首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The insulin receptor-related receptor (IRR), an orphan receptor tyrosine kinase of the insulin receptor family,?can be activated by alkaline media both in?vitro and in?vivo at pH >7.9. The alkali-sensing property of IRR is conserved in frog, mouse, and human. IRR activation is specific, dose-dependent and quickly reversible and demonstrates positive cooperativity. It also triggers receptor conformational changes and elicits intracellular signaling. The pH sensitivity of IRR is primarily defined by its L1F extracellular domains. IRR is predominantly expressed in organs that come in contact with mildly alkaline media. In particular, IRR is expressed in the cell subsets of the kidney that secrete bicarbonate into urine. Disruption of IRR in mice impairs the renal response to alkali loading attested by development of metabolic alkalosis and decreased urinary bicarbonate excretion in response to this challenge. We therefore postulate that IRR is an alkali sensor that functions in the kidney to manage metabolic bicarbonate excess.  相似文献   

2.
3.
Recent studies of insulin receptor-related receptor (IRR) revealed its unusual property to activate upon extracellular application of mildly alkaline media, pH > 7.9. The activation of IRR with hydroxyl anion has typical features of ligand–receptor interaction; it is specific, dose-dependent, involves the IRR extracellular domain and is accompanied by a major conformational change. IRR is a member of the insulin receptor minifamily and has been long viewed as an orphan receptor tyrosine kinase since no peptide or protein agonist of IRR was found. In the evolution, IRR is highly conserved since its divergence from the insulin and insulin-like growth factor receptors in amphibia. The latter two cannot be activated by alkali. Another major difference between them is that unlike ubiquitously expressed insulin and insulin-like growth factor receptors, IRR is found in specific sets of cells of only some tissues, most of them being exposed to extracorporeal liquids of extreme pH. In particular, largest concentrations of IRR are in beta-intercalated cells of the kidneys. The primary physiological function of these cells is to excrete excessive alkali as bicarbonate into urine. When IRR is removed genetically, animals loose the property to excrete bicarbonate upon experimentally induced alkalosis. In this review, we will discuss the available in vitro and in vivo data that support the hypothesis of IRR role as a physiological alkali sensor that regulates acid–base balance. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases.  相似文献   

4.
IRR is a member of the insulin receptor (IR) family that does not have any known agonist of a peptide nature but can be activated by mildly alkaline medium and was thus proposed to function as an extracellular pH sensor. IRR activation by alkali is defined by its N-terminal extracellular region. To reveal key structural elements involved in alkali sensing, we developed an in vitro method to quantify activity of IRR and its mutants. Replacing the IRR L1C domains (residues 1–333) or L2 domain (residues 334–462) or both with the homologous fragments of IR reduced the receptor activity to 35, 64, and 7% percent, respectively. Within L1C domains, five amino acid residues (Leu-135, Gly-188, Arg-244, and vicinal His-318 and Lys-319) were identified as IRR-specific by species conservation analysis of the IR family. These residues are exposed and located in junctions between secondary structure folds. The quintuple mutation of these residues to alanine had the same negative effect as the entire L1C domain replacement, whereas none of the single mutations was as effective. Separate mutations of these five residues and of L2 produced partial negative effects that were additive. The pH dependence of cell-expressed mutants (L1C and L2 swap, L2 plus triple LGR mutation, and L2 plus quintuple LGRHK mutation) was shifted toward alkalinity and, in contrast with IRR, did not show significant positive cooperativity. Our data suggest that IRR activation is not based on a single residue deprotonation in the IRR ectodomain but rather involves synergistic conformational changes at multiple points.  相似文献   

