首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Use of multivariate data analysis for the manufacturing of biologics has been increasing due to more widespread use of data-generating process analytical technologies (PAT) promoted by the US FDA. To generate a large dataset on which to apply these principles, we used an in-house model CHO DG44 cell line cultured in automated micro bioreactors alongside PAT with four commercial growth media focusing on antibody quality through N-glycosylation profiles. Using univariate analyses, we determined that different media resulted in diverse amounts of terminal galactosylation, high mannose glycoforms, and aglycosylation. Due to the amount of in-process data generated by PAT instrumentation, multivariate data analysis was necessary to ascertain which variables best modeled our glycan profile findings. Our principal component analysis revealed components that represent the development of glycoforms into terminally galacotosylated forms (G1F and G2F), and another that encompasses maturation out of high mannose glycoforms. The partial least squares model additionally incorporated metabolic values to link these processes to glycan outcomes, especially involving the consumption of glutamine. Overall, these approaches indicated a tradeoff between cellular productivity and product quality in terms of the glycosylation. This work illustrates the use of multivariate analytical approaches that can be applied to complex bioprocessing problems for identifying potential solutions.  相似文献   

2.
A mouse/human chimeric antibody (ch14.18) was developed that reacts with the disialoganglioside GD2 on the surface of tumor cells of neuroectodermal origin. ch14.18 has the constant regions of a human IgG1 antibody and was expressed in a murine hybridoma. This antibody was produced in tissue culture at concentrations up to 180 mg/liter of spent culture fluid. ch14.18 was characterized and compared to 14.G2a, a murine mAb against GD2 of IgG2a isotype derived from the same parental hybridoma as ch14.18. Scatchard plot analysis of data from saturation binding studies on M21 melanoma cells showed identical binding for ch14.18 and 14.G2a. Indirect immunofluorescence revealed the same staining pattern for ch14.18 and 14.G2a on different melanoma cell lines. Both antibodies were equally capable of targeting M21 xenografts in athymic nude mice. ch14.18- and 14.G2a-activated human C-mediated cytolysis of melanoma cell; however, ch14.18-mediated antibody-dependent cytotoxicity of human effector cells against melanoma cells 50- to 100-fold more efficiently than 14.G2a.  相似文献   

3.
The murine monoclonal antibody 4D5 (anti-p185HER2) inhibits the proliferation of human tumor cells overexpressing p185HER2 in vitro and has been "humanized" [Carter, P., Presta, L., Gorman, C. M., Ridgway, J. B. B., Henner, D., Wong, W.-L. T., Rowland, A. M., Kotts, C., Carver, M. E., & Shepard, H. M. (1992) Proc. Natl. Acad. Sci. U.S.A. (in press)] for use in human cancer therapy. We have determined the antigen binding thermodynamics and the antiproliferative activities of chimeric 4D5 Fab (ch4D5 Fab) fragment and a series of eight humanized Fab (hu4D5 Fab) fragments differing by amino acid substitutions in the framework regions of the variable domains. Fab fragments were expressed by secretion from Escherichia coli and purified from fermentation supernatants by using affinity chromatography on immobilized streptococcal protein G or staphylococcal protein A for ch4D5 and hu4D5, respectively. Circular dichroism spectroscopy indicates correct folding of the E. coli produced Fab, and scanning calorimetry shows a greater stability for hu4D5 (Tm = 82 degrees C) as compared with ch4D5 Fab (Tm = 72 degrees C). KD values for binding to the extracellular domain (ECD) of p185HER2 were determined by using a radioimmunoassay; the delta H and delta Cp for binding were determined by using isothermal titration calorimetry. ch4D5 Fab and one of the humanized variants (hu4D5-8 Fab) bind p185HER2-ECD with comparable affinity (delta G degrees = -13.6 kcal mol-1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The role of antibody in protection against human immunodeficiency virus (HIV-1) has been difficult to study in animal models because most primary HIV-1 strains do not infect nonhuman primates. Using a chimeric simian/human immunodeficiency virus (SHIV) based on the envelope of a primary isolate (HIV-89.6), we performed passive-transfer experiments in rhesus macaques to study the role of anti-envelope antibodies in protection. Based on prior in vitro data showing neutralization synergy by antibody combinations, we evaluated HIV immune globulin (HIVIG), and human monoclonal antibodies (MAbs) 2F5 and 2G12 given alone, compared with the double combination 2F5/2G12 and the triple combination HIVIG/2F5/2G12. Antibodies were administered 24 h prior to intravenous challenge with the pathogenic SHIV-89.6PD. Six control monkeys displayed high plasma viremia, rapid CD4(+)-cell decline, and clinical AIDS within 14 weeks. Of six animals given HIVIG/2F5/2G12, three were completely protected; the remaining three animals became SHIV infected but displayed reduced plasma viremia and near normal CD4(+)-cell counts. One of three monkeys given 2F5/2G12 exhibited only transient evidence of infection; the other two had marked reductions in viral load. All monkeys that received HIVIG, 2F5, or 2G12 alone became infected and developed high-level plasma viremia. However, compared to controls, monkeys that received HIVIG or MAb 2G12 displayed a less profound drop in CD4(+) T cells and a more benign clinical course. These data indicate a general correlation between in vitro neutralization and protection and suggest that a vaccine that elicits neutralizing antibody should have a protective effect against HIV-1 infection or disease.  相似文献   

