoxia (97 ± 9 Torr) vs. Control (53 ± 3 Torr) and in Hyperoxia+RSR-13 (197 ± 39 Torr) vs. Hyperoxia. Thetime to reach 63% of the difference between baseline and steady-stateO2 during contractions was 24.7 ± 2.7 s in Control, 26.3 ± 0.8 s in Hyperoxia, and 24.7 ± 1.1 s in Hyperoxia+RSR-13 (not significant). Enhancement ofperipheral O2 diffusion (obtainedby increasedcO2at constant O2 delivery) duringthe rest-to-contraction (60-70% of peakO2) transition did notaffect muscle O2on-kinetics.

  相似文献   

2.
Moon, Jon K., and Nancy F. Butte. Combined heart rateand activity improve estimates of oxygen consumption and carbon dioxideproduction rates. J. Appl. Physiol.81(4): 1754-1761, 1996.Oxygen consumption(O2) andcarbon dioxide production (CO2) rates were measuredby electronically recording heart rate (HR) and physical activity (PA).Mean daily O2 andCO2 measurements by HR andPA were validated in adults (n = 10 women and 10 men) with room calorimeters. Thirteen linear and nonlinear functions of HR alone and HR combined with PA were tested as models of24-h O2 andCO2. Mean sleepO2 andCO2 were similar to basalmetabolic rates and were accurately estimated from HR alone[respective mean errors were 0.2 ± 0.8 (SD) and0.4 ± 0.6%]. The range of prediction errorsfor 24-h O2 andCO2 was smallestfor a model that used PA to assign HR for each minute to separateactive and inactive curves(O2, 3.3 ± 3.5%; CO2, 4.6 ± 3%). There were no significant correlations betweenO2 orCO2 errors and subject age,weight, fat mass, ratio of daily to basal energy expenditure rate, orfitness. O2,CO2, and energy expenditurerecorded for 3 free-living days were 5.6 ± 0.9 ml · min1 · kg1,4.7 ± 0.8 ml · min1 · kg1,and 7.8 ± 1.6 kJ/min, respectively. Combined HR and PA measured 24-h O2 andCO2 with a precisionsimilar to alternative methods.

  相似文献   

3.
Kinetics of oxygen uptake at the onset of exercise in boys and men   总被引:3,自引:0,他引:3  
The objective of this study was to compare theO2 uptake(O2) kinetics at the onsetof heavy exercise in boys and men. Nine boys, aged 9-12 yr, and 8 men, aged 19-27 yr, performed a continuous incremental cyclingtask to determine peak O2(O2 peak).On 2 other days, subjects performed each day four cycling tasks at 80 rpm, each consisting of 2 min of unloaded cycling followed twice bycycling at 50%O2 peak for 3.5 min,once by cycling at 100%O2 peak for 2 min,and once by cycling at 130%O2 peak for 75 s.O2 deficit was not significantlydifferent between boys and men (respectively, 50%O2 peak task: 6.6 ± 11.1 vs. 5.5 ± 7.3 ml · min1 · kg1;100% O2 peak task:28.5 ± 8.1 vs. 31.8 ± 6.3 ml · min1 · kg1;and 130%O2 peaktask: 30.1 ± 5.7 vs. 35.8 ± 5.3 ml · min1 · kg1).To assess the kinetics, phase I was excluded from analysis. Phase IIO2 kinetics could bedescribed in all cases by a monoexponential function. ANOVA revealed nodifferences in time constants between boys and men (respectively, 50%O2 peaktask: 22.8 ± 5.1 vs. 26.4 ± 4.1 s; 100%O2 peak task: 28.0 ± 6.0 vs. 28.1 ± 4.4 s; and 130%O2 peak task: 19.8 ± 4.1 vs. 20.7 ± 5.7 s). In conclusion, O2 deficit and fast-componentO2 on-transientsare similar in boys and men, even at high exercise intensities, whichis in contrast to the findings of other studies employing simplermethods of analysis. The previous interpretation that children relyless on nonoxidative energy pathways at the onset of heavy exercise isnot supported by our findings.