5.
In 1989, Shier and Watt identified a gene which was predicted to encode a new member of the insulin receptor (IR) family, and they called it the insulin receptor-related receptor (IRR) (Shier, P., and Watt, V. M. (1989) J. Biol. Chem. 264, 14605-14608). However, the tissues expressing this receptor, its ligand binding specificity and its signaling capability have remained unknown. In the present studies we report Northern blot analyses and polymerase chain reaction data, which indicate that the IRR mRNA is expressed in a variety of tissues, including the human kidney, heart, skeletal muscle, liver, and pancreas. In order to examine the ligand(s) recognized by IRR, we constructed a chimeric receptor with the extracellular domain of the IR replaced with that of IRR. This chimera was found not to bind radioactively labeled insulin, insulin-like growth factor I (IGF-I), or IGF-II. These ligands and relaxin, the only other known member of the mammalian insulin family, also failed to stimulate the tyrosine kinase activity of this chimeric receptor. A second chimeric receptor with the extracellular domain of IR and the kinase domain of IRR was also constructed and utilized to study the signaling capabilities of the kinase domain of IRR. This chimera exhibited high affinity insulin binding and insulin-stimulated tyrosine kinase activity. The kinase domains of the IR and IRR were found capable of phosphorylating the same spectrum of exogenous and endogenous substrates. However, Chinese hamster ovary (CHO) cells stably overexpressing the kinase domain of IRR exhibited elevated basal thymidine incorporation and 2-deoxyglucose uptake compared with CHO cells and CHO cells overexpressing wild-type IR. We conclude that: 1) IRR is expressed in the human kidney, heart, skeletal muscle, liver, and pancreas, 2) IRR does not appear to be the receptor of any known member of the insulin family, and 3) the tyrosine kinase of IRR appears to be similar to that of IR in both the spectrum of substrates phosphorylated and the biological responses stimulated.  相似文献   

6.
A soluble form of the interleukin 4 receptor in biological fluids   总被引:2,自引:0,他引:2  
Murine biological fluids and murine cell culture supernatants were analyzed for the presence of soluble murine interleukin 4 receptor (sIL4R) with the use of two monoclonal antibodies directed against the receptor. Mouse urine, serum, ascitic fluid, and cell culture supernatants contained varying levels of immunoreactive protein. All of the immunoreactive protein possessed interleukin 4 (IL 4) binding activity. Following partial purification of ascitic fluid a protein was isolated that binds IL 4 with high affinity. This data is consistent with the fact that murine biological fluids contain a soluble version of the murine IL 4 receptor that arises via secretion of the soluble receptor and/or via shedding of the extracellular portion of the full-length receptor from the cell surface.  相似文献   

7.
Russian Journal of Bioorganic Chemistry - The insulin receptor-related receptor (IRR) is a cellular sensor of a weakly alkaline medium. Its spatial structure and the mechanism of activation have...  相似文献   

8.
Epitopes recognized by three epidermal growth factor (EGF) competitive monoclonal antibodies, LA22, LA58, and LA90, have been localized to a 14-amino acid region in the extracellular domain of the human EGF receptor. The binding of each of these mutually competitive antibodies to A431 epidermoid carcinoma cells was inhibited up to 87% by EGF. Furthermore, binding to A431 cells was inhibited 100% by the EGF competitive monoclonal antibody 528 IgG. The EGF receptor monoclonal antibody 455 IgG, which recognizes a blood group A-related carbohydrate modification of A431 receptors and does not inhibit EGF binding, did not inhibit the binding of these three antibodies to A431 cells. Antibodies LA22, LA58, and LA90 were unusual in that they bound to recognized denatured and endoglycosidase F-treated antigenic determinants in Western blots. This suggested that the antibodies recognized continuous peptide epitopes. The epitopes for these antibodies were first localized in cyanogen bromide- and V8 protease-generated fragments of a truncated form of the EGF receptor secreted by A431 cells. In experiments with synthetic peptides, all three antibodies were found to bind to the 14 amino acids from Ala-351 to Asp-364 of the mature human EGF receptor. These amino acids are located between the two Cys-rich regions of the extracellular domain of the receptor, and they include an Arg-Gly-Asp-Ser recognition site for adhesion molecule receptors. The homologous sequence in the chicken EGF receptor, which binds mouse EGF with a 100-fold lower affinity than the human EGF receptor, contains four amino acid differences including two in the Arg-Gly-Asp-Ser tetramer. The mutually competitive binding of EGF and antibodies LA22, LA58, and LA90 implied that the amino acids between Ala-351 and Asp-364 participated in the formation of the EGF-binding site of the human EGF receptor.  相似文献   

