首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The interaction between Candida albicans and its host cells is characterized by a complex interplay between the expression of fungal virulence factors, which results in adherence, invasion and cell damage, and the host immune system, which responds by secreting proinflammatory cytokines, activating antimicrobial activities and killing the fungal pathogen. In this review we describe this interplay by taking a closer look at how C. albicans pathogenicity is induced and executed, how the host responds in order to prevent and clear an infection, and which mechanisms C. albicans has evolved to bypass these immune responses to avoid clearance. Furthermore, we review studies that show how the presence of other microorganisms affects this interplay.  相似文献   

2.
FtsZ is a highly conserved protein that performs one of the key roles in cell division of most prokaryotes. At the present time it is believed that the main role of FtsZ in the cells of the microorganisms studied (Escherichia coli, Bacillus subtilis, etc.) is to control the process of cell wall synthesis at the site of future septum. In this regard, the presence of FtsZ in the cells of mycoplasmas – bacteria that lack the cell wall, looks intriguing. In the present work we investigated the influence of FtsZ proteins of three mycoplasmas – Mycoplasma hominis, Mycoplasma gallisepticum and Acholeplasma laidlawii – on the cytokinesis of E. coli. FtsZ proteins were able to interact with the E. coli division machinery, including inhibiting the cytokinesis process, while demonstrating various patterns of distribution in the cell. The data obtained support the hypothesis that FtsZ plays a significant role in the division of mycoplasma cells.  相似文献   

3.
Vibrio parahaemolyticus, a Gram-negative bacterium, inhabits marine and estuarine environments and it is a major pathogen responsible globally for most cases of seafood-associated gastroenteritis in humans and acute hepatopancreatic necrosis syndrome in shrimps. There has been a dramatic worldwide increase in V. parahaemolyticus infections over the last two decades. The pathogenicity of V. parahaemolyticus has been linked to the expression of different kinds of virulence factors including extracellular proteases, such as metalloproteases and serine proteases. V. parahaemolyticus expresses the metalloproteases; PrtV, VppC, VPM and the serine proteases; VPP1/Protease A, VpSP37, PrtA. Extracellular proteases have been identified as potential virulence factors which directly digest many kinds of host proteins or indirectly are involved in the processing of other toxic protein factors. This review summarizes findings on the metalloproteases and serine proteases produced by V. parahaemolyticus and their roles in infections. Identifying the role of V. parahaemolyticus virulence-associated extracellular proteases deepens our understanding of diseases caused by this bacterium.  相似文献   

4.
5.

Background

Although mycobacterial glycolipids are among the first-line molecules involved in host–pathogen interactions, their contribution in virulence remains incomplete. Mycobacterium marinum is a waterborne pathogen of fish and other ectotherms, closely related to Mycobacterium tuberculosis. Since it causes tuberculosis-like systemic infection it is widely used as a model organism for studying the pathogenesis of tuberculosis. It is also an occasional opportunistic human pathogen. The M. marinum surface-exposed lipooligosaccharides (LOS) are immunogenic molecules that participate in the early interactions with macrophages and modulate the host immune system. Four major LOS species, designated LOS-I to LOS-IV, have been identified and characterized in M. marinum. Herein, we investigated the interactions between a panel of defined M. marinum LOS mutants that exhibited various degrees of truncation in the LOS structure, and human-derived THP-1 macrophages to address the potential of LOSs to act as pro- or avirulence factors.

Results

A moderately truncated LOS structure did not interfere with M. marinum invasion. However, a deeper shortening of the LOS structure was associated with increased entry of M. marinum into host cells and increased elimination of the bacilli by the macrophages. These effects were dependent on Toll-like receptor 2.

Conclusion

We provide the first evidence that LOSs inhibit the interaction between mycobacterial cell wall ligands and appropriate macrophage pattern recognition receptors, affecting uptake and elimination of the bacteria by host phagocytes.
  相似文献   

6.
The infection process and pathway of spreading ofFusarium culmorum in wheat spikes was examined by means of light, scanning and transmission electron microscopy after spray inoculation and single spikelet inoculation. Macroconidia of the pathogen germinated on the host surfaces, however, hyphal development and penetration of host tissues normally occurred on the inner surfaces of the lemma, glume and palea as well as on the ovary. The pathogen spread downward to the rachilla and rachis node by inter- and intracellular growth from the glume, lemma, palea and ovary. The pathogen extended in the rachis in upward and downward direction by inter- and intracellular growth inside and outside of the vascular bundles of the rachis. The spreading of the hyphae in the host tissues was associated with pronounced alterations including disintegration and digestion of host cell walls, suggesting production of cell wall degrading enzymes during infection and spreading in the host tissues. Immunogold labelling studies revealed that accumulation ofFusarium toxins in infected wheat spike tissue showed a close relationship to pathological changes in the host cells, symptom appearance and pathogen colonisation of the host tissue.Fusarium toxins may play an important role in wheat head blight development.  相似文献   

