首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The gatC, gatA and gatB genes encoding the three subunits of glutamyl-tRNAGln amidotransferase from Acidithiobacillus ferrooxidans, an acidophilic bacterium used in bioleaching of minerals, have been cloned and expressed in Escherichia coli. As in Bacillus subtilis the three gat genes are organized in an operon-like structure in A. ferrooxidans. The heterologously overexpressed enzyme converts Glu-tRNAGln to Gln-tRNAGln and Asp-tRNAAsn to Asn-tRNAAsn. Biochemical analysis revealed that neither glutaminyl-tRNA synthetase nor asparaginyl-tRNA synthetase is present in A. ferrooxidans, but that glutamyl-tRNA synthetase and aspartyl-tRNA synthetase enzymes are present in the organism. These data suggest that the transamidation pathway is responsible for the formation of Gln-tRNA and Asn-tRNA in A. ferrooxidans.  相似文献   

2.
The prevalence of paralogous enzymes implies that novel catalytic functions can evolve on preexisting protein scaffolds. The weak secondary activities of proteins, which reflect catalytic promiscuity and substrate ambiguity, are plausible starting points for this evolutionary process. In this study, we observed the emergence of a new enzyme from the ASKA (A Complete Set of E. coli K-12 ORF Archive) collection of Escherichia coli open reading frames. The overexpression of (His)6-tagged glutamine phosphoribosylpyrophosphate amidotransferase (PurF) unexpectedly rescued a ΔtrpF E. coli strain from starvation on minimal media. The wild-type PurF and TrpF enzymes are unrelated in sequence, tertiary structure and catalytic mechanism. The promiscuous phosphoribosylanthranilate isomerase activity of the ASKA PurF variant apparently stems from a preexisting affinity for phosphoribosylated substrates. The relative fitness of the (His)6-PurF/ΔtrpF strain was improved 4.8-fold to nearly wild-type levels by random mutagenesis of purF and genetic selection. The evolved and ancestral PurF proteins were purified and reacted with phosphoribosylanthranilate in vitro. The best evolvant (kcat/KM = 0.3 s− 1 M− 1) was ∼ 25-fold more efficient than its ancestor but > 107-fold less efficient than the wild-type phosphoribosylanthranilate isomerase. These observations demonstrate in quantitative terms that the weak secondary activities of promiscuous enzymes can dramatically improve the fitness of contemporary organisms.  相似文献   

3.
Selective enrichments enabled the recovery of moderately thermophilic isolates with copper bioleaching ability from a spent copper sulfide heap. Phylogenetic and physiological characterization revealed that the isolates were closely related to Sulfobacillus thermosulfidooxidans, Acidithiobacillus caldus and Acidimicrobium ferrooxidans. While isolates exhibited similar physiological characteristics to their corresponding type strains, in general they displayed similar or greater tolerance of high copper, zinc, nickel and cobalt concentrations. Considerable variation was found between species and between several strains related to S. thermosulfidooxidans. It is concluded that adaptation to metals present in the bioleaching heap from which they were isolated contributed to but did not entirely explain high metals tolerances. Higher metals tolerance did not confer stronger bioleaching performance, suggesting that a physical, mineralogical or chemical process is rate limiting for a specific ore or concentrate.  相似文献   

4.
嗜酸氧化亚铁硫杆菌是一种极为重要的浸矿微生物,具有氧化各种还原性含硫物及亚铁等功能。采用实时荧光定量PCR技术及生物信息学等手段对该菌一个涉及铁硫氧化由afe_0378基因编码的细胞色素C家族蛋白CycA2进行了研究。结果表明,afe_0378基因在单质硫培养条件下转录水平是亚铁培养条件下的2.67倍。生物信息学分析表明afe_0378编码蛋白CycA2是分子质量为22.959 ku,pI为9.75的结合内膜的周质蛋白,二级结构为全α-螺旋,无β-折叠,包含2个相似结构域及N端一段跨膜疏水螺旋,属于细胞色素C4型蛋白家族。CycA2蛋白分子三维结构模建表明,双血红素与CycA2蛋白序列片段域C48-X-X-C51-H52及C149-X-X-C152-H153中的半胱氨酸共价连接。结合该菌硫代谢背景知识,推测CycA2蛋白的功能是介导细胞色素bc1复合体及终端氧化酶细胞色素aa3复合体之间的电子传递而参与硫代谢。  相似文献   