9.
Antibodies to the extracellular region of the ErbB receptors have played key roles in the development of a mechanistic understanding of this family of receptor tyrosine kinases. An extensively studied class of such antibodies inhibits activation of ErbB receptors, and these antibodies have been the focus of intense development as anti-cancer agents. In this review we consider the properties of ErbB receptors antibodies in light of the current structure-based model for ErbB receptor homo- and hetero-dimerization and activation. Crystal structures of the Fab fragments from five different inhibitory antibodies in complex with the extracellular regions of EGFR and ErbB2 have been determined. These structures highlight several different modes of binding and mechanisms of receptor inhibition. Information about antibody interactions with the structurally well-characterized soluble extracellular regions of ErbB receptors can be combined with the rich knowledge of the effects of these antibodies in cultured cells, and in vivo, to provide insights into the conformation and activation of ErbB receptors at the cell surface.  相似文献   

10.
Insulin receptor-related receptor (IRR), an orphan receptor in the insulin receptor (IR) family of receptor tyrosine kinases, is primarily localized to neural crest-derived sensory neurons during embryonic development. Expression of IRR closely resembles that of the nerve growth factor receptor, TrkA. To analyze the signaling properties and function of IRR in PC12 cells, a TrkB/IRR hybrid receptor was used. In contrast to IR activation, brain-derived neurotrophic growth factor-mediated activation of the TrkB/IRR receptor resulted in differentiation rather than proliferation. Analysis of cytoplasmic substrates activated by the TrkB/IRR receptor indicates a signaling pathway similar to that of the IR. Mutagenesis studies further show that only TrkB/IRR receptors able to phosphorylate mitogen-activated protein kinase elicit a differentiation response. Our analysis indicates that prolonged kinetics of mitogen-activated protein kinase activation mediated by the TrkB/IRR chimeric receptor correlates with induction to differentiate.  相似文献   

11.
This paper describes studies on the migratory behavior of epidermal growth factor (EGF) receptor kinase using antibodies that are specific for either the kinase domain or the extracellular domain of the receptor. Antiserum was raised to a 42,000-D subfragment of EGF receptor, which was shown earlier to carry the kinase catalytic site but not the EGF-binding site. Another antiserum was raised to the pure intact 170,000-D EGF receptor. The specificities of these antibodies were established by immunoprecipitation and immunoblotting experiments. The domain specificity was examined by indirect immunofluorescent staining of fixed cells. The anti-42-kD peptide antibody could bind specifically to EGF receptors of both human and murine origin and was found to be directed to the cytoplasmic part of the molecule. It did not bind to EGF receptor-negative cells, which contained other types of tyrosine kinases. The antibodies raised against the intact receptor recognized only EGF receptor-specific epitopes and were directed to the extracellular part of the molecule. The anti-receptor antibodies described above were used to visualize the cyclic locomotory behavior of EGF receptor kinase under various conditions of EGF stimulation and withdrawal. The receptor was examined in fixed and permeabilized cells by indirect immunofluorescent staining. The results demonstrate the following: (a) the receptor kinase domain migrates to the perinuclear region upon challenge with EGF; (b) both extracellular and cytoplasmic domains of the receptor are involved in migration as a unit; (c) withdrawal of EGF results in rapid recycling of the perinuclear receptors to the plasma membrane; (d) this return to the cell surface is inhibited by methylamine, chloroquine, and monensin; and (e) neither the internal migration nor the recycling process is blocked by inhibitors of protein biosynthesis.  相似文献   

