首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histone lysine demethylase 4A (KDM4A) plays a crucial role in regulating cell proliferation, cell differentiation, development and tumorigenesis. However, little is known about the function of KDM4A in muscle development and regeneration. Here, we found that the conditional ablation of KDM4A in skeletal muscle caused impairment of embryonic and postnatal muscle formation. The loss of KDM4A in satellite cells led to defective muscle regeneration and blocked the proliferation and differentiation of satellite cells. Myogenic differentiation and myotube formation in KDM4A-deficient myoblasts were inhibited. Chromatin immunoprecipitation assay revealed that KDM4A promoted myogenesis by removing the histone methylation mark H3K9me3 at MyoD, MyoG and Myf5 locus. Furthermore, inactivation of KDM4A in myoblasts suppressed myoblast differentiation and accelerated H3K9me3 level. Knockdown of KDM4A in vitro reduced myoblast proliferation through enhancing the expression of the cyclin-dependent kinase inhibitor P21 and decreasing the expression of cell cycle regulator Cyclin D1. Together, our findings identify KDM4A as an important regulator for skeletal muscle development and regeneration, orchestrating myogenic cell proliferation and differentiation.Subject terms: Differentiation, Muscle stem cells, Epigenetics  相似文献   

2.
The calpains play an important role in cell death and cell signalling. Caspases catalyse wholesale destruction of cellular proteins which is a major cause of cellular death. The current study looks at the function of μ‐calpain and caspase 9, using RNAi (RNA interference)‐mediated silencing, and to observe the mRNA expression level of caspase genes during satellite cell growth. The satellite cells were treated with siRNA (small interfering RNA) of μ‐calpain and caspase 9 separately. There was reduction of 16 and 24% in CAPN1 (calpain1)‐siRNA2 and CAPN1‐siRNA3 transfected cells respectively, whereas it was 60 and 56% in CAPN1‐siRNA1 and CAPN1‐siRNA4 transfected cells respectively. CAPN1‐siRNA4 and CAPN1‐siRNA1 treated cells showed more reduction in caspase 3 and 7 gene expression. CARD9 (caspase recruitment domain 9)‐siRNA1 and CARD9‐siRNA2‐treated cells showed reduction of 40 and 49% respectively. CARD9‐siRNA1 and CARD9‐siRNA2 showed an increase in caspase 3 gene expression, whereas CARD9‐siRNA2 showed reduction in caspase 7 gene expression. These results suggest a strong cross‐talk between μ‐calpain and the caspase enzyme systems. Suppression of target genes, such as μ‐calpain and caspase 9, might have genuine potential in the treatment of skeletal muscle atrophy.  相似文献   

3.
Both fetal and adult skeletal muscle cells are continually being subjected to biomechanical forces. Biomechanical stimulation during cell growth affects proliferation, differentiation and maturation of skeletal muscle cells. Bone marrow-derived hMSCs [human MSCs (mesenchymal stem cells)] can differentiate into a variety of cell types, including skeletal muscle cells that are potentially a source for muscle regeneration. Our investigations involved a 10% cyclic uniaxial strain at 1 Hz being applied to hMSCs grown on collagen-coated silicon membranes with or without IGF-I (insulin-like growth factor-I) for 24 h. Results obtained from morphological studies confirmed the rearrangement of cells after loading. Comparison of MyoD and MyoG mRNA levels between test groups showed that mechanical loading alone can initiate myogenic differentiation. Furthermore, comparison of Myf5, MyoD, MyoG and Myf6 mRNA levels between test groups showed that a combination of mechanical loading and growth factor results in the highest expression of myogenic genes. These results indicate that cyclic strain may be useful in myogenic differentiation of stem cells, and can accelerate the differentiation of hMSCs into MSCs in the presence of growth factor.  相似文献   

4.
The current study was conducted to evaluate the functions of μ-calpain (CAPN1), calpastatin, HSPs (heat shock proteins), and caspases during myogenesis and cell death induced by sodium azide (NaN(3)) hypoxia. The cell samples were divided into three groups: satellite cells formed at confluent monolayer (stage 1), stage 1 cells fusion into myotubes on d eight post-differentiation (stage 2), and stage 2 cells treated with 1 mM NaN(3) for 24 h (stage 3). Real-time RT-PCR showed that stage 2 cells had increased CAPN1, calpastatin, caspase 7, and CARD9 (Caspase activation and recruitment domain 9) mRNA expressions compared to stage 1 cells (*p < 0.05). By Western blotting caspase 3, caspase 7, caspase 8, and caspase 9 protein levels increased in cells at stage 2 compared to cells at stage 1 (*p < 0.05). Real-time RT-PCR showed that stage 3 cells had increased CAPN1, calpastatin, caspase 7, HSP70 (70 kDA heat shock proteins), and HSP90 (90 kDA heat shock proteins-alpha) and decreased CARD9 mRNA expression compared to stage 2 cells (*p < 0.05). Stage 3 samples had increase caspase 7 and caspase 12 activities compared to stage 2 samples, and by Western blotting protein levels of both HSP70 and HSP90 expressions, increased significantly under hypoxia condition (*p < 0.05). Here, we conclude that CAPN1, calpastatin, caspase 3, caspase 7, caspase 8, and CARD9 have important roles for satellite cell myogenesis; and that caspase 7, 12, HSP70, and HSP90 are involved in the process of apoptotic cell death under hypoxia conditions and we speculate that these proteins may be involved in early postmortem proteolysis and meat tenderization.  相似文献   