  相似文献   

4.
Dysoxia canbe defined as ATP flux decreasing in proportion toO2 availability with preserved ATPdemand. Hepatic venous -hydroxybutyrate-to-acetoacetate ratio(-OHB/AcAc) estimates liver mitochondrial NADH/NAD and may detectthe onset of dysoxia. During partial dysoxia (as opposed to anoxia),however, flow may be adequate in some liver regions, diluting effluentfrom dysoxic regions, thereby rendering venous -OHB/AcAc unreliable.To address this concern, we estimated tissue ATP whilegradually reducing liver blood flow of swine to zero in a nuclearmagnetic resonance spectrometer. ATP flux decreasing withO2 availability was taken asO2 uptake(O2) decreasing inproportion to O2 delivery(O2);and preserved ATP demand was taken as increasingPi/ATP.O2, tissuePi/ATP, and venous -OHB/AcAcwere plotted againstO2to identify critical inflection points. Tissue dysoxia required meanO2for the group to be critical for bothO2 and forPi/ATP. CriticalO2values for O2 andPi/ATP of 4.07 ± 1.07 and 2.39 ± 1.18 (SE) ml · 100 g1 · min1,respectively, were not statistically significantly different but notclearly the same, suggesting the possibility that dysoxia might havecommenced after O2 begandecreasing, i.e., that there could have been"O2 conformity." CriticalO2for venous -OHB/AcAc was 2.44 ± 0.46 ml · 100 g1 · min1(P = NS), nearly the same as that forPi/ATP, supporting venous -OHB/AcAc as a detector of dysoxia. All issues considered, tissue mitochondrial redox state seems to be an appropriate detector ofdysoxia in liver.

  相似文献   

5.
Inhibition of carbonic anhydrase (CA) isassociated with a lower plasma lactate concentration([La]pl)during fatiguing exercise. We hypothesized that a lower[La]plmay be associated with faster O2uptake (O2) kinetics during constant-load exercise. Seven men performed cycle ergometer exercise during control (Con) and acute CA inhibition with acetazolamide (Acz,10 mg/kg body wt iv). On 6 separate days, each subject performed 6-minstep transitions in work rate from 0 to 100 W (below ventilatory threshold,<ET)or to a O2 corresponding to~50% of the difference between the work rate atET and peakO2(>ET).Gas exchange was measured breath by breath. Trials were interpolated at1-s intervals and ensemble averaged to yield a single response. The mean response time (MRT, i.e., time to 63% of total exponential increase) for on- and off-transients was determined using a two- (<ET) or athree-component exponential model(>ET).Arterialized venous blood was sampled from a dorsal hand vein andanalyzed for[La]pl.MRT was similar during Con (31.2 ± 2.6 and 32.7 ± 1.2 s for onand off, respectively) and Acz (30.9 ± 3.0 and 31.4 ± 1.5 s for on and off, respectively) for work rates<ET. Atwork rates >ET, MRTwas similar between Con (69.1 ± 6.1 and 50.4 ± 3.5 s for on andoff, respectively) and Acz (69.7 ± 5.9 and 53.8 ± 3.8 s for on and off, respectively). On- and off-MRTs were slower for>ET thanfor <ETexercise.[La]plincreased above 0-W cycling values during<ET and>ET exercise but was lower at the end of the transition during Acz (1.4 ± 0.2 and 7.1 ± 0.5 mmol/l for<ET and>ET,respectively) than during Con (2.0 ± 0.2 and 9.8 ± 0.9 mmol/lfor <ETand >ET,respectively). CA inhibition does not affectO2 utilization at the onset of<ET or>ETexercise, suggesting that the contribution of oxidative phosphorylationto the energy demand is not affected by acute CA inhibition with Acz.

  相似文献   

6.
Tyler, Catherine M., Lorraine C. Golland, David L. Evans,David R. Hodgson, and Reuben J. Rose. Changes in maximum oxygenuptake during prolonged training, overtraining, and detraining inhorses. J. Appl. Physiol. 81(5):2244-2249, 1996.Thirteen standardbred horses were trained asfollows: phase 1 (endurance training, 7 wk),phase 2 (high-intensity training, 9 wk),phase 3 (overload training, 18 wk), andphase 4 (detraining, 12 wk). Inphase 3, the horses were divided intotwo groups: overload training (OLT) and control (C). The OLT groupexercised at greater intensities, frequencies, and durations than groupC. Overtraining occurred after 31 wk of training and was defined as asignificant decrease in treadmill run time in response to astandardized exercise test. In the OLT group, there was a significantdecrease in body weight (P < 0.05).From pretraining values of 117 ± 2 (SE)ml · kg1 · min1,maximal O2 uptake(O2 max) increased by15% at the end of phase 1, and when signs of overtraining werefirst seen in the OLT group,O2 max was 29%higher (151 ± 2 ml · kg1 · min1in both C and OLT groups) than pretraining values. There was nosignificant reduction inO2 max until after 6 wk detraining whenO2 max was 137 ± 2 ml · kg1 · min1.By 12 wk detraining, meanO2 max was134 ± 2 ml · kg1 · min1,still 15% above pretraining values. When overtraining developed, O2 max was notdifferent between C and OLT groups, but maximal values forCO2 production (147 vs. 159 ml · kg1 · min1)and respiratory exchange ratio (1.04 vs. 1.11) were lower in the OLTgroup. Overtraining was not associated with a decrease inO2 max and, afterprolonged training, decreases inO2 max occurredslowly during detraining.