12.
Raising functional antibodies against G protein-coupled receptors (GPCRs) is challenging due to their low density expression, instability in the absence of the cell membrane's lipid bilayer and frequently short extracellular domains that can serve as antigens. In addition, a particular therapeutic concept may require an antibody to not just bind the receptor, but also act as a functional receptor agonist or antagonist. Antagonizing the glucose-dependent insulinotropic polypeptide (GIP) receptor may open up new therapeutic modalities in the treatment of diabetes and obesity. As such, a panel of monoclonal antagonistic antibodies would be a useful tool for in vitro and in vivo proof of concept studies. The receptor is highly conserved between rodents and humans, which has contributed to previous mouse and rat immunization campaigns generating very few usable antibodies. Switching the immunization host to chicken, which is phylogenetically distant from mammals, enabled the generation of a large and diverse panel of monoclonal antibodies containing 172 unique sequences. Three-quarters of all chicken-derived antibodies were functional antagonists, exhibited high-affinities to the receptor extracellular domain and sampled a broad epitope repertoire. For difficult targets, including GPCRs such as GIPR, chickens are emerging as valuable immunization hosts for therapeutic antibody discovery.  相似文献   

13.
The synapse-specific Mr 43,000 protein (43K protein) and the acetylcholine receptor were visualized by freeze-etch immunoelectron microscopy in preparations of purified Torpedo postsynaptic membranes. Vesicles were immobilized on glass and then sheared open by sonication to expose the cytoplasmic surface. Membranes were labeled with monoclonal antibodies to the 43K protein or the acetylcholine receptor. The cytoplasmic surface was devoid of filamentous structure, and the 43K protein and the cytoplasmic projection of the acetylcholine receptor were associated with prominent surface particles. Acetylcholine receptor and 43K protein, in membrane surfaces in direct contact with glass coated with polyornithine, segregated into dense particle aggregates separated by smooth membrane patches, whereas those in contact with glass coated with Alcian Blue underwent little or no detectable rearrangement. After treatment of vesicles at alkaline pH to remove the 43K protein, the cytoplasmic surfaces were still covered by a dense array of particles that were more uniform in shape and appeared slightly shorter than those seen on unextracted membranes, but similar in height to the extracellular projection. Monoclonal antibodies to the acetylcholine receptor labeled these particles, while antibodies to 43K protein did not. We conclude that the 43K protein is in direct association with the receptor and that complexes of the receptor and 43K protein can undergo surface-induced lateral redistribution. In addition, the cytoplasmic projection of the acetylcholine receptor is sufficiently large to be readily detected by freeze-etch electron microscopy and is similar in height to the extracellular projection.  相似文献   

14.
The molecular phylogeny of the vertebrate insulin receptor (IR) family was reconstructed under maximum likelihood (ML) to establish homologous relationships among its members. A sister group relationship between the orphan insulin-related receptor (IRR) and the insulin-like growth factor 1 receptor (IGF1R) to the exclusion of the IR obtained maximal bootstrap support. Although both IR and IGF1R were identified in all vertebrates, IRR could not be found in any teleost fish. The ancestral character states at each position of the receptor molecule were inferred for IR, IRR + IGF1R, and all 3 paralogous groups based on the recovered phylogeny using ML in order to determine those residues that could be important for the specific function of IR. For 18 residues, ancestral character state of IR was significantly distinct (probability >0.95) with respect to the corresponding inferred ancestral character states both of IRR + IGF1R and of all 3 vertebrate paralogs. Most of these IR distinct (shared derived) residues were located on the extracellular portion of the receptor (because this portion is larger and the rate of generation of IR shared derived sites is uniform along the receptor), suggesting that functional diversification during the evolutionary history of the family was largely generated modifying ligand affinity rather than signal transduction at the tyrosine kinase domain. In addition, 2 residues at positions 436 and 1095 of the human IR sequence were identified as radical cluster-specific sites in IRR + IGF1R. Both Ir and Irr have an extra exon (namely exon 11) with respect to Igf1r. We used the molecular phylogeny to infer the evolution of this additional exon. The Irr exon 11 can be traced back to amphibians, whereas we show that presence and alternative splicing of Ir exon 11 seems to be restricted exclusively to mammals. The highly divergent sequence of both exons and the reconstructed phylogeny of the vertebrate IR family strongly indicate that both exons were acquired independently by each paralog.  相似文献   