5.
6.
Aminodeoxychorismate (ADC) synthase in plants is a bifunctional enzyme containing glutamine amidotransferase (GAT) and ADC synthase (ADCS) domains. The GAT domain releases NH3 from glutamine and the ADCS domain uses NH3 to aminate chorismate. This enzyme is involved in folate (vitamin B9) biosynthesis. We produced a stable recombinant GAT–ADCS from Arabidopsis. Its kinetic properties were characterized, and activities and coupling of the two domains assessed. Both domains could operate independently, but not at their optimal capacities. When coupled, the activity of one domain modified the catalytic properties of the other. The GAT activity increased in the presence of chorismate, an activation process that probably involved conformational changes. The ADCS catalytic efficiency was 104 fold higher with glutamine than with NH4Cl, indicating that NH3 released from glutamine and used for ADC synthesis did not equilibrate with the external medium. We observed that the GAT activity was always higher than that of ADCS, the excess of NH3 being released in the external medium. In addition, we observed that ADC accumulation retro-inhibited ADCS activity. Altogether, these results indicate that channeling of NH3 between the two domains and/or amination of chorismate are the limiting step of the whole process, and that ADC cannot accumulate.  相似文献   

7.
乳酸杆菌对攻毒小鼠的保护作用和对肠道菌群的影响   总被引:5,自引:0,他引:5  
将含有乳酸杆菌Lactobacillus casei Zhang的悬浮液分组饲喂小鼠,然后分别用E.coliO157和K88攻毒观察发病情况。攻毒4d后取对照组和喂菌组未死亡小鼠的肠内容物,用选择性培养基分离纯化大肠杆菌和乳酸菌,提取分离到菌株的总DNA,进行ERIC-PCR扩增分析。发现灌服L.casei Zhang可以降低攻毒后小鼠的死亡率,在停止饲喂乳酸菌的第4d从小鼠肠道内分离到L.casei Zhang,从饲喂组未分离到E.coliO157和K88,喂L.casei Zhang使小鼠肠道中大肠杆菌总数极显著低于对照组。表明所饲喂的乳杆菌可以在小鼠肠道内定殖并对小鼠起到保护作用。  相似文献   

8.
A simple yet accurate method is described by which the numbers of asparagine and glutamine residues in polypeptides can be determined. The method involves difference analysis of the aspartic acid and glutamic acid contents of the polypeptide after acid hydrolysis (in 6 n HCl), without and with prior treatment of the sample with bis(I,I-trifluoroacetoxy)iodobenzene. Under the conditions described, this reagent quantitatively converts the carboxamide residues to the corresponding amines, which are eluted near (and interfere with the estimation of) the lysine peak on conventional ion-exchange amino acid analysis. During the carboxamide conversion, certain amino acid residues sensitive to oxidation are partially or completely destroyed and cannot be accurately determined.  相似文献   

9.
Summary The rag2 mutant of Kluyveromyces lactis cannot grow on glucose when mitochondrial functions are blocked by various mitochondrial inhibitors, suggesting the presence of a defect in the fermentation pathway. The RAG2 gene has been cloned from a K. lactis genomic library by complementation of the rag2 mutation. The amino acid sequence of the RAG2 protein deduced from the nucleotide sequence of the cloned RAG2 gene shows homology to the sequences of known phosphoglucose isomerases (PGI and PHI). In vivo complementation of the pgi1 mutation in Saccharomyces cerevisiae by the cloned RAG2 gene, together with measurements of specific PGI activities and the detection of PGI proteins, confirm that the RAG2 gene of K. lactis codes for the phosphoglucose isomerase enzyme. Complete loss of PGI activity observed when the coding sequence of RAG2 was disrupted leads us to conclude that RAG2 is the only gene that codes for phosphoglucose isomerase in K. lactis. The RAG2 gene of K. lactis is expressed constitutively, independently of the growth substrates (glycolytic or gluconeogenic). Unlike the pgi1 mutants of S. cerevisiae, the K. lactis rag2 mutants can still grow on glucose, however they do not produce ethanol.  相似文献   