  相似文献   

7.
The accumulation ofvisceral fat is independently associated with an increased risk forcardiovascular disease. The aim of this study was to determine whetherthe loss of visceral adipose tissue area (VAT; computed tomography) isrelated to improvements in maximal O2 uptake(O2 max) during a weight loss(250-350 kcal/day deficit) and walking (3 days/wk, 30-40 min)intervention. Forty obese [body fat 47 ± 1 (SE) %], sedentary(O2 max 19 ± 1 ml · kg1 · min1)postmenopausal women (age 62 ± 1 yr) participated in the study. The intervention resulted in significant declines in body weight (8%), total fat mass (dual-energy X-ray absorptiometry; 17%), VAT(17%), and subcutaneous adipose tissue area (17%) with no changein lean body mass (all P < 0.001). Women with anaverage 10% increase in O2 max reducedVAT by an average of 20%, whereas those who did not increaseO2 max decreased VAT by only 10%,despite comparable reductions in body fat, fat mass, and subcutaneousadipose tissue area. The decrease in VAT was independently related tothe change in O2 max(r2 = 0.22; P < 0.01) andfat mass (r2 = 0.08; P = 0.05). These data indicate that greater improvements inO2 max with weight loss and walking areassociated with greater reductions in visceral adiposity in obesepostmenopausal women.

  相似文献   

8.
The mechanism(s)limiting muscle O2 uptake(O2) kinetics wasinvestigated in isolated canine gastrocnemius muscles(n = 7) during transitions from restto 3 min of electrically stimulated isometric tetanic contractions(200-ms trains, 50 Hz; 1 contraction/2 s; 60-70% of peakO2). Two conditions weremainly compared: 1) spontaneousadjustment of blood flow () [control, spontaneous (C Spont)]; and2) pump-perfused, adjusted ~15 s before contractions at aconstant level corresponding to the steady-state value duringcontractions in C Spont [faster adjustment ofO2 delivery (FastO2 Delivery)]. During FastO2 Delivery, 1-2 ml/min of102 M adenosine wereinfused intra-arterially to prevent inordinate pressure increases withthe elevated . The purpose of the study was todetermine whether a faster adjustment ofO2 delivery would affectO2 kinetics. was measured continuously; arterial(CaO2) and popliteal venous(CvO2)O2 contents were determined atrest and at 5- to 7-s intervals during contractions;O2 delivery was calculated as · CaO2,and O2 was calculated as · arteriovenous O2 content difference. Times toreach 63% of the difference between baseline and steady-stateO2 during contractions were23.8 ± 2.0 (SE) s in C Spont and 21.8 ± 0.9 s in FastO2 Delivery (not significant). Inthe present experimental model, elimination of any delay inO2 delivery during therest-to-contraction transition did not affect muscleO2 kinetics, which suggeststhat this kinetics was mainly set by an intrinsic inertia of oxidativemetabolism.