15.
S C Froehner 《Biochemistry》1981,20(17):4905-4915
The ability of five rabbit anti-acetylcholine receptor antisera to recognize the membrane-bound receptor from Torpedo californica has been investigated. Two antisera, raised against affinity-purified native receptor, react extensively with purified receptor-rich membrane vesicles. Since the membrane vesicles are impermeable to macromolecules and are oriented right side out, these two antisera recognize predominantly extracellular determinants. Two antisera against sodium dodecyl sulfate denatured receptor and one against purified delta subunit react poorly with the membrane-bound receptor. Only 10-20% of the determinants recognized by these antisera are accessible to antibodies when the receptor is membrane bound. Many of the latent sites can be exposed by permeabilizing the vesicles with saponin, by alkaline extraction of the membranes to remove peripheral proteins, or by a combination of these two treatments. These treatments neither solubilize the receptors nor interfere with their ability to undergo agonist-induced affinity changes. Subunit analysis of the sites on the membrane-bound receptor that are accessible to antibodies indicates that the alpha, beta, and delta chains possess extracellular determinants. Buried sites are present on all four of the subunits. Saponin permeabilization makes latent sites accessible on alpha and delta while alkaline extraction uncovers determinants on alpha, gamma, and delta. Treatment of membranes by both procedures reveals sites on beta, gamma, and delta that are not uncovered by either treatment alone. This study, in conjunction with results from other laboratories demonstrating that the gamma chain is extracellularly exposed, suggests that all four subunits are transmembrane proteins.  相似文献   

16.
The insulin receptor related receptor (IRR) is a heterotetrameric transmembrane receptor with intrinsic tyrosine kinase activity. The IRR shares large homology with the insulin and the insulin-like growth factor-1 (IGF-I) receptor with regard to amino acid sequence and protein structure. So far, only a partial human sequence containing the complete 3' end has been reported, although the full-length human IRR cDNA had been used for transfection studies and functional analysis of the receptor. We have isolated a full-length human IRR cDNA and report on the 5' translated and untranslated region of the human IRR gene. The full length IRR sequence contains 4150 bases and shares a high degree of homology with the guinea pig IRR cDNA sequence and rat IRR sequences that had been reported earlier on by others. Sequencing of the IRR cDNA revealed that the human IRR cDNA contains 341 bases corresponding to the IRR 5' end in addition to the bases that had been reported on before. Also, this sequence contains the start codon of translation. The full length cDNA for the human IRR can now be used for functional expression studies and to elucidate the nature of the ligand for this receptor type.  相似文献   

17.
The insulin receptor-related receptor (IRR) is a member of the insulin receptor family. So far no ligand has yet been discovered for this receptor type (orphan receptor). IRR, insulin receptor (IR), and insulin-like growth factor-I receptor (IGF-I-R) are all tyrosine kinases. The cellular function of the IRR is not known. The expression of IRR mRNA is restricted to a few, e.g. neuronal tissues, and has also been found in neuroblastomas. Since tyrosine kinase receptors, including the IGF-I-R, may be involved in tumor genesis, we examined the expression of IRR mRNA and IGF-I-mRNA in 18 tumor cell lines using RT-PCR and the solution hybridization/RNAse protection assay. In particular, the mRNA levels of IRR and IGF-I-R were compared by semi-quantitative RT-PCR in seven neuroblastomas and 11 soft tissue sarcomas (STS), five of which were of neuronal origin. In all of the seven neuroblastoma cell lines and in five of the 11 STS cell lines, the IRR mRNA was detected. In addition, the IRR mRNA was expressed in rhabdomyosarcoma, in leiomyosarcoma, in one of the Ewing sarcoma and in the neurofibrosarcoma cell line. The last two tumor cell types are of neuronal origin. The levels of expression of IGF-I-R and IRR mRNA of the neuroblastoma cell lines were closely related (r = 0.82, P < 0.002). Furthermore, IRR mRNA was found only in cell lines that also expressed IGF-I-R mRNA. In conclusion, cell lines from pediatric tumors of neuronal origin express IRR mRNA simultaneously with a another tyrosine kinase receptor (IGF-I-R) mRNA. The tight coupling of their mRNA expression suggests a functional association of both receptors in the tumor cells.  相似文献   

18.
We obtained 20 mouse monoclonal antibodies specific for human type I insulin-like growth factor (IGF) receptors, using transfected cells expressing high levels of receptors (IGF-1R/3T3 cells) as immunogen. The antibodies immunoprecipitated receptor.125I-IGF-I complexes and biosynthetically labeled receptors from IGF-1R/3T3 cells but did not react with human insulin receptors or rat type I IGF receptors. Several antibodies stimulated DNA synthesis in IGF-1R/3T3 cells, but the maximum stimulation was only 25% of that produced by IGF-I. The antibodies fell into seven groups recognizing distinct epitopes and with different effects on receptor function. All the antibodies reacted with the extracellular portion of the receptor, and epitopes were localized to specific domains by investigating their reaction with a series of chimeric IGF/insulin receptor constructs. Binding of IGF-I was inhibited up to 90% by antibody 24-60 reacting in the region 184-283, and by antibody 24-57 reacting in the region 440-586. IGF-I binding was stimulated up to 2.5-fold by antibodies 4-52 and 16-13 reacting in the region 62-184, and by antibody 26-3 reacting downstream of 283. The latter two groups of antibodies also dramatically stimulated insulin binding to intact IGF-1R/3T3 cells (by up to 50-fold), and potentiated insulin stimulation of DNA synthesis. Scatchard analysis indicated that in the presence of these antibodies, the affinity of the type I IGF receptor for insulin was comparable with that of the insulin receptor. These data indicate that regions both within and outside the cysteine-rich domain of the receptor alpha-subunit are important in determining the affinity and specificity of ligand binding. These antibodies promise to be valuable tools in resolving issues of IGF-I receptor heterogeneity and in studying the structure and function of classical type I receptors and insulin/IGF receptor hybrids.  相似文献   

19.
Contractures can be evoked from frog atrial trabeculae by raising extracellular pH in Na-free fluid after the spontaneous relaxatin of the tension evoked by removing extracellular Na+. These alkalinity contractures are unaffected by local anaesthetics but are absent following a brief perfusion with Ca-free fluid but are partially inhibited by local anaesthetics. Perfusion by solution containing a high Pco2 fails to induce contractures. The relationship between [Na]0 and tension is altered by changing extracellular pH; acidic fluids below pH 6.0 reduce tension and alkaline fluids increase tension over the whole range. NH4Cl has the same effect as alkaline fluids while CO2-containing fluid has no effect. These results can be interpreted if the effects of variation of extracellular pH, on Na-withdrawal contractures, are mediated by changes in intracellular pH which in turn affect the Ca-sensitivity of the contractile proteins.  相似文献   

20.
The spore-forming soil bacterium Bacillus thuringiensis produces parasporal inclusion bodies composed by delta-endotoxins also known as Cry proteins, whose resistance to proteolysis, stability in highly alkaline pH and innocuity to vertebrates make them an interesting candidate to carrier of relevant epitopes in vaccines. The purpose of this study was to determine the mucosal and systemic immunogenicity in mice of Cry1Ac protoxin from B. thuringiensis HD73. Crystalline and soluble forms of the protoxin were administered by intraperitoneal or intragastric route and anti-Cry1Ac antibodies of the major isotypes were determined in serum and intestinal fluids. The two forms of Cry1Ac protoxin administered by intraperitoneal route induced a high systemic antibody response, however, only soluble Cry1Ac induced a mucosal response via intragastric. Serum antibody levels were higher than those induced by cholera toxin. Systemic immune responses were attained with doses of soluble Cry1Ac ranging from 0.1 to 100 microg by both routes, and the maximal effect was obtained with the highest doses. High anti-Cry1Ac IgG antibody levels were detected in the large and small intestine fluids from mice receiving the antigen via i.p. These data indicate that Cry1Ac is a potent systemic and mucosal immunogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号