10.
11.
12.
Gpx2, one of three glutathione peroxidase homologs (Gpx1, Gpx2, and Gpx3) in Saccharomyces cerevisiae, is an atypical 2-Cys peroxiredoxin that prefers to use thioredoxin as a reducing agent in vitro. Despite Gpx2 being an antioxidant, no obvious phenotype of gpx2Δ mutant cells in terms of oxidative stress has yet been found. To gain a clue as to Gpx2’s physiological function in vivo, here we identify its intracellular distribution. Gpx2 was found to exist in the cytoplasm and mitochondria. In mitochondria, Gpx2 was associated with the outer membrane of the cytoplasmic-side, as well as the inner membrane of the matrix-side. The redox state of the mitochondrial Gpx2 was regulated by Trx1 and Trx2 (cytoplasmic thioredoxin), and by Trx3 (mitochondrial matrix thioredoxin). In addition, we found that the disruption of GPX2 reduced the sporulation efficiency of diploid cells.  相似文献   

13.
To study the influence of the htpG gene on thermal stress management in Bacillus subtilis, two different kinds of htpG mutation were constructed. In one case, the gene was inactivated by insertion of a cat cassette in to the coding region; htpG was thus found to be non-essential. In the second case, the htpG gene was fused to a xylose-dependent promoter, allowing expression of the gene to be controlled. In the absence of HtpG protein, recovery of cells from a heat shock at 53° C was retarded, and this delay could be eliminated by overproduction of HtpG. While htpG is not involved in the development of induced thermotolerance, DnaK and GroE proteins are absolutely required. Overproduction of class I heat-shock proteins prior to shifting cells to a lethal temperature is important but not sufficient for the development of intrinsic thermotolerance. It could be shown that the HtpG protein does not act as a cellular thermometer in B. subtilis. Received: 2 December 1998 / Accepted: 28 January 1999  相似文献   

14.
Saffron (Crocus sativus) stigmata contain rare water-soluble carotenoids and the major one is crocin, the crocetin digentiobiosyl-ester. Previous studies indicated that two glucosyltransferases might be involved in the formation of crocetin glucosyl- and gentiobiosyl-esters (Dufresne et al. 1997). A UDP-Glc: crocetin 8,8′-glucosyltransferase involved in the biosynthesis of crocetin monoglucosyl- and diglucosyl-esters was extracted from saffron cell cultures and purified 300-fold by gel filtration chromatography and preparative IEF electrophoresis, with a recovery of 13 percnt;. The purified enzyme preparation was highly specific for crocetin and formed ester bonds between the glucose moiety of UDP-Glc and the free carboxyl functions of crocetin. The enzyme did not add other glucose units to the glucosyl-esters to form crocetin gentiobiosyl-esters. A crude desalted extract of the same material was less specific and formed glucosyl-esters with several other compounds, including abscisic and retinoic acids. The purified preparation was active between pH 4.4 and 4.6. SDS-PAGE revealed a major band at 26 kDa while the native molecular mass determined by gel filtration was in the range of 49 to 55 kDa. The study provides concrete evidence for the hypothesis that more than one glucosyltransferase is involved in the biosynthesis of crocetin glycosyl-esters in saffron.  相似文献   

15.
Toxoplasma gondii is a human protozoan parasite that belongs to the phylum of Apicomplexa and causes toxoplasmosis. As the other members of this phylum, T. gondii obligatory multiplies within a host cell by a peculiar type of mitosis that leads to daughter cell assembly within a mother cell. Although parasite growth and virulence have been linked for years, few molecules controlling mitosis have been yet identified and they include a couple of kinases but not the counteracting phosphatases. Here, we report that in contrast to other animal cells, type 2C is by far the major type of serine threonine phosphatase activity both in extracellular and in intracellular dividing parasites. Using wild type and transgenic parasites, we characterized the 37 kDa TgPP2C molecule as an abundant cytoplasmic and nuclear enzyme with activity being under tight regulation. In addition, we showed that the increase in TgPP2C activity significantly affected parasite growth by impairing cytokinesis while nuclear division still occurred. This study supports for the first time that type 2C protein phosphatase is an important regulator of cell growth in T. gondii.  相似文献   

16.
A deficiency in the production of -alanine causes the black (b) phenotype of Drosophila melanogaster. This phenotype is normalized by a semi-dominant mutant gene Su(b) shown previously to be located adjacent to or within the rudimentary (r) locus. The r gene codes for three enzyme activities involved in de novo pyrimidine biosynthesis. Pyrimidines are known to give rise to -alanine. However, until recently it has been unclear whether de novo pyrimidine biosynthesis is directly coupled to -alanine synthesis during the tanning process. In this report we show that flies carrying Su(b) can exhibit an additional phenotype, resistance to toxic pyrimidine analogs (5-fluorouracil, 6-azathymine and 6-azauracil). Our interpretation of this observation is that the pyrimidine pool is elevated in the mutant flies. However, enzyme assays indicate that r enzyme activities are not increased in Su(b) flies. Genetic mapping of the Su(b) gene now places the mutation within the r gene, possibly in the carbamyl phosphate synthetase (CPSase) domain. The kinetics of CPSase activity in crude extracts has been studied in the presence of uridine triphosphate (UTP). While CPSase from wild-type flies was strongly inhibited by the end-product, UTP, CPSase from Su(b) was inhibited to a lesser extent. We propose that diminished end-product inhibition of de novo pyrimidine biosynthesis in Su(b) flies increases available pyrimidine and consequently the -alanine pool. Normalization of the black phenotype results.  相似文献   

17.
18.
Summary The phycobilisome rod linker genes in the two closely related cyanobacteria Synechococcus sp. PCC 6301 and Synechococcus sp. PCC 7942 were studied. Southern blot analysis showed that the genetic organization of the phycobilisome rod operon is very similar in the two strains. The phycocyanin gene pair is duplicated and separated by a region of about 2.5 kb. The intervening region between the duplicated phycocyanin gene pair was cloned from Synechococcus sp. PCC 6301 and sequenced. Analysis of this DNA sequence revealed the presence of three open reading frames corresponding to 273, 289 and 81 amino acids, respectively. Insertion of a kanamycin resistance cassette into these open reading frames indicated that they corresponded to the genes encoding the 30, 33 and 9 kDa rod linkers, respectively, as judged by the loss of specific linkers from the phycobilisomes of the insertional mutants. Amino acid compositions of the 30 and 33 kDa linkers derived from the DNA sequence were found to deviate from those of purified 33 and 30 kDa linkers in the amounts of glutamic acid/glutamine residues. On the basis of similarity of the amino acid sequence of the rod linkers between Synechococcus sp. PCC 6301 and Calothrix sp. PCC 7601 we name the genes encoding the 30, 33 and 9 kDa linkers cpcH, cpcI and cpcD, respectively. The three linker genes were found to be co-transcribed on an mRNA of 3700 nucleotides. However, we also detected a smaller species of mRNA, of 3400 nucleotides, which would encode only the cpcH and cpcI genes. The 30 kDa linker was still found in phycobilisome rods lacking the 33 kDa linker and the 9 kDa linker was detected in mutants lacking the 33 or the 30 kDa linkers. Free phycocyanin was found in the mutants lacking the 33 or the 30 kDa linkers, whereas no free phycocyanin could be found in the mutant lacking the 9 kDa linker.Abbreviations PCC Pasteur Culture Collection - UTEX University of Texas Culture Collection The nucleotide sequence data reported in this paper will appear in the EMBL, GenBank Nucleotide Sequence Databases under the accession number M94218  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号