  相似文献   

9.
Fitzgerald, Margaret D., Hirofumi Tanaka, Zung V. Tran, andDouglas R. Seals. Age-related declines in maximal aerobic capacityin regularly exercising vs. sedentary women: a meta-analysis. J. Appl. Physiol. 83(1): 160-165, 1997.Our purpose was to determine the relationship between habitualaerobic exercise status and the rate of decline in maximal aerobiccapacity across the adult age range in women. A meta-analytic approachwas used in which mean maximal oxygen consumption(O2 max) values fromfemale subject groups (ages 18-89 yr) were obtained from thepublished literature. A total of 239 subject groups from 109 studiesinvolving 4,884 subjects met the inclusion criteria and werearbitrarily separated into sedentary (groups = 107; subjects = 2,256),active (groups = 69; subjects = 1,717), and endurance-trained (groups = 63; subjects = 911) populations.O2 max averaged 29.7 ± 7.8, 38.7 ± 9.2, and 52.0 ± 10.5 ml · kg1 · min1,respectively, and was inversely related to age within each population (r = 0.82 to 0.87, allP < 0.0001). The rate of decline inO2 max withincreasing subject group age was lowest in sedentary women (3.5ml · kg1 · min1· decade1), greater inactive women (4.4ml · kg1 · min1· decade1), andgreatest in endurance-trained women (6.2ml · kg1 · min1 · decade1)(all P < 0.001 vs. each other). Whenexpressed as percent decrease from mean levels at age ~25 yr, therates of decline inO2 max were similarin the three populations (10.0 to 10.9%/decade). Therewas no obvious relationship between aerobic exercise status and therate of decline in maximal heart rate with age. The results of thiscross-sectional study support the hypothesis that, in contrast to theprevailing view, the rate of decline in maximal aerobic capacity withage is greater, not smaller, in endurance-trained vs. sedentary women.The greater rate of decline inO2 max in endurance-trained populations may be related to their higher values asyoung adults (baseline effect) and/or to greater age-related reductions in exercise volume; however, it does not appear to berelated to a greater rate of decline in maximal heart rate with age.

  相似文献   

10.
We examined the hypothesis that glucose flux wasdirectly related to relative exercise intensity both beforeand after a 12-wk cycle ergometer training program [5days/wk, 1-h duration, 75% peakO2 consumption(O2 peak)] inhealthy female subjects (n = 17; age23.8 ± 2.0 yr). Two pretraining trials (45 and 65% of O2 peak)and two posttraining trials [same absolute workload (65% of oldO2 peak)and same relative workload (65% of new O2 peak)] wereperformed on nine subjects by using a primed-continuous infusion of[1-13C]- and[6,6-2H]glucose.Eight additional subjects were studied by using[6,6-2H]glucose.Subjects were studied postabsorption for 90 min of rest and 1 h ofcycling exercise. After training, subjects increased O2 peak by 25.2 ± 2.4%. Pretraining, the intensity effect on glucose kinetics wasevident between 45 and 65% ofO2 peak with rates ofappearance (Ra: 4.52 ± 0.25 vs. 5.53 ± 0.33 mg · kg1 · min1),disappearance (Rd: 4.46 ± 0.25 vs. 5.54 ± 0.33 mg · kg1 · min1),and oxidation (Rox: 2.45 ± 0.16 vs. 4.35 ± 0.26 mg · kg1 · min1)of glucose being significantly greater(P  0.05) in the 65% thanin the 45% trial. Training reducedRa (4.7 ± 0.30 mg · kg1 · min1),Rd (4.69 ± 0.20 mg · kg1 · min1),and Rox (3.54 ± 0.50 mg · kg1 · min1)at the same absolute workload (P  0.05). When subjects were tested at the same relative workload,Ra,Rd, andRox were not significantlydifferent after training. However, at both workloads after training,there was a significant decrease in total carbohydrate oxidation asdetermined by the respiratory exchange ratio. These results show thefollowing in young women: 1)glucose use is directly related to exercise intensity;2) training decreasesglucose flux for a given power output;3) when expressed asrelative exercise intensity, training does not affect the magnitude ofblood glucose flux during exercise; but4) training does reduce totalcarbohydrate oxidation.