5.
Skeletal muscle progenitor cells and the role of Pax genes   总被引:4,自引:0,他引:4  
Satellite cells, which lie under the basal lamina of muscle fibres, are marked by the expression of Pax7, and in many muscles of Pax3 also. A pure population of satellite cells, isolated from a Pax3(GFP/+) mouse line by flow cytometry, contribute very efficiently to skeletal muscle regeneration and also self-renew, thus demonstrating their role as muscle stem cells. Pax3/7 regulates the entry of these cells into the myogenic programme via the activation of the myogenic determination gene, MyoD. Pax7 is also essential for the survival of satellite cells. This dual role underlines the importance of ensuring that a tissue stem cell that has lost its myogenic instruction should not be left to run amok, with the potential risk of tissue deregulation and cancer. A somite-derived population of Pax3/Pax7 positive cells is responsible for muscle growth during development and gives rise to the satellite cells of postnatal muscles. In the absence of both Pax3 and Pax7, these cells die or assume other cell fates. Pax3/7 lies genetically upstream of both MyoD and Myf5, which determine the skeletal muscle fate of these cells. To cite this article: M. Buckingham, C. R. Biologies 330 (2007).  相似文献   

6.
Wu H  Ren Y  Li S  Wang W  Yuan J  Guo X  Liu D  Cang M 《Cell biology international》2012,36(6):579-587
Skeletal muscle satellite cells are adult muscle-derived stem cells receiving increasing attention. Sheep satellite cells have a greater similarity to human satellite cells with regard to metabolism, life span, proliferation and differentiation, than satellite cells of the rat and mouse. We have used 2-step enzymatic digestion and differential adhesion methods to isolate and purify sheep skeletal muscle satellite cells, identified the cells and induced differentiation to examine their pluripotency. The most efficient method for the isolation of sheep skeletal muscle satellite cells was the type I collagenase and trypsin 2-step digestion method, with the best conditions for in vitro culture being in medium containing 20% FBS+10% horse serum. Immunofluorescence staining showed that satellite cells expressed Desmin, α-Sarcomeric Actinin, MyoD1, Myf5 and PAX7. After myogenic induction, multinucleated myotubes formed, as indicated by the expression of MyoG and fast muscle myosin. After osteogenic induction, cells expressed Osteocalcin, with Alizarin Red and ALP (alkaline phosphatase) staining results both being positive. After adipogenic induction, cells expressed PPARγ2 (peroxisome-proliferator-activated receptor γ2) and clear lipid droplets were present around the cells, with Oil Red-O staining giving a positive result. In summary, a successful system has been established for the isolation, purification and identification of sheep skeletal muscle satellite cells.  相似文献   

7.
Asymmetric self-renewal and commitment of satellite stem cells in muscle   总被引:20,自引:0,他引:20  
Kuang S  Kuroda K  Le Grand F  Rudnicki MA 《Cell》2007,129(5):999-1010
Satellite cells play a central role in mediating the growth and regeneration of skeletal muscle. However, whether satellite cells are stem cells, committed progenitors, or dedifferentiated myoblasts has remained unclear. Using Myf5-Cre and ROSA26-YFP Cre-reporter alleles, we observed that in vivo 10% of sublaminar Pax7-expressing satellite cells have never expressed Myf5. Moreover, we found that Pax7(+)/Myf5(-) satellite cells gave rise to Pax7(+)/Myf5(+) satellite cells through apical-basal oriented divisions that asymmetrically generated a basal Pax7(+)/Myf5(-) and an apical Pax7(+)/Myf5(+) cells. Prospective isolation and transplantation into muscle revealed that whereas Pax7(+)/Myf5(+) cells exhibited precocious differentiation, Pax7(+)/Myf5(-) cells extensively contributed to the satellite cell reservoir throughout the injected muscle. Therefore, we conclude that satellite cells are a heterogeneous population composed of stem cells and committed progenitors. These results provide critical insights into satellite cell biology and open new avenues for therapeutic treatment of neuromuscular diseases.  相似文献   