5.
Cell culture process conditions including media components and bioreactor operation conditions have a profound impact on recombinant protein quality attributes. Considerable changes in the distribution of galactosylated glycoforms (G0F, G1F, and G2F) were observed across multiple CHO derived recombinant proteins in development at Eli Lilly and Company when switching to a new chemically defined (CD) media platform condition. In the new CD platform, significantly lower G0F percentages and higher G1F and G2F were observed. These changes were of interest as glycosylation heterogeneity can impact the effectiveness of a protein. A systematic investigation was done to understand the root cause of the change and control strategy for galactosylated glycoforms distribution. It was found that changes in asparagine concentration could result in a corresponding change in G0F, G1F, and G2F distribution. A follow‐up study examined a wider range of asparagine concentration and it was found that G0F, G1F, and G2F percentage could be titrated by adjusting asparagine concentration. The observed changes in heterogeneity from changing asparagine concentration are due to resulting changes in ammonium metabolism. Further study ascertained that different integrated ammonium level during the cell culture process could control G0F, G1F, and G2F percentage distribution. A mechanism hypothesis is proposed that integrated ammonium level impacts intracellular pH, which further regulates β‐1, 4 galactosyltransferase activity. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:547–553, 2014  相似文献   

6.
Monoclonal antibodies targeting GD2 ganglioside (GD2) have recently been approved for the treatment of high risk neuroblastoma and are extensively evaluated in clinics in other indications. This study illustrates how a therapeutic antibody distinguishes between different types of gangliosides present on normal and cancer cells and informs how synthetic peptides can imitate ganglioside in its binding to the antibody. Using high resolution crystal structures we demonstrate that the ganglioside recognition by a model antibody (14G2a) is based primarily on an extended network of direct and water molecule mediated hydrogen bonds. Comparison of the GD2-Fab structure with that of a ligand free antibody reveals an induced fit mechanism of ligand binding. These conclusions are validated by directed mutagenesis and allowed structure guided generation of antibody variant with improved affinity toward GD2. Contrary to the carbohydrate, both evaluated mimetic peptides utilize a “key and lock” interaction mechanism complementing the surface of the antibody binding groove exactly as found in the empty structure. The interaction of both peptides with the Fab relies considerably on hydrophobic contacts however, the detailed connections differ significantly between the peptides. As such, the evaluated peptide carbohydrate mimicry is defined primarily in a functional and not in structural manner.Malignant transformation is universally accompanied by changes in cell surface glycosylation. A glycolipid, GD2 ganglioside (GD2)1, is one of the most prominent tumor-associated antigens, ranking in the 12th position of the NCI prioritized list of cancer vaccine targets (1). GD2 is embedded in the outer plasma membrane with its ceramide tail (fatty acid coupled sphingosine). The sugar moiety is exposed to the extracellular milieu and is composed of glucose (Glc; linked to ceramide), galactose (Gal) and N-acetylgalactosamine (GalNAc). Two additional sialic acid residues (N-acetylneuraminic acid, NeuAc) branch form Gal and provide GD2 with a negative charge (Fig. 1). Overexpression of GD2 is well documented in neuroblastoma, melanoma, certain osteosarcomas, small cell lung cancers, and soft tissue sarcomas (24).Open in a separate windowFig. 