  相似文献   

11.
VO2 max is associated with ACE genotype in postmenopausal women   总被引:6,自引:0,他引:6  
Relationships have frequently been found betweenangiotensin-converting enzyme (ACE) genotype and various pathologicaland physiological cardiovascular outcomes and functions. Thuswe sought to determine whether ACE genotype affected maximalO2 consumption (O2 max) and maximalexercise hemodynamics in postmenopausal women with different habitualphysical activity levels. Age, body composition, and habitual physicalactivity levels did not differ among ACE genotype groups. However, ACEinsertion/insertion (II) genotype carriers had a 6.3 ml · kg1 · min1higher O2 max(P < 0.05) than the ACEdeletion/deletion (DD) genotype group after accounting for the effectof physical activity levels. The ACE II genotype group also had a 3.3 ml · kg1 · min1higher O2 max(P < 0.05) than the ACEinsertion/deletion (ID) genotype group. The ACE ID group tended to havea higher O2 max thanthe DD genotype group, but the difference was not significant. ACEgenotype accounted for 12% of the variation inO2 max among womenafter accounting for the effect of habitual physical activity levels.The entire difference inO2 max among ACEgenotype groups was the result of differences in maximal arteriovenousO2 difference (a-vDO2).ACE genotype accounted for 17% of the variation in maximal a-vDO2 inthese women. Maximal cardiac output index did not differ whatsoeveramong ACE genotype groups. Thus it appears that ACE genotype accountsfor a significant portion of the interindividual differences inO2 max among thesewomen. However, this difference is the result of genotype-dependentdifferences in maximala-vDO2 andnot of maximal stroke volume and maximal cardiac output.

  相似文献   

12.
Repetitiveisometric tetanic contractions (1/s) of the caninegastrocnemius-plantaris muscle were studied either at optimal length(Lo) or shortlength (Ls;~0.9 · Lo),to determine the effects of initial length on mechanical and metabolicperformance in situ. Respective averages of mechanical and metabolicvariables were(Lo vs.Ls, allP < 0.05) passive tension (preload) = 55 vs. 6 g/g, maximal active tetanic tension(Po) = 544 vs. 174 (0.38 · Po)g/g, maximal blood flow () = 2.0 vs. 1.4 ml · min1 · g1,and maximal oxygen uptake(O2) = 12 vs. 9 µmol · min1 · g1.Tension at Lodecreased to0.64 · Po over20 min of repetitive contractions, demonstrating fatigue; there were nosignificant changes in tension atLs. In separatemuscles contracting atLo, was set to that measured atLs (1.1 ml · min1 · g1),resulting in decreased O2(7 µmol · min1 · g1),and rapid fatigue, to0.44 · Po. Thesedata demonstrate that 1)muscles at Lohave higher andO2 values than those at Ls;2) fatigue occurs atLo with highO2, adjusting metabolic demand (tension output) to match supply; and3) the lack of fatigue atLs with lowertension, , andO2 suggestsadequate matching of metabolic demand, set low by shortmuscle length, with supply optimized by low preload. Thesedifferences in tension andO2 betweenLo andLs groupsindicate that muscles contracting isometrically at initial lengthsshorter than Loare working under submaximal conditions.

  相似文献   

13.
The purpose ofthis study was to examine the influence of the type of exercise(running vs. cycling) on the O2uptake (O2) slow component.Ten triathletes performed exhaustive exercise on a treadmill and on acycloergometer at a work rate corresponding to 90% of maximalO2 (90% work rate maximalO2). The duration of thetests before exhaustion was superimposable for both type of exercises(10 min 37 s ± 4 min 11 s vs. 10 min 54 s ± 4 min 47 s forrunning and cycling, respectively). TheO2 slow component (difference between O2 atthe last minute and minute 3 ofexercise) was significantly lower during running compared with cycling(20.9 ± 2 vs. 268.8 ± 24 ml/min). Consequently, there was norelationship between the magnitude of theO2 slow component and thetime to fatigue. Finally, because blood lactate levels at the end of the tests were similar for both running (7.2 ± 1.9 mmol/l) and cycling (7.3 ± 2.4 mmol/l), there was a clear dissociation between blood lactate and the O2slow component during running. These data demonstrate that1) theO2 slow component dependson the type of exercise in a group of triathletes and2) the time to fatigue isindependent of the magnitude of theO2 slow component and bloodlactate concentration. It is speculated that the difference in muscularcontraction regimen between running and cycling could account for thedifference in theO2 slow component.