8.
9.
Craniofacial and trunk skeletal muscles are evolutionarily distinct and derive from cranial and somitic mesoderm, respectively. Different regulatory hierarchies act upstream of myogenic regulatory factors in cranial and somitic mesoderm, but the same core regulatory network – MyoD, Myf5 and Mrf4 – executes the myogenic differentiation program. Notch signaling controls self-renewal of myogenic progenitors as well as satellite cell homing during formation of trunk muscle, but its role in craniofacial muscles has been little investigated. We show here that the pool of myogenic progenitor cells in craniofacial muscle of Dll1LacZ/Ki mutant mice is depleted in early fetal development, which is accompanied by a major deficit in muscle growth. At the expense of progenitor cells, supernumerary differentiating myoblasts appear transiently and these express MyoD. The progenitor pool in craniofacial muscle of Dll1LacZ/Ki mutants is largely rescued by an additional mutation of MyoD. We conclude from this that Notch exerts its decisive role in craniofacial myogenesis by repression of MyoD. This function is similar to the one previously observed in trunk myogenesis, and is thus conserved in cranial and trunk muscle. However, in cranial mesoderm-derived progenitors, Notch signaling is not required for Pax7 expression and impinges little on the homing of satellite cells. Thus, Dll1 functions in satellite cell homing and Pax7 expression diverge in cranial- and somite-derived muscle.  相似文献   

10.
To investigate the role of miR-27b in sheep skeletal muscle development, here we first cloned the sequence of sheep pre-miR-27b, then further investigated its expression pattern in sheep skeletal muscle in vivo, the relationship of miR-27b expression and sheep skeletal muscle satellite cell proliferation and differentiation in vitro, and then finally confirmed its target gene during this development process. MiR-27b sequence, especially its mature sequence, was conservative among different species. MiR-27b highly expressed in sheep skeletal muscle than other tissues. In skeletal muscle of Suffolk and Bashbay sheep, miR-27b was upregulated during foetal period and downregulated during postnatal period significantly (\(P{<}0.01\)), but it still kept a relatively higher expression level in skeletal muscle of postnatal Suffolk sheep than Bashbay. There is a potential target site of miR-27b on \(3^\prime \)-UTR of sheep myostatin (MSTN) mRNA, and the double luciferase reporter assay proved that miR-27b could successfully bind on this site. When sheep satellite cells were in the proliferation status, miR-27b was upregulated and MSTN was downregulated significantly (\(P{<}0.01\)). When miR-27b mimics was transfected into sheep satellite cells, the cell proliferation was promoted and the protein level of MSTN was significantly downregulated (\(P{<}0.01\)). Moreover, miR-27b regulated its target gene MSTN by translation repression at an early step, and followed by inducing mRNA degradation in sheep satellite cells. Based on these results, we confirm that miR-27b could promote sheep skeletal muscle satellite cell proliferation by targeting MSTN and suppressing its expression.  相似文献   

11.
12.
Regulative circuits controlling expression of genes involved in the same biological processes are frequently interconnected. These circuits operate to coordinate the expression of multiple genes and also to compensate dysfunctions in specific elements of the network. Caspases are cysteine-proteases with key roles in the execution phase of apoptosis. Silencing of caspase-2 expression in cultured glioblastoma cells allows the up-regulation of a limited number of genes, among which some are related to cholesterol homeostasis. Lysosomal Acid Lipase A (LIPA) was up-regulated in two different cell lines in response to caspase-2 down-regulation and cells silenced for caspase-2 exhibit reduced cholesterol staining in the lipid droplets. We expanded this observation by large-scale analysis of mRNA expression. All caspases were analyzed in terms of co-expression in comparison with 166 genes involved in cholesterol homeostasis. In the brain, hierarchical clustering has revealed that the expression of regulative apoptotic caspases (CASP2, CASP8 CASP9, CASP10) and of the inflammatory CASP1 is linked to several genes involved in cholesterol homeostasis. These correlations resulted in altered GBM (Glioblastoma Multiforme), in particular for CASP1. We have also demonstrated that these correlations are tissue specific being reduced (CASP9 and CASP10) or different (CASP2) in the liver. For some caspases (CASP1, CASP6 and CASP7) these correlations could be related to brain aging.  相似文献   

13.
The growth and repair of skeletal muscle after birth depends on satellite cells that are characterized by the expression of Pax7. We show that Pax3, the paralogue of Pax7, is also present in both quiescent and activated satellite cells in many skeletal muscles. Dominant-negative forms of both Pax3 and -7 repress MyoD, but do not interfere with the expression of the other myogenic determination factor, Myf5, which, together with Pax3/7, regulates the myogenic differentiation of these cells. In Pax7 mutants, satellite cells are progressively lost in both Pax3-expressing and -nonexpressing muscles. We show that this is caused by satellite cell death, with effects on the cell cycle. Manipulation of the dominant-negative forms of these factors in satellite cell cultures demonstrates that Pax3 cannot replace the antiapoptotic function of Pax7. These findings underline the importance of cell survival in controlling the stem cell populations of adult tissues and demonstrate a role for upstream factors in this context.  相似文献   