1.Recognition of GD2 ganglioside by monoclonal antibody 14G2a at the cell surface. (top panel) Antigen combining region of 14G2a antibody recognizes the sugar moiety of GD2 ganglioside (yellow), which is exposed to the extracellular milieu. The lipid part of the ganglioside is buried inside the cell membrane. GD2 bound Fab structure determined in this study is shown in color. Fc fragment (PDB ID: 1igt) and membrane model derived from published data are shown in corresponding scale and colored gray. (bottom panel) Chemical structure of GD2 ganglioside and sugar ring nomenclature used throughout the study.The concept of therapeutic targeting of GD2 is currently most advanced in neuroblastoma, the most common extracranial tumor of childhood. Neuroblastoma is a heterogenous and complex disease. Spontaneous remissions are sometimes observed, but more than a half of the patients are diagnosed with a high-risk neuroblastoma of poor prognosis. This highlights the demand for treatment modalities that would offer major clinical benefits for this group of patients (5). High and stable presence of GD2 on cancer cells in neuroblastoma and limited expression on relevant normal tissues (i.e. neurons, peripheral nerve fibers and skin melanocytes) allows diagnosis, detection of metastases, treatment monitoring and, most importantly, targeting of the tumor itself.GD2-specific monoclonal antibodies have been extensively tested in clinics. This includes a mouse 14G2a antibody (IgG2a; derived from a mouse 14.18 antibody of IgG3 subclass), and improved modifications thereof including a chimeric antibody ch14.18, and recently a humanized antibody hu14.18K322A. Moreover, mouse 3F8 antibody (IgG3) and recently its humanized derivative hu3F8 were also evaluated. The antibodies were demonstrated to engage antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against neuroblastoma (5). Additionally, direct cytotoxic effects were observed in neuroblastoma models (6). The results of a randomized clinical trial published in 2010, evaluating ch14.18, interleukin-2 and granulocyte and macrophage-colony stimulating factor combined with a standard maintenance agent 13-cis retinoic acid demonstrated significant improvement of outcome in high-risk neuroblastoma patients (7). Based on these and further findings, the Food and Drug Administration (FDA) has just recently approved Unituxin (dinutuximab; ch14.18) combination therapy for high risk neuroblastoma (8). Therefore, the standard care treatment protocols may now be extended with monoclonal antibodies targeting GD2 for a better expected outcome.Antibodies against gangliosides other than GD2 are considered as potential therapeutic agents in different types of cancer. Ganglioside-specific antibodies are moreover involved in various types of autoimmune diseases (9). Nevertheless, the molecular mechanism of ganglioside recognition remains unknown because not a single crystal structure of antibody–ganglioside complex has been determined to date. In particular, it is not known how the specificity against GD2 is achieved in antibodies evaluated in clinics. Although crystal structures of empty ME36.1 antibody specific for GD2 and GD3 (10) and empty 3F8 antibody specific for GD2 (11) were determined, the conclusions concerning GD2 binding have to be treated with caution because of general limitations in reliable prediction of binding modes of complex, flexible ligands in dynamic pockets.The success of GD2-specific antibodies in treatment of neuroblastoma fuels investigation on active immunization strategies. To overcome poor antigenicity of GD2, glycolipid surrogates including peptide mimetics are being developed. The idea of a peptide vaccine eliciting anticarbohydrate response has been precedented in the case of Group B Streptococcus polysaccharide (12). Multiple peptides mimicking GD2 in its binding to specific antibodies were selected using phage display (13, 14) and some have been demonstrated to elicit protective, GD2 directed response in preclinical studies. However, the structural basis of peptide-ganglioside mimicry and its relation to the potential of particular peptides to induce GD2 directed immune response remain unknown.Here, we analyze the interactions guiding ganglioside recognition by an antibody and the structural basis of peptide-ganglioside mimicry. The crystal structure of Fab fragment of 14G2a antibody in a complex with the sugar moiety of GD2 ganglioside is provided and the binding mode is discussed in detail. Structure of an empty 14G2a antibody is reported for reference. The major conclusions are verified by directed mutagenesis and antibody variant with increased affinity toward GD2 is developed using structure guided approach. The binding modes of two largely divergent peptide mimics of GD2 (15) at the antigen-binding site of 14G2a antibody are reported and compared with that of the carbohydrate. Mouse 14G2a antibody was chosen for this study because it contains the same antigen binding region as the ch14.18 chimeric antibody recently approved by FDA (8).  相似文献   

7.
Phosphofructokinase‐1 from Saccharomyces cerevisiae is composed of two types of subunits, α and β. Subunit‐specific monoclonal antibodies were raised to elucidate structural and functional properties of both subunits. One monoclonal antibody, α‐F3, binds to an epitope either at the C‐terminal or at the N‐terminal part of the α‐polypeptide chain. By screening a heptapeptide library with this monoclonal antibody, a set of heptapeptides was selected, which contained the consensus sequences D–A–F and D–S–F. Two heptapeptides with these motifs were synthesized in order assess their capacity to inhibit the binding of antibody α‐F3 to native phosphofructokinase‐1. The peptide G–I–K–D–A–F–L inhibited the binding more strongly (IC50 = 1.5 µM) than the peptide A–P–W–H–D–S–F (IC50 = 33.3 µM). Sequence matching revealed the presence of the D–A–F motif in the polypeptide chain of phosphofructokinase‐1 at amino acid position 172–174. As a control, the nonapeptide A–P–T–S–K–D–A–F–L which corresponds to the sequence of the putative epitope was tested in the inhibition assay. In view of the high inhibitory capacity (IC50 = 0.3 µM) it was concluded that this nonapeptide represents the continuous epitope of phosphofructokinase‐1 that is recognized by antibody α‐F3. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
Through process transfer and optimization for increased antibody production to 3 g/L for a GS-CHO cell line, an undesirable drop in antibody Fc galactosylation was observed. Uridine (U), manganese chloride (M), and galactose (G), constituents involved in the intracellular galactosylation process, were evaluated in 2-L bioreactors for their potential to specifically increase antibody galactosylation. These components were placed in the feed medium at proportionally increasing concentrations from 0 to 20 × UMG, where a 1× concentration of U was 1 mM, a 1× concentration of M was 0.002 mM, and a 1× concentration of G was 5 mM. Antibody galactosylation increased rapidly from 3% at 0× UMG up to 21% at 8× UMG and then more slowly to 23% at 20× UMG. The increase was primarily due to a shift from G0F to G1F, with minimal impact on other glycoforms or product quality attributes. Cell culture performance was largely not impacted by addition of up to 20× UMG except for suppression of glucose consumption and lactate production at 16 and 20× UMG and a slight drop in antibody concentration at 20× UMG. Higher accumulation of free galactose in the medium was observed at 8× UMG and above, coincident with achieving the plateau of maximal galactosylation. A concentration of 4× UMG resulted in achieving the target of 18% galactosylation at 2-L scale, a result that was reproduced in a 1,000-L run. Follow-up studies to evaluate the addition of each component individually up to 12× concentration revealed that the effect was synergistic; the combination of all three components gave a higher level of galactosylation than addition of the each effect independently. The approach was found generally useful since a second cell line responded similarly, with an increase in galactosylation from 5% to 29% from 0 to 8× UMG and no further increase or impact on culture performance up to 12× UMG. These results demonstrate a useful approach to provide exact and specific control of antibody galactosylation through manipulation of the concentrations of uridine, manganese chloride, and galactose in the cell culture medium.  相似文献   

9.
The binding of five monoclonal antibodies to mitochondrial F1-ATPase has been studied. Competition experiments between monoclonal antibodies demonstrate that these antibodies recognize four different antigenic sites and provide information on the proximity of these sites. The accessibility of the epitopes has been compared for F1 integrated in the mitochondrial membrane, for purified beta-subunit and for purified F1 maintained in its active form by the presence of nucleotides or inactivated either by dilution in the absence of ATP or by urea treatment. The three anti-beta monoclonal antibodies bound more easily to the beta-subunit than to active F1, and recognized equally active F1 and F1 integrated in the membrane, indicating that their antigenic sites are partly buried similarly in purified or membrane-bound F1 and better exposed in the isolated beta-subunit. In addition, unfolding F1 by urea strongly increased the binding of one anti-beta monoclonal antibody (14 D5) indicating that this domain is at least partly shielded inside the beta-subunit. One anti-alpha monoclonal antibody (20 D6) bound poorly to F1 integrated in the membrane, while the other (7 B3) had a higher affinity for F1 integrated in the membrane than for soluble F1. Therefore, 20 D6 recognizes an epitope of the alpha-subunit buried inside F1 integrated in the membrane, while 7 B3 binds to a domain of the alpha-subunit well exposed at the surface of the inner face of the mitochondrial membrane.  相似文献   

10.
Human cytidine deaminases APOBEC3G (A3G) and APOBEC3F (A3F) inhibit replication of Vif-deficient human immunodeficiency virus type 1 (HIV-1). HIV-1 Vif overcomes these host restriction factors by binding to them and inducing their proteasomal degradation. The Vif-A3G and Vif-A3F interactions are attractive targets for antiviral drug development because inhibiting the interactions could allow the host defense mechanism to control HIV-1 replication. It was recently reported that the Vif amino acids D(14)RMR(17) are important for functional interaction and degradation of the previously identified Vif-resistant mutant of A3G (D128K-A3G). However, the Vif determinants important for functional interaction with A3G and A3F have not been fully characterized. To identify these determinants, we performed an extensive mutational analysis of HIV-1 Vif. Our analysis revealed two distinct Vif determinants, amino acids Y(40)RHHY(44) and D(14)RMR(17), which are essential for binding to A3G and A3F, respectively. Interestingly, mutation of the A3G-binding region increased Vif's ability to suppress A3F. Vif binding to D128K-A3G was also dependent on the Y(40)RHHY(44) region but not the D(14)RMR(17) region. Consistent with previous observations, subsequent neutralization of the D128K-A3G antiviral activity required substitution of Vif determinant D(14)RMR(17) with SEMQ, similar to the SERQ amino acids in simian immunodeficiency virus SIV(AGM) Vif, which is capable of neutralizing D128K-A3G. These studies are the first to clearly identify two distinct regions of Vif that are critical for independent interactions with A3G and A3F. Pharmacological interference with the Vif-A3G or Vif-A3F interactions could result in potent inhibition of HIV-1 replication by the APOBEC3 proteins.  相似文献   

11.
Glycosylation is an important post-translational modification during protein production in eukaryotic cells, and it is essential for protein structure, stability, half-life, and biological functions. In this study, we produced various monoclonal antibody (mAb) glycoforms from Chinese hamster ovary (CHO) cells, including the natively glycosylated antibody, the enriched G0 form, the deglycosylated form, the afucosylated form, and the high mannose form, and we compared their intrinsic properties, side-by-side, through biophysical and biochemical approaches. Spectroscopic analysis indicates no measureable secondary or tertiary structural changes after in vitro or in vivo modification of the glycosylation pattern. Thermal unfolding experiments show that the high mannose and deglycosylated forms have reduced thermal stability of the CH2 domain compared with the other tested glycoforms. We also observed that the individual domain’s thermal stability could be pH dependent. Proteolysis analysis indicates that glycosylation plays an important role in stabilizing mAbs against proteases. The stability of antibody glycoforms at the storage condition (2–8 °C) and at accelerated conditions (30 and 40 °C) was evaluated, and the results indicate that glycosylation patterns do not substantially affect the storage stability of the antibody we studied.  相似文献   