  相似文献   

14.
Smaller lungs in women affect exercise hyperpnea   总被引:2,自引:0,他引:2  
We subjected 29 healthy young women (age: 27 ± 1 yr) with a wide range of fitness levels [maximal oxygenuptake (O2 max): 57 ± 6 ml · kg1 · min1;35-70ml · kg1 · min1]to a progressive treadmill running test. Our subjects had significantly smaller lung volumes and lower maximal expiratory flow rates, irrespective of fitness level, compared with predicted values for age-and height-matched men. The higher maximal workload in highly fit(O2 max > 57 ml · kg1 · min1,n = 14) vs. less-fit(O2 max < 56 ml · kg1 · min1,n = 15) women caused a higher maximalventilation (E) with increased tidal volume (VT)and breathing frequency (fb) atcomparable maximal VT/vitalcapacity (VC). More expiratory flow limitation (EFL; 22 ± 4% ofVT) was also observed duringheavy exercise in highly fit vs. less-fit women, causing higherend-expiratory and end-inspiratory lung volumes and greater usage oftheir maximum available ventilatory reserves.HeO2 (79% He-21%O2) vs. room air exercise trialswere compared (with screens added to equalize external apparatusresistance). HeO2 increasedmaximal expiratory flow rates (20-38%) throughout the range ofVC, which significantly reduced EFL during heavy exercise. When EFL wasreduced with HeO2, VT,fb, andE (+16 ± 2 l/min) weresignificantly increased during maximal exercise. However, in theabsence of EFL (during room air exercise),HeO2 had no effect onE. We conclude that smaller lungvolumes and maximal flow rates for women in general, and especiallyhighly fit women, caused increased prevalence of EFL during heavyexercise, a relative hyperinflation, an increased reliance onfb, and a greater encroachment onthe ventilatory "reserve." Consequently,VT andE are mechanically constrained duringmaximal exercise in many fit women because the demand for highexpiratory flow rates encroaches on the airways' maximum flow-volumeenvelope.

  相似文献   

15.
Dogs of mixedbreed (n = 7) were anesthetized, rightlung atelectasis was established, and the cyclooxygenase pathway was blocked with ibuprofen. Measurements of pulmonary gas exchange wereperformed (fractional concentration of inspiredO2 = 0.95) after infusions ofprostaglandin F2(PGF2; 2 µg · kg1 · min1),ventilation with nitric oxide (NO; 40 ppm), or both(PGF2 + NO) in random order.The arterial PO2(PaO2) under control conditions was 117 ± 16 Torr (shunt = 33 ± 2.5%), was unchanged with NO alone(PaO2 = 114 ± 17 Torr; shunt = 35.7 ± 3.1%), but was significantlyimproved with PGF2 alone(PaO2 = 180 ± 28 Torr; shunt = 23.2 ± 2.8%) and with the combination ofPGF2 + NO(PaO2 = 202 ± 30 Torr; shunt = 20.9 ± 2.5%). The addition of NO didnot significantly enhance the effectiveness of thePGF2 onPaO2.Simulation of these data in a computer model, combining pulmonary gasexchange and pulmonary blood flow, reproduced the results on the basisthat vasoconstriction with PGF2was maximal under hypoxia in the atelectatic lung and reduced byhyperoxia in the ventilated lung, consistent with the hypothesis ofO2 dependence ofPGF2 vasoconstriction.

  相似文献   

16.
Wells, U. M., S. Duneclift, and J. G. Widdicombe.H2O2increases sheep tracheal blood flow, permeability, and vascular response to luminal capsaicin. J. Appl.Physiol. 82(2): 621-631, 1997.Exogenous hydrogenperoxide(H2O2)causes airway epithelial damage in vitro. We have studied the effectsof luminalH2O2in the sheep trachea in vivo on tracheal permeability tolow-molecular-weight hydrophilic (technetium-99m-labeleddiethylenetriamine pentaacetic acid;99mTc-DTPA) and lipophilic([14C]antipyrine;[14C]AP) tracers andon the tracheal vascular response to luminal capsaicin, whichstimulates afferent nerve endings. A tracheal artery was perfused, andtracheal venous blood was collected. H2O2exposure (10 mM) reduced tracheal potential difference(42.0 ± 6.4 mV) to zero. It increased arterial andvenous flows (56.7 ± 6.1 and 57.3 ± 10.0%,respectively; n = 5, P < 0.01, paired t-test) but not tracheal lymph flow(unstimulated flow 5.0 ± 1.2 µl · min1 · cm1,n = 4). DuringH2O2exposure, permeability to 99mTc-DTPA increased from2.6 to 89.7 × 107 cm/s(n = 5, P < 0.05), whereas permeability to[14C]AP (3,312.6 × 107 cm/s,n = 4) was not altered significantly(2,565 × 107cm/s). Luminal capsaicin (10 µM) increased tracheal blood flow (10.1 ± 4.1%, n = 5)and decreased venous 99mTc-DTPAconcentration (19.7 ± 4.0, P < 0.01), and these effects weresignificantly greater after epithelial damage (28.1 ± 6.0 and45.7 ± 4.3%, respectively,P < 0.05, unpairedt-test). Thus H2O2increases the penetration of a hydrophilic tracer into tracheal bloodand lymph but has less effect on a lipophilic tracer. It also enhancesthe effects of luminal capsaicin on blood flow and tracer uptake.

