首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously demonstrated inhibition of Na+-dependent 32Pi transport in canine renal brush-border membranes in association with NAD+-induced ADP ribosylation of membrane protein(s) and postulated that NAD+ inhibits Pi transport across the brush-border membrane via ADP ribosylation. Recently it was shown that incubation of rat brush-border membrane with NAD+ resulted in release of Pi which was prevented by EDTA. It was proposed that NAD+-mediated inhibition of 32Pi transport might occur through this mechanism. To determine whether NAD+ inhibited 32Pi transport by a mechanism other than or in addition to release of Pi, we compared Na+-dependent 32Pi counterflow in brush-border membrane equilibrated with Pi or with Pi generated from NAD+. Release of Pi from NAD+ incubated with brush-border membrane was confirmed. The increased uptake of 32Pi which was demonstrated in brush-border membrane equilibrated with Pi was not measured when intravesicular Pi was generated from a concentration of NAD+ which effected ADP-ribosylation of brush border membranes (100 μM NAD+). In contrast, increased uptake of 32Pi was demonstrated when intravesicular Pi was generated from 1 μM NAD+ which did not effect ADP ribosylation. Mg2+-dependent ADP ribosylation of brush-border membrane incubated with NAD+ was demonstrated which persisted during the time interval of 32Pi uptake measurements. Our findings are compatible with the hypothesis that NAD+-induced ADP ribosylation of brush-border membrane protein(s) results in inhibition of Pi transport across the membrane in vivo. EDTA may act to prevent this inhibition in brush-border membrane by chelation of Mg2+ and decreased ADP ribosylation.  相似文献   

2.
Han J  Shi S  Min L  Wu T  Xia W  Ying W 《Neurochemical research》2011,36(12):2270-2277
NAD+ plays important roles in various biological processes. In this study, we reported that treatment of NAD+ induces delayed autophagy in Neuro2a cells. Moreover, the effects of NAD+ on the autophagy in the cells appear to be, at least partially, mediated by oxidative stress. However, nicotinamide, a degradation product of NAD+, does not affect the autophagy. Our experiments have further indicated that the NAD+-induced autophagy contributes to the NAD+-induced decrease in the survival of these cells. In summary, our study has provided the first evidence that NAD+ treatment induces autophagy in cancer cells such as Neuro2a cells, which contributes to the NAD+-induced decrease in cancer cell survival.  相似文献   

3.
The oxidation of malate, citrate, and α-ketoglutarate by cauliflower (Brassica oleacea L.) bud mitochondria was inhibited by rotenone. This inhibition was relieved upon addition of NAD+ to the medium, and ADP/O values were lowered to less than 2 when both rotenone and NAD+ were present. Dinitrophenol did not affect the relief of rotenone inhibition by exogenous NAD+.  相似文献   

4.
Unique substrate specificity compared with ATP-dependent human DNA ligases recommends E.coli NAD+-ligases as potential targets. A plausible strategy is to identify the structural components of bacterial DNA ligase that interact with NAD+ and then to isolate small molecules that recognize these components and thereby block the binding of NAD+ to the ligase. This work describes a molecular modeling approach to detect the 3D structure of NAD+-dependent DNA ligase in E. coli whose partial structure was determined by wet lab experiments and rest structure was left as such on the road for repairment. We applied protein-drug docking approach to detect the binding affinity of this enzyme with Quinacrine and some of its virtual derivatives. In silico docking results predict that the virtual derivative of Quinacrine (C21H26ClN3O2) has greater binding affinity than Quinacrine. Drug likeness value of 0.833 was observed for this derivative without showing any toxicity risk.  相似文献   

5.
The mechanism of the increased accumulation (overproduction) of citric acids in the yeast Yarrowia lipolytica while growing in the presence of glucose under nitrogen deficiency was investigated. The limitation of the yeast growth by the source of nitrogen decreases the total content of nucleotides and increases the ratios of ATP/AMP and NADH/NAD+. NAD+-Dependent isocitrate dehydrogenase, an enzyme of the tricarboxylic acid cycle playing a key role in the regulation of biosynthesis of citric and isocitric acids, was isolated from Y. lipolytica. The molecular weights of the native enzyme and its subunits were found to be 412 and 52 kD, respectively. It is concluded that the enzyme is a homooligomer consisting of eight subunits. Investigation of the effect of some intermediates of the tricarboxylic acid cycle on the activity of this enzyme suggests that the enhanced excretion of citric acids can be caused by the inhibition of NAD+-dependent isocitrate dehydrogenase due to the decrease in the content of AMP and increase in the NADH/NAD+ ratio in the cells of Y. lipolytica under depletion of nitrogen.Translated from Biokhimiya, Vol. 69, No. 12, 2004, pp. 1706–1714.Original Russian Text Copyright © 2004 by Morgunov, Solodovnikova, Sharyshev, Kamzolova, Finogenova.  相似文献   