12.
The Fc effector functions of immunoglobulin G (IgG) antibodies are in part determined by structural features of carbohydrates linked to each of the paired gamma heavy chains in the antibody constant domain (C(H)2). One glycoform that has been shown to be advantageous is G2, where both arms of complex bi-antennary N-glycans terminate in galactose. In vitro treatment with glycosyltransferases can remodel heterogeneous IgG glycoforms, enabling preparation of IgG molecules with homogeneous glycan chains. Here we describe optimization of conditions for use of a soluble recombinant galactosyltransferase in vitro to remodel glycans of human serum IgG, and we demonstrate a scaled-up reaction in which >98% of neutral glycans attached to 1 kg IgG are converted to the G2 glycoform. Removal of glycosylation reagents from the product is achieved in one step by affinity chromatography on immobilized Protein A.  相似文献   

13.
《MABS-AUSTIN》2013,5(3):649-658
Glycosylation is an important post-translational modification during protein production in eukaryotic cells, and it is essential for protein structure, stability, half-life, and biological functions. In this study, we produced various monoclonal antibody (mAb) glycoforms from Chinese hamster ovary (CHO) cells, including the natively glycosylated antibody, the enriched G0 form, the deglycosylated form, the afucosylated form, and the high mannose form, and we compared their intrinsic properties, side-by-side, through biophysical and biochemical approaches. Spectroscopic analysis indicates no measureable secondary or tertiary structural changes after in vitro or in vivo modification of the glycosylation pattern. Thermal unfolding experiments show that the high mannose and deglycosylated forms have reduced thermal stability of the CH2 domain compared with the other tested glycoforms. We also observed that the individual domain’s thermal stability could be pH dependent. Proteolysis analysis indicates that glycosylation plays an important role in stabilizing mAbs against proteases. The stability of antibody glycoforms at the storage condition (2–8 °C) and at accelerated conditions (30 and 40 °C) was evaluated, and the results indicate that glycosylation patterns do not substantially affect the storage stability of the antibody we studied.  相似文献   

14.
Human serum IgG contains multiple glycoforms which exhibit a range of binding properties to effector molecules such as cellular Fc receptors. Emerging knowledge of how the Fc glycans contribute to the antibody structure and effector functions has opened new avenues for the exploitation of defined antibody glycoforms in the treatment of diseases. Here, we review the structure and activity of antibody glycoforms and highlight developments in antibody glycoengineering by both the manipulation of the cellular glycosylation machinery and by chemoenzymatic synthesis. We discuss wide ranging applications of antibody glycoengineering in the treatment of cancer, autoimmunity and inflammation. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.  相似文献   

15.
A general method to develop surface-based assays for transmembrane (TM) receptor function(s) without the need to isolate, purify, and reconstitute the proteins is presented. Based on the formation of an active surface that selectively immobilizes membrane vesicles, the method is illustrated using the chemokine receptor CCR5, a member of the largest family of cell surface eukaryotic TM proteins, the G protein-coupled receptors (GPCRs). The method begins with a protein-resistant surface containing a low percentage (1-5%) of surface-bound biotin on gold as the initial template. Surface plasmon resonance (SPR) data show specific immobilization of functional CCR5 after the initial template is activated by immobilization of rho 1D4 antibody, an anti-rhodopsin monoclonal antibody specific for the carboxyl terminal nine amino acids on bovine rhodopsin that had been engineered into the carboxyl terminus of CCR5, and exposure to vesicles obtained from mammalian cells transfected with a synthetic human CCR5 gene. Activation of the initial template is effected by sequential immobilization of avidin, which binds to the biotin in the initial template, a biotinylated goat anti-mouse immunoglobulin G (Bt-IgG), which binds to the avidin binding sites distal to the surface and the F(c) portion of the rho 1D4 antibody through its F(ab) region(s) and finally rho 1D4. This approach establishes a broad outline for the development and application of various assays for CCR5 functions. SPR data also showed that vesicle immobilization could be achieved through an integrin-integrin antibody interaction after activation of the initial template with a goat anti-human integrin beta1 antibody. These results suggest that the generic nature of the initial platform and flexibility of the subsequent surface activation for specific immobilization of membrane vesicles can be applied to the development of assays for other GPCRs or TM receptors for which antibodies are available or can be engineered to contain a particular antibody epitope.  相似文献   

16.
The expression of low density lipoprotein (LDL) antigenic determinants in the delipidated and solubilized apolipoprotein B (apo-B) free of sodium dodecyl sulfate (SDS) has been studied. Of the six distinct determinants which react with previously characterized monoclonal antibodies against LDL (Milne, R.W., Theolis , R., Jr., Verdery , R.B., and Marcel , Y.L. (1983) Arteriosclerosis 3, 23-30), only one, that recognized by antibody 1D1 , was expressed on the soluble apo-B, indicating that soluble apo-B may be partly denatured. The average immunoreactivity of apo-B with antibody 1D1 was similar to or lower than that of intact LDL (mean 36%, range 93-20%). Therefore, delipidation and solubilization did not expose on apo-B any additional site reactive with 1D1 . When apo-B was equilibrated with either SDS micelles or with cholesterol-lecithin liposomes, the immunoreactivity of the determinant recognized by antibody 2D8 was partially regenerated, but not that of the others. In contrast, incubation of apo-B with microemulsions containing a hydrophobic core of cholesteryl esters also restored the antigenicity of the determinants reacting with antibodies 3F5 , 4G3 , and 5E11 . However, the regeneration of these antigenic determinants could only be achieved when solubilized apo-B was treated with SDS prior to equilibration with microemulsion preparations. In conclusion, three types of antigenic determinants have been identified on apo-B. The first type, such as that recognized by antibody 1D1 , is expressed both on LDL and on apo-B and is constituted by the primary and secondary structure of apo-B. The second type, an example being that recognized by 2D8 , is a conformational determinant which requires the presence of amphipathic lipids such as lecithin and cholesterol or SDS micelles. The third type, which reacts with antibodies 3F5 , 4G3 , and 5E11 , represents different conformational determinants which require the association of apo-B with lipid structures having a cholesteryl ester hydrophobic core. It may be significant that the latter determinants are those close to the LDL receptor-binding site on apo-B and that this domain of apo-B has a complex tertiary and quaternary structure as evidenced by the conformational requirements of the antigenic determinants.  相似文献   

17.
The role of two amino acid residues linked to the two catalytic histidines His54 and His220 in kinetics and physicochemical properties of the Streptomyces sp. SK glucose isomerase (SKGI) was investigated by site-directed mutagenesis and molecular modeling. Two single mutations, F53L and G219D, and a double mutation F53L/G219D was introduced into the xylA SKGI gene. The F53L mutation increases the thermostability and the catalytic efficiency and also slightly shifts the optimum pH from 6.5 to 7, but displays a profile being similar to that of the wild-type enzyme concerning the effect of various metal ions. The G219D mutant is resistant to calcium inhibition retaining about 80% of its residual activity in 10 mM Ca2+ instead of 10% for the wild-type. This variant is activated by Mn2+ ions, but not Co2+, as seen for the wild-type enzyme. It does not require the latter for its thermostability, but has its half-life time displaced from 50 to 20 min at 85°C. The double mutation F53L/G219D restores the thermostability as seen for the wild-type enzyme while maintaining the resistance to the calcium inhibition. Molecular modeling suggests that the increase in thermostability is due to new hydrophobic interactions stabilizing α2 helix and that the resistance to calcium inhibition is a result of narrowing the binding site of catalytic ion.  相似文献   

18.
Alzheimer disease is a neurodegenerative disease affecting an increasing number of patients worldwide. Current therapeutic strategies are directed to molecules capable to block the aggregation of the β‐amyloid(1‐42) (Aβ) peptide and its shorter naturally occurring peptide fragments into toxic oligomers and amyloid fibrils. Aβ‐specific antibodies have been recently developed as powerful antiaggregation tools. The identification and functional characterization of the epitope structures of Aβ antibodies contributes to the elucidation of their mechanism of action in the human organism. In previous studies, the Aβ(4‐10) peptide has been identified as an epitope for the polyclonal anti‐Aβ(1‐42) antibody that has been shown capable to reduce amyloid deposition in a transgenic Alzheimer disease mouse model. To determine the functional significance of the amino acid residues involved in binding to the antibody, we report here the effects of alanine single‐site mutations within the Aβ‐epitope sequence on the antigen‐antibody interaction. Specific identification of the essential affinity preserving mutant peptides was obtained by exposing a Sepharose‐immobilized antibody column to an equimolar mixture of mutant peptides, followed by analysis of bound peptides using high‐resolution MALDI‐Fourier transform‐Ion Cyclotron Resonance mass spectrometry. For the polyclonal antibody, affinity was preserved in the H6A, D7A, S8A, and G9A mutants but was lost in the F4, R5, and Y10 mutants, indicating these residues as essential amino acids for binding. Enzyme‐linked immunosorbent assays confirmed the binding differences of the mutant peptides to the polyclonal antibody. In contrast, the mass spectrometric analysis of the mutant Aβ(4‐10) peptides upon affinity binding to a monoclonal anti‐Aβ(1‐17) antibody showed complete loss of binding by Ala‐site mutation of any residue of the Aβ(4‐10) epitope. Surface plasmon resonance affinity determination of wild‐type Aβ(1‐17) to the monoclonal Aβ antibody provided a binding constant KD in the low nanomolar range. These results provide valuable information in the elucidation of the binding mechanism and the development of Aβ‐specific antibodies with improved therapeutic efficacy.  相似文献   