  相似文献   

17.
Langsetmo, I., G. E. Weigle, M. R. Fedde, H. H. Erickson, T. J. Barstow, and D. C. Poole.O2 kinetics in thehorse during moderate and heavy exercise. J. Appl.Physiol. 83(4): 1235-1241, 1997.The horse is asuperb athlete, achieving a maximalO2 uptake (~160ml · min1 · kg1)approaching twice that of the fittest humans. Although equine O2 uptake(O2) kinetics arereportedly fast, they have not been precisely characterized, nor hastheir exercise intensity dependence been elucidated. To addressthese issues, adult male horses underwent incremental treadmill testingto determine their lactate threshold (Tlac) and peakO2(O2 peak),and kinetic features of their O2 response to"square-wave" work forcings were resolved using exercisetransitions from 3 m/s to abelow-Tlac speed of 7 m/s or anabove-Tlac speed of 12.3 ± 0.7 m/s (i.e., between Tlac and O2 peak) sustainedfor 6 min. O2 andCO2 output were measured using anopen-flow system: pulmonary artery temperature was monitored, and mixedvenous blood was sampled for plasma lactate.O2 kinetics at work levelsbelow Tlac were well fit by atwo-phase exponential model, with a phase2 time constant(1 = 10.0 ± 0.9 s) thatfollowed a time delay (TD1 = 18.9 ± 1.9 s). TD1 was similar tothat found in humans performing leg cycling exercise, but the timeconstant was substantially faster. For speeds aboveTlac,TD1 was unchanged (20.3 ± 1.2 s); however, the phase 2 time constantwas significantly slower (1 = 20.7 ± 3.4 s, P < 0.05) than for exercise belowTlac. Furthermore, in four of fivehorses, a secondary, delayed increase inO2 became evident135.7 ± 28.5 s after the exercise transition. This "slowcomponent" accounted for ~12% (5.8 ± 2.7 l/min) of the netincrease in exercise O2. Weconclude that, at exercise intensities below and aboveTlac, qualitative features ofO2 kinetics in the horseare similar to those in humans. However, at speeds belowTlac the fast component of theresponse is more rapid than that reported for humans, likely reflectingdifferent energetics of O2utilization within equine muscle fibers.

  相似文献   

18.
Effect of prolonged, heavy exercise on pulmonary gas exchange in athletes   总被引:1,自引:0,他引:1  
During maximalexercise, ventilation-perfusion inequality increases, especially inathletes. The mechanism remains speculative. Wehypothesized that, if interstitial pulmonary edema is involved, prolonged exercise would result in increasing ventilation-perfusion inequality over time by exposing the pulmonary vascular bed to highpressures for a long duration. The response to short-term exercise wasfirst characterized in six male athletes [maximal O2 uptake(O2 max) = 63 ml · kg1 · min1] by using 5 minof cycling exercise at 30, 65, and 90%O2 max. Multiple inert-gas, blood-gas, hemodynamic, metabolic rate, and ventilatory data were obtained. Resting log SD of the perfusion distribution (logSD) was normal [0.50 ± 0.03 (SE)] and increased with exercise (logSD = 0.65 ± 0.04, P < 0.005), alveolar-arterialO2 difference increased (to 24 ± 3 Torr), and end-capillary pulmonary diffusion limitation occurred at 90%O2 max. The subjectsrecovered for 30 min, then, after resting measurements were taken,exercised for 60 min at ~65%O2 max.O2 uptake, ventilation, cardiacoutput, and alveolar-arterial O2difference were unchanged after the first 5 min of this test, but logSD increased from0.59 ± 0.03 at 5 min to 0.66 ± 0.05 at 60 min(P < 0.05), without pulmonary diffusion limitation. LogSD was negativelyrelated to total lung capacity normalized for body surface area(r = 0.97,P < 0.005 at 60 min). These data are compatible with interstitial edema as a mechanism and suggest that lungsize is an important determinant of the efficiency of gas exchangeduring exercise.

  相似文献   

19.
Tanaka, Hirofumi, Christopher A. DeSouza, Pamela P. Jones,Edith T. Stevenson, Kevin P. Davy, and Douglas R. Seals. Greater rate of decline in maximal aerobic capacity with age in physically active vs. sedentary healthy women. J. Appl.Physiol. 83(6): 1947-1953, 1997.Using ameta-analytic approach, we recently reported that the rate of declinein maximal oxygen uptake(O2 max) with age inhealthy women is greatest in the most physically active and smallest inthe least active when expressed in milliliters per kilogram per minuteper decade. We tested this hypothesis prospectively underwell-controlled laboratory conditions by studying 156 healthy, nonobesewomen (age 20-75 yr): 84 endurance-trained runners (ET) and 72 sedentary subjects (S). ET were matched across the age range forage-adjusted 10-km running performance. Body mass was positivelyrelated with age in S but not in ET. Fat-free mass was not differentwith age in ET or S. Maximal respiratory exchange ratio and rating ofperceived exertion were similar across age in ET and S, suggestingequivalent voluntary maximal efforts. There was a significant butmodest decline in running mileage, frequency, and speed with advancingage in ET.O2 max(ml · kg1 · min1)was inversely related to age (P < 0.001) in ET (r = 0.82) and S(r = 0.71) and was higher atany age in ET. Consistent with our meta-analysic findings,the absolute rate of decline inO2 max was greater inET (5.7ml · kg1 · min1 · decade1)compared with S (3.2 ml · kg1 · min1 · decade1;P < 0.01), but the relative (%)rate of decline was similar (9.7 vs 9.1%/decade; notsignificant). The greater absolute rate of decline inO2 max in ET comparedwith S was not associated with a greater rate of decline in maximalheart rate (5.6 vs. 6.2beats · min1 · decade1),nor was it related to training factors. The present cross-sectional findings provide additional evidence that the absolute, but not therelative, rate of decline in maximal aerobic capacity with age may begreater in highly physically active women compared with theirsedentary healthy peers. This difference does not appear to be relatedto age-associated changes in maximal heart rate, bodycomposition, or training factors.

  相似文献   

20.
Training-induced alterations of glucose flux in men   总被引:5,自引:0,他引:5  
Friedlander, Anne L., Gretchen A. Casazza, Michael A. Horning, Melvin J. Huie, and George A. Brooks. Training-induced alterations of glucose flux in men. J. Appl.Physiol. 82(4): 1360-1369, 1997.We examined thehypothesis that glucose flux was directly related to relative exerciseintensity both before and after a 10-wk cycle ergometer trainingprogram in 19 healthy male subjects. Two pretraining trials [45and 65% of peak O2 consumption(O2 peak)] andtwo posttraining trials (same absolute and relative intensities as 65%pretraining) were performed for 90 min of rest and 1 h of cyclingexercise. After training, subjects increasedO2 peak by9.4 ± 1.4%. Pretraining, the intensity effect on glucose kinetics was evident with rates of appearance(Ra; 5.84 ± 0.23 vs. 4.73 ± 0.19 mg · kg1 · min1),disappearance (Rd; 5.78 ± 0.19 vs. 4.73 ± 0.19 mg · kg1 · min1),oxidation (Rox; 5.36 ± 0.15 vs. 3.41 ± 0.23 mg · kg1 · min1),and metabolic clearance (7.03 ± 0.56 vs. 5.20 ± 0.28 ml · kg1 · min1)of glucose being significantly greater(P  0.05) in the 65% than the 45%O2 peak trial. WhenRd was expressed as a percentage of total energy expended per minute(Rd E), there was nodifference between the 45 and 65% intensities. Training did reduceRa (4.63 ± 0.25),Rd (4.65 ± 0.24),Rox (3.77 ± 0.43), andRd E (15.30 ± 0.40 to12.85 ± 0.81) when subjects were tested at the same absolute workload (P  0.05). However, whenthey were tested at the same relative workload,Ra,Rd, andRd E were not different,although Rox was lowerposttraining (5.36 ± 0.15 vs. 4.41 ± 0.42, P  0.05). These results show1) glucose use is directly relatedto exercise intensity; 2) trainingdecreases glucose flux for a given power output;3) when expressed as relativeexercise intensity, training does not affect the magnitude of bloodglucose use during exercise; 4)training alters the pathways of glucose disposal.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号