7.
Using modern proteomic assays, we have identified the products of gene expression and posttranslational modifications of proteins of the bacterium Mycoplasma gallisepticum S6. Combinations of different technologies of protein separation by electrophoresis and mass-spectrometric analysis gave us a total of 446 proteins, i.e. 61% of the annotated proteins of this microorganism. The Pro-Q Diamond and Pro-Q Emerald dye technology was used for fluorescent detection of ten phosphoproteins and two glycoproteins. The acylation of proteins was studied by electrophoresis after in vivo labeling with different 14C-labeled fatty acids, followed by autoradiography. Sixteen acylated proteins were identified, with a quarter of them involved in plasma membrane construction and another quarter involved in cell energy metabolism.  相似文献   

8.
Clostridium perfringens is a Validated Biological Agent and a pathogen of medical, veterinary, and military significance. Gas gangrene is the most destructive of all the clostridial diseases and is caused by C. perfringens type A strains wherein the infection spreads quickly (several inches per hour) with production of gas. Influence of repeated in vitro cultivation on the infectivity of C. perfringens was investigated by comparing the surface proteins of laboratory strain and repository strains of the bacterium using 2DE-MS approach. In order to optimize host-pathogen interaction during experimental gas gangrene infection, we also explored the role of particulate matrix on ability of C. perfringens to cause gas gangrene.  相似文献   

9.
Mathematical modeling is an important tool to assessing quantitative conjectures and to answer specific questions. In the modeling, we assume that a competitor represented by a lactic acid bacterium produces antimicrobial compounds (substances that kill microorganisms or inhibit their growth), such as lactic acid and bacteriocins, with some cost to its own growth. Bacteriocins are protein compounds with antimicrobial effect against related species and bacteria such as Listeria monocytogenes, which is foodborne pathogen that cause listeriosis. From the analysis of the model, we found the thresholds which determine the existence of multiple equilibria and we studied their stability, in order to evaluate the interaction between lactic acid bacteria and L. monocytogenes.  相似文献   

10.
11.
What are the molecular determinants that make a bacterium a plant pathogen? In the last 10-20 years, important progress has been made in answering this question. In the early 20th century soon after the discovery of infectious diseases, the first studies of pathogenicity were undertaken. These early studies relied mostly on biochemistry and led to the discovery of several major pathogenicity determinants, such as toxins and hydrolytic enzymes which govern the production of major disease symptoms. From these pioneering studies, a simplistic view of pathogenicity arose. It was thought that only a few functions were sufficient to transform a bacterium into a pathogen. This view rapidly changed when modern techniques of molecular genetics were applied to analyse pathogenicity. Modern analyses of pathogenicity determinants took advantage of the relatively simple organization of the haploid genome of pathogenic bacteria. By creating non-pathogenic mutants, a large number of genes governing bacterium-host interactions were identified. These genes are required either for host colonization or for the production of symptoms. Even though the role of motility and chemotaxis in these processes is still unclear, it is clear that a strong attachment of Agrobacterium to plant cells is a prerequisite for efficient plant transformation and disease. Other important pathogenicity factors identified with a molecular genetic approach include hydrolytic enzymes such as pectinases and cellulases which not only provide nutrients to the bacteria but also facilitate pathogen invasion into host tissues. The precise role of exopolysaccharide in pathogenicity is still under discussion, however it is has been established that it is crucial for the induction of wilt symptoms caused by Ralstonia solanacearum. Trafficking of effector proteins from the invading bacterium into the host cell emerged recently as a new central concept. In plant pathogenic bacteria, protein translocation takes place through the so-called 'type II secretion machinery' encoded by hrp genes in the bacterium. These genes are present in representatives of all the major groups of Gram negative plant pathogenic bacteria except Agrobacterium. Most of these genes have counterparts in pathogens of mammals (including those of human) and they also play a central role in pathogenicity. Additionally, recent evidence suggests that a 'type IV secretion machinery' injects bacterial proteins into host cells. This machinery, originally found to be involved in the transfer of t-DNA from Agrobacterium into plant cells, was recently shown to translocate pathogenicity proteins in pathogens of mammals such as Helicobacter pylori and Brucella. Discovery of the trafficking of proteins from the pathogen into host cells revolutionized our conception of pathogenicity. First, it rather unexpectedly established the conservation of basic pathogenicity strategies in plant and animal pathogens. Second, this discovery changes our ideas about the overall strategy (or mechanism) of pathogenicity, although we still think the end result is exploitation of host cell nutritive components. Rather than killing the host cell from outside, we envision a more subtle approach in which pathogens inject effector proteins into the host cell to effect a change in host cell biology advantageous to the pathogen. Identification of the effector proteins, of their function and of the corresponding molecular targets in the host is a new challenge which will contribute to the conception of new strategies to control diseases.  相似文献   

12.
Transmission electron and fluorescence microscopy was used to study the character of the interaction of free-living ultramicrobacterial (UMB) strains NF1 and NF3, affiliated with the genus Kaistia, and seven species of gram-positive and gram-negative heterotrophic bacteria. Strains NF1 and NF3 were found to exhibit parasitic activity against gram-positive Bacillus subtilis and gram-negative Acidovorax delafildii. UMB cells are tightly attached to the envelopes of the victim cells and induce their lysis, thus demonstrating the features of typical ectoparasitism. The selectivity of parasitism of the studied UMB to the victim bacteria has been shown: only two soil microorganisms of the seven test objects, B. subtilis ATCC 6633 and an aerobic gramnegative bacterium A. delafildii 39, were found to be sensitive to UMB attack. Other bacteria (Micrococcus luteus VKM Ac-2230, Staphylococcus aureus 209-P, Pseudomonas putida BS394, Escherichia coli C 600, and Pantoea agglomerans ATCC 27155) were not attacked by UMB. It was established for the first time that free-living UMB may be facultative parasites not only of phototrophic bacteria, as we have previously demonstrated [1], but of heterotrophic bacteria as well. The UMB under study seem to play an important role in the regulation of the quantity of microorganisms and in the functioning of microbial communities in some natural ecotopes.  相似文献   

13.
Listeria monocytogenes is a Gram-positive bacterium commonly associated with foodborne diseases. Due its ability to survive under adverse environmental conditions and to form biofilm, this bacterium is a major concern for the food industry, since it can compromise sanitation procedures and increase the risk of post-processing contamination. Little is known about the interaction between L. monocytogenes and Gram-negative bacteria on biofilm formation. Thus, in order to evaluate this interaction, Escherichia coli and L. monocytogenes were tested for their ability to form biofilms together or in monoculture. We also aimed to evaluate the ability of L. monocytogenes 1/2a and its isogenic mutant strain (ΔprfA ΔsigB) to form biofilm in the presence of E. coli. We assessed the importance of the virulence regulators, PrfA and σB, in this process since they are involved in many aspects of L. monocytogenes pathogenicity. Biofilm formation was assessed using stainless steel AISI 304 #4 slides immersed into brain heart infusion broth, reconstituted powder milk and E. coli preconditioned medium at 25 °C. Our results indicated that a higher amount of biofilm was formed by the wild type strain of L. monocytogenes than by its isogenic mutant, indicating that prfA and sigB are important for biofilm development, especially maturation under our experimental conditions. The presence of E. coli or its metabolites in preconditioned medium did not influence biofilm formation by L. monocytogenes. Our results confirm the possibility of concomitant biofilm formation by L. monocytogenes and E. coli, two bacteria of major significance in the food industry.  相似文献   

14.
15.
In this study, we sought to isolate Salmonella Enteritidis-specific lytic bacteriophages (phages), and we found a lytic phage that could lyse not only S. Enteritidis but also other Gramnegative foodborne pathogens. This lytic phage, SS3e, could lyse almost all tested Salmonella enterica serovars as well as other enteric pathogenic bacteria including Escherichia coli, Shigella sonnei, Enterobacter cloacae, and Serratia marcescens. This SS3e phage has an icosahedral head and a long tail, indicating belong to the Siphoviridae. The genome was 40,793 base pairs, containing 58 theoretically determined open reading frames (ORFs). Among the 58 ORFs, ORF49, and ORF25 showed high sequence similarity with tail spike protein and lysozyme-like protein of Salmonella phage SE2, respectively, which are critical proteins recognizing and lysing host bacteria. Unlike SE2 phage whose host restricted to Salmonella enterica serovars Enteritidis and Gallinarum, SS3e showed broader host specificity against Gram-negative enteric bacteria; thus, it could be a promising candidate for the phage utilization against various Gram-negative bacterial infection including foodborne pathogens.  相似文献   

16.
Chytridiomycosis, an amphibian disease caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is an ideal system for studying the influence of temperature on host–pathogen relationships because both host and pathogen are ectothermic. Studies of Bd in culture suggest that optimal growth occurs between 17 and 23°C, and death of the fungus occurs above 29 or below 0°C. Amphibian immune systems, however, are also temperature dependent and often more effective at higher temperatures. We therefore hypothesized that pathogen load, probability of infection and mortality in Bd-exposed frogs would peak at a lower temperature than that at which Bd grows best in vitro. To test this, we conducted a study where Bd- and sham-exposed Northern cricket frogs (Acris crepitans) were incubated at six temperatures between 11 and 26°C. While probability of infection did not differ across temperatures, pathogen load and mortality were inversely related to temperature. Survival of infected hosts was greatest between 20 and 26°C, temperatures where Bd grows well in culture. These results demonstrate that the conditions under which a pathogen grows best in culture do not necessarily reflect patterns of pathogenicity, an important consideration for predicting the threat of this and other wildlife pathogens.  相似文献   

17.
It is established that bacteria producing enzymes able to hydrolyze carbohydrates of various degree of complexity are associated with digestive-transport surfaces of pike intestine and T. nodulosus parasitizing in it. The total amylolytic activity of the enzymes of the studied bacteria operates in a wide pH range. The release by the bacteria of enzymes hydrolyzing not only carbohydrates, but also disaccharides, alongside with a low activity of the own disaccharidases of the host and parasite, makes it possible to suggest that the presence of such microorganisms is especially important for the host and parasite, as glucose formed as a result of hydrolytic activity of the bacterial enzymes can be utilized by all members of this establishing community. Levels of the total amylolytic activity of the bacterial enzymes under experimental conditions are comparable with the same parameters of enzymes participating in the host and parasite membrane digestion. Data on similar enzymatic activity of the bacteria washed out from different surfaces allow suggesting that the pike intestine and tegument of its parasite are habituated by the same groups of microorganisms.  相似文献   

18.
Thaumatin-like proteins (TLPs) are pathogenesis-related proteins, which are involved in plant defense responses to pathogen infection. Expression of the Pinus sylvestris L. TLP gene is up-regulated by methyl jasmonate treatment and inoculation with Heterobasidion annosum. A full-length Pinus taeda TLP gene sequence was used to design PCR primers for amplification of the full-length TLP gene from P. sylvestris. A putative 705-bp open reading frame of TLP gene was cloned into Escherichia coli cells, and then subcloned into the overexpression vector pET100 using BL21 Star expression bacteria. Optimization of the expression of recombinant TLP was achieved by decreasing both expression temperature and IPTG concentration. The purified 24.6-kDa TLP shows antimicrobial activity against 12 fungal species.  相似文献   

19.
Staphylococcus aureus is responsible for significant and increasing number of hospital-and community-acquired infections worldwide. A pool of pathogenesis factors helps the bacterium to cause the range of mild to severe infections leading the high mortality and morbidity. Staphylococcus aureus and Candida albicans can be co-isolated from all human mucosal sites and are responsible for diverse infections. Vaccine design for related polymicrobial infections should consider the consortia of microorganisms responsible for the disease. In this study we considered biofilm mode of growth and polymicrobial nature of the infections caused by S. aureus. In the first phase of study the prediction of putative antigenic targets of S. aureus and C. albicans was conducted based on data mining and bioinformatic characterization of their proteins. Various properties of proteins were evaluated such as subcellular localization, hydrophilicity, repeat containing modules, beta turns, surface accessibility and number of antigenic determinants. The second phase includes various immunoinformatics analyses on six proteins include ALS, ClfA, FtmB, SdrE, Spa and Bap leading to design a novel sub-unit hexavalent vaccine. Several potential T cell and B-cell epitopes are present in our vaccine. Also the vaccine is expected to strongly induce IFN-gamma production. The amino acid sequence introduced here is expected to enhance cell-mediated and humoral responses against S. aureus biofilm-related infections to clear biofilm communities of S. aureus and intracellular colonies of pathogen as well as planktonic cells and thus reduces colonization and persistence.  相似文献   

20.
Facultative pathogens Serratia grimesii are able to invade eukaryotic cells where they have been found in vacuoles and free in the cytoplasm (Efremova et al., 2001; Bozhokina et al., 2011). However, efficiency of this invasion is low, and the mechanisms of the invasion related to the initial steps of the process are not known. In the present study, we have increased the invasion efficiency by a 24-h-incubation of HeLa cells with N-acetylcysteine (NAC) preceding the infection. In the NAC-pretreated cells, two modes of S. grimesii to enter HeLa cells were observed. In the most cases, the penetration of S. grimesii into the cell was consistent with the “zipper mechanism”, which first step involves specific interaction of bacterial invasin with a host cell surface receptor. However, in some cases, bacteria were trapped by filopodia probably induced by injected bacterial proteins that trigger the bacterial uptake process, as described in the “trigger mechanism” of invasion. To clarify whether two different mechanisms or a predominant one operate during S. grimesii invasion, further elucidation of bacterial and cellular factors involved in the bacteria-host cell interaction should be performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号