19.
Expression of fibroblast growth factor (FGF)-inducible 14 (Fn14), a member of the tumor necrosis factor receptor superfamily, is typically low in healthy adult organisms, but strong Fn14 expression is induced in tissue injury and tissue remodeling. High Fn14 expression is also observed in solid tumors, which is why this receptor is under consideration as a therapeutic target in oncology. Here, we describe various novel mouse-human cross-reactive llama-derived recombinant Fn14-specific antibodies (5B6, 18D1, 4G5) harboring the human IgG1 Fc domain. In contrast to recombinant variants of the established Fn14-specific antibodies PDL192 and P4A8, all three llama-derived antibodies efficiently bound to the W42A and R56P mutants of human Fn14. 18D1 and 4G5, but not 5B6, efficiently blocked TNF-like weak inducer of apoptosis (TWEAK) binding at low concentrations (0.2–2 µg/ml). Oligomerization and Fcγ receptor (FcγR) binding converted all antibodies into strong Fn14 agonists. Variants of 18D1 with enhanced and reduced antibody-dependent cell-mediated cytotoxicity (ADCC) activity were further analyzed in vivo with respect to their effect on metastasis. In a xenogeneic model using human colon carcinoma cancer cells, both antibody variants were effective in reducing metastasis to the liver. In contrast, only the 18D1 variant with enhanced ADCC activity, but not its ADCC-defective counterpart, suppressed lung metastasis in the RENCA model. In sum, this suggests that Fn14 targeting might primarily act by triggering of antibody effector functions, but also by blockade of TWEAK-Fn14 interaction in some cases.  相似文献   

20.
Low-barrier hydrogen bonds (LBHBs) have been proposed to have important influences on the enormous reaction rate increases achieved by many enzymes. Δ5-3-ketosteroid isomerase (KSI) catalyzes the allylic isomerization of Δ5-3-ketosteroid to its conjugated Δ4-isomers at a rate that approaches the diffusion limit. Tyr14, a catalytic residue of KSI, has been hypothesized to form an LBHB with the oxyanion of a dienolate steroid intermediate generated during the catalysis. The unusual chemical shift of a proton at 16.8 ppm in the nuclear magnetic resonance spectrum has been attributed to an LBHB between Tyr14 Oη and C3-O of equilenin, an intermediate analogue, in the active site of D38N KSI. This shift in the spectrum was not observed in Y30F/Y55F/D38N and Y30F/Y55F/Y115F/D38N mutant KSIs when each mutant was complexed with equilenin, suggesting that Tyr14 could not form LBHB with the intermediate analogue in these mutant KSIs. The crystal structure of Y30F/Y55F/Y115F/D38N-equilenin complex revealed that the distance between Tyr14 Oη and C3-O of the bound steroid was within a direct hydrogen bond. The conversion of LBHB to an ordinary hydrogen bond in the mutant KSI reduced the binding affinity for the steroid inhibitors by a factor of 8.1–11. In addition, the absence of LBHB reduced the catalytic activity by only a factor of 1.7–2. These results suggest that the amount of stabilization energy of the reaction intermediate provided by LBHB is small compared with that provided by an ordinary hydrogen bond in KSI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号