14.
Caspases, a unique family of cysteine proteases involved in cytokine activation and in the execution of apoptosis can be sub-grouped according to the length of their prodomain. Long prodomain caspases such as caspase-8 and caspase-9 are believed to act mainly as upstream caspases to cleave downstream short prodomain caspases such as caspases-3 and -7. We report here the identification of caspases as direct substrates of calcium-activated proteases, calpains. Calpains cleave caspase-7 at sites distinct from those of the upstream caspases, generating proteolytically inactive fragments. Caspase-8 and caspase-9 can also be directly cleaved by calpains. Two calpain cleavage sites in caspase-9 have been identified by N-terminal sequencing of the cleaved products. Cleavage of caspase-9 by calpain generates truncated caspase-9 that is unable to activate caspase-3 in cell lysates. Furthermore, direct cleavage of caspase-9 by calpain blocks dATP and cytochrome-c induced caspase-3 activation. Therefore our results suggest that calpains may act as negative regulators of caspase processing and apoptosis by effectively inactivating upstream caspases.  相似文献   

15.
16.
The satellite cell compartment provides skeletal muscle with a remarkable capacity for regeneration. Here, we have used isolated myofibers to investigate the activation and proliferative potential of satellite cells. We have previously shown that satellite cells are heterogeneous: the majority express Myf5 and M-cadherin protein, presumably reflecting commitment to myogenesis, while a minority is negative for both. Although MyoD is rarely detected in quiescent satellite cells, over 98% of satellite cells contain MyoD within 24 h of stimulation. Significantly, MyoD is only observed in cells that are already expressing Myf5. In contrast, a minority population does not activate by the criteria of Myf5 or MyoD expression. Following the synchronous activation of the myogenic regulatory factor+ve satellite cells, their daughter myoblasts proliferate with a doubling time of approximately 17 h, irrespective of the fiber type (type I, IIa, or IIb) from which they originate. Although fast myofibers have fewer associated satellite cells than slow, and accordingly produce fewer myoblasts, each myofiber phenotype is associated with a complement of satellite cells that has sufficient proliferative potential to fully regenerate the parent myofiber within 4 days. This time course is similar to that observed in vivo following acute injury and indicates that cells other than satellite cells are not required for complete myofiber regeneration.  相似文献   

17.
18.
The regenerative potential of muscle tissue relies mostly on satellite cells situated between the muscular basal membrane and the sarcolemma. The regeneration of muscle tissue comprises proliferation, the propagation of satellite cells, and their subsequent differentiation with the expression of multiple muscle-specific proteins. However, in Duchenne muscular dystrophy (DMD), regeneration cannot compensate for the loss of muscle tissue. To examine the regenerative potential in DMD, satellite cell nuclei number and markers of differentiation in DMD muscle from various disease states were compared with control muscle. Differentiation of satellite cells is characterized by the helix-loop-helix factor myogenin, which is never co-expressed with Pax7, whereas MyoD1 and Myf5 are co-expressed with Pax7, with Myf5 being present even in muscle of controls. The results indicate that satellite cell number is elevated in DMD in comparison with control muscle, even in advanced stages of dystrophy, suggesting that exhaustion of satellite cells is not the primary cause for failed regeneration. The expression of myogenin is correlated neither with fibrosis nor with age. We suggest variable factors influencing the differentiation of satellite cells in DMD.  相似文献   

19.
20.
Satellite cells are the resident stem cell population of the adult mammalian skeletal muscle and they play a crucial role in its homeostasis and in its regenerative capacity after injury. We show here that the Polycomb group (PcG) gene Bmi1 is expressed in both the Pax7 positive (+)/Myf5 negative (-) stem cell population as well as the Pax7+/Myf5+ committed myogenic progenitor population. Depletion of Pax7+/Myf5- satellite cells with reciprocal increase in Pax7+/Myf5+ as well as MyoD positive (+) cells is seen in Bmi1-/- mice leading to reduced postnatal muscle fiber size and impaired regeneration upon injury. Bmi1-/- satellite cells have a reduced proliferative capacity and fail to re-enter the cell cycle when stimulated by high serum conditions in vitro, in keeping with a cell intrinsic defect. Thus, both the in vivo and in vitro results suggest that Bmi1 plays a crucial role in the maintenance of the stem cell pool in postnatal skeletal muscle and is essential for efficient muscle regeneration after injury especially after repeated muscle injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号