6.
Three rat liver nucleoside(5′) diphosphosugar (NDP-sugar) or nucleoside(5′) diphosphoalcohol pyrophosphatases are described: two were previously identified in experiments measuring Mg2+-dependent ADP-ribose pyrophosphatase activity (Miró et al. (1989) FEBS Lett. 244, 123–126), and the other is a new, Mn2+-dependent ADP-ribose pyrophosphatase. They are resolved by ion-exchange chromatography, and differ by their substrate and cation specificities, KM values for ADP-ribose, pH-activity profiles, molecular weights and isoelectric points. The enzymes were tested for activity towards: reducing (ADP-ribose, IDP-ribose) and non-reducing NDP-sugars (ADP-glucose, ADP-mannose, GDP-mannose, UDP-mannose, UDP-glucose, UDP-xylose, CDP-glucose), CDP-alcohols (CDP-glycerol, CDP-ethanolamine, CDP-choline), dinucleotides (diadenosine pyrophosphate, NADH, NAD+, FAD), nucleoside(5′) mono- and diphosphates (AMP, CMP, GMP, ADP, CDP) and dTMP p-nitrophenyl ester. Since the enzymes have not been purified to homogeneity, more than three pyrophosphatases may be present, but the co-purification of activities, thermal co-inactivation, and inhibition experiments give support to: (i) an ADP-ribose pyrophosphatase highly specific for ADP(IDP)-ribose in the presence of Mg2+, but active also on non-reducing ADP-hexoses and dinucleotides (not on NAD+) when Mg2+ was replaced with Mn2+; (ii) a Mn2+-dependent pyrophosphatase active on ADP(IDP)-ribose, dinucleotides and CDP-alcohols; (iii) a rather unspecific pyrophosphatase that, with Mg2+, was active on AMP(IMP)-containing NDP-sugars and dinucleotides (not on NAD+), and with Mn2+, was also active on non-adenine NDP-sugars and CDP-alcohols. The enzymes differ from nucleotide pyrophosphatase/phosphodiesterase-I (NPPase/PDEaseI) by their substrate specificities and by their cytosolic location and solubility in the absence of detergents. Although NPPase/PDEaseI is much more active in rat liver, its known location in the non-cytoplasmic sides of plasma and endoplasmic reticulum membranes, together with the known cytoplasmic synthesis of NDP-sugars and CDP-alcohols, permit the speculation that the pyrophosphatases studied in this work may have a cellular role.  相似文献   

7.
Mitochondria from liver, kidney, brain, and skeletal muscle metabolized acetaldehyde. Acetaldehyde oxidation by liver and kidney mitochondria was maximal at low levels of acetaldehyde and was sensitive to rotenone, suggesting the involvement of a NAD+-dependent aldehyde dehydrogenase with a high affinity for acetaldehyde. Acetaldehyde oxidation was stimulated 50% by ADP, suggesting that, in state 4, reoxidation of NADH is rate limiting for acetaldehyde oxidation. In state 4, acetaldehyde oxidation was decreased by NAD+-dependent substrates, as well as by succinate and ascorbate. The inhibition by the latter two substrates was prevented by ADP, dinitrophenol, valinomycin, and gramicidin, but not by oligomycin. Since these compounds are linked to energy transduction and utilization, the data suggest that the inhibition is mediated via energy-dependent reversed electron transport. In state 3, all of these substrates caused considerably less inhibition of acetaldehyde oxidation, suggesting that the activity of aldehyde dehydrogenase, and not of NADH reoxidation, is probably rate limiting for acetaldehyde oxidation. The ionophores valinomycin and gramicidin stimulated acetaldehyde oxidation to a greater extent than ADP. These ionophores also stimulated acetaldehyde oxidation in the presence of ADP. Stimulation by valinomycin occurred in the presence of monovalent cations transported by this ionophore, e.g., K+, Rb+, Cs+. Stimulation by gramicidin also occurred in the presence of these cations, but did not occur with Na+ or Li+. Na+ prevents the stimulation of acetaldehyde oxidation, which occurs in the presence of gramicidin and K+. The stimulation by valinomycin and gramicidin was energy dependent and required the presence of a permeant anion. In the absence of an ionophore, potassium phosphate had no effect on acetaldehyde oxidation. These data suggest that the oxidation of acetaldehyde by rat liver and kidney mitochondria is influenced by the oxidation-reduction state of the mitochondria and by the cationic environment. With brain and muscle mitochondria, the rate of acetaldehyde oxidation increased two- to threefold as the concentration of acetaldehyde was raised from 0.167 to 0.50 mm. Acetaldehyde oxidation in these mitochondria was also sensitive; to rotenone, indicating dependence on NAD+. ADP, valinomycin, gramicidin, and succinate, compounds which either increased or decreased the rate of acetaldehyde oxidation by liver and kidney mitochondria, had no effect on acetaldehyde oxidation by muscle or brain mitochondria. In state 4, mitochondria from Becker-transplantable hepatocellular carcinoma HC-252 oxidized acetaldehyde at the same rate as liver mitochondria. However, in the presence of ADP, dinitrophenol, valinomycin and gramicidin, the rate of acetaldehyde oxidation by the tumor mitochondria was two to three times greater than that of liver mitochondria, suggesting the presence of a more active; acetaldehyde-oxidizing system in tumor than in liver mitochondria.  相似文献   

8.
The effect of NAD(P) and analogs of this nucleotide on nitrogenase activity in Rhodospirillum rubrum has been studied. Addition of NAD+ to nitrogen fixing Rsp. rubrum leads to inhibition of nitrogenase. NADP+ has the same effect but NADH or analogs modified in the nicotinamide portion do not cause inhibition. In contrast to ammonium ions, addition of NAD+ leads to inhibition of nitrogenase in cells that have been N-starved under argon. The inhibitory effect of NAD+ is more pronounced at lower light intensities. Addition of NAD+ also leads to inhibition of glutamine synthetase, a phenomenon also occurring when “switchoff” is produced by the addition of effectors such as ammonium ions or glutamine. It is also shown that NAD+ is taken up by Rsp. rubrum cells.  相似文献   

9.
Intracellular NADPH/NADP+ ratio in cells grown on various production media with different carbon and nitrogen sources had a positive correlation with the thymidine production. To improve thymidine production in a previously engineered E. coli strain, NAD+ kinase was overexpressed in it resulting in the NADPH/NADP+ ratio shifting from 0.184 to 0.267. The [NADH + NADP+]/[NAD+ + NADPH] ratio was, however, not significantly altered. In jar fermentation, 740 mg thymidine l−1 was produced in parental strain, while 940 mg l−1 of thymidine was produced in NAD+ kinase-expressing strain.  相似文献   

10.
Cyclic ADP‐ribose (cADPR) mobilizes intracellular Ca2+ stores and activates Ca2+ influx to regulate a wide range of physiological processes. It is one of the products produced from the catalysis of NAD+ by the multifunctional CD38/ADP‐ribosyl cyclase superfamily. After elimination of the nicotinamide ring by the enzyme, the reaction intermediate of NAD+ can either be hydrolyzed to form linear ADPR or cyclized to form cADPR. We have previously shown that human CD38 exhibits a higher preference towards the hydrolysis of NAD+ to form linear ADPR while Aplysia ADP‐ribosyl cyclase prefers cyclizing NAD+ to form cADPR. In this study, we characterized the enzymatic properties of porcine CD38 and revealed that it has a prominent secondary NAD+ cyclase activity producing cADPR. We also determined the X‐ray crystallographic structures of porcine CD38 and were able to observe conformational flexibility at the base of the active site of the enzyme which allow the NAD+ reaction intermediate to adopt conformations resulting in both hydrolysis and cyclization forming linear ADPR and cADPR respectively.  相似文献   

11.
NAD+ metabolism is an essential regulator of cellular redox reactions, energy pathways, and a substrate provider for NAD+ consuming enzymes. We recently demonstrated that enhancement of NAD+/NADH levels in breast cancer cells with impaired mitochondrial NADH dehydrogenase activity, through augmentation of complex I or by supplementing tumor cell nutrients with NAD+ precursors, inhibits tumorigenicity and metastasis. To more fully understand how aberrantly low NAD+ levels promote tumor cell dissemination, we here asked whether inhibition of NAD+ salvage pathway activity by reduction in nicotinamide phosphoribosyltransferase (NAMPT) expression can impact metastasis and tumor cell adhesive functions. We show that knockdown of NAMPT, the enzyme catalyzing the rate-limiting step of the NAD+ salvage pathway, enhances metastatic aggressiveness in human breast cancer cells and involves modulation of integrin expression and function. Reduction in NAMPT expression is associated with upregulation of select adhesion receptors, particularly αvβ3 and β1 integrins, and results in increased breast cancer cell attachment to extracellular matrix proteins, a key function in tumor cell dissemination. Interestingly, NAMPT downregulation prompts expression of integrin αvβ3 in a high affinity conformation, known to promote tumor cell adhesive interactions during hematogenous metastasis. NAMPT has been selected as a therapeutic target for cancer therapy based on the essential functions of this enzyme in NAD+ metabolism, cellular redox, DNA repair and energy pathways. Notably, our results indicate that incomplete inhibition of NAMPT, which impedes NAD+ metabolism but does not kill a tumor cell can alter its phenotype to be more aggressive and metastatic. This phenomenon could promote cancer recurrence, even if NAMPT inhibition initially reduces tumor growth.  相似文献   

12.
Activity of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, malate dehydrogenase, and the NAD+/NADН ratio were studied in the liver mitochondrial fraction of rats with toxic hepatitis induced by acetaminophen under conditions of alimentary protein deficiency. Acetaminophen-induced hepatitis was characterized by a decrease of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase and malate dehydrogenase activities, while the mitochondrial NAD+/NADН ratio remained at the control level. Modeling of acetaminophen-induced hepatitis in rats with alimentary protein deficiency caused a more pronounced decrease in the activity of studied Krebs cycle NAD+-dependent dehydrogenases and a 2.2-fold increase of the mitochondrial NAD+/NADН ratio.  相似文献   

13.
Cholix toxin from Vibrio cholerae is a novel mono‐ADP‐ribosyltransferase (mART) toxin that shares structural and functional properties with Pseudomonas aeruginosa exotoxin A and Corynebacterium diphtheriae diphtheria toxin. Herein, we have used the high‐resolution X‐ray structure of full‐length cholix toxin in the apo form, NAD+ bound, and 10 structures of the cholix catalytic domain (C‐domain) complexed with several strong inhibitors of toxin enzyme activity (NAP, PJ34, and the P‐series) to study the binding mode of the ligands. A pharmacophore model based on the active pose of NAD+ was compared with the active conformation of the inhibitors, which revealed a cationic feature in the side chain of the inhibitors that may determine the active pose. Moreover, a conformational search was conducted for the missing coordinates of one of the main active‐site loops (R‐loop). The resulting structural models were used to evaluate the interaction energies and for 3D‐QSAR modeling. Implications for a rational drug design approach for mART toxins were derived. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Paracoccus denitrificans contains both NAD+- and NADP+-linked malic enzyme activities when grown on malate/nitrate. The enzyme is inactive in the absence of NH4+. AcetylCoA inhibits both activities competitively with respect to L-malate. Glyoxylate (0.5 mM) causes 60% inhibition of the NADP+-linked activity but has little effect on the NAD+-linked activity. Citrate, aspartate, AMP, ADP, and ATP, at 0.5mM, have little effect on either of the two activities. The results are discussed with regards to the control of malic enzyme activity within the cell.  相似文献   

15.
Tpt1, an essential component of the fungal and plant tRNA splicing machinery, catalyzes transfer of an internal RNA 2′-PO4 to NAD+ yielding RNA 2′-OH and ADP-ribose-1′,2′-cyclic phosphate products. Here, we report NMR structures of the Tpt1 ortholog from the bacterium Runella slithyformis (RslTpt1), as apoenzyme and bound to NAD+. RslTpt1 consists of N- and C-terminal lobes with substantial inter-lobe dynamics in the free and NAD+-bound states. ITC measurements of RslTpt1 binding to NAD+ (KD ∼31 μM), ADP-ribose (∼96 μM) and ADP (∼123 μM) indicate that substrate affinity is determined primarily by the ADP moiety; no binding of NMN or nicotinamide is observed by ITC. NAD+-induced chemical shift perturbations (CSPs) localize exclusively to the RslTpt1 C-lobe. NADP+, which contains an adenylate 2′-PO4 (mimicking the substrate RNA 2′-PO4), binds with lower affinity (KD ∼1 mM) and elicits only N-lobe CSPs. The RslTpt1·NAD+ binary complex reveals C-lobe contacts to adenosine ribose hydroxyls (His99, Thr101), the adenine nucleobase (Asn105, Asp112, Gly113, Met117) and the nicotinamide riboside (Ser125, Gln126, Asn163, Val165), several of which are essential for RslTpt1 activity in vivo. Proximity of the NAD+ β-phosphate to ribose-C1″ suggests that it may stabilize an oxocarbenium transition-state during the first step of the Tpt1-catalyzed reaction.  相似文献   

16.
Maternal obesity is associated with multiple adverse reproductive outcomes, whereas the underlying molecular mechanisms are still not fully understood. Here, we found the reduced nicotinamide phosphoribosyl transferase (NAMPT) expression and lowered nicotinamide adenine dinucleotide (NAD+) content in oocytes from obese mice. Next, by performing morpholino knockdown assay and pharmacological inhibition, we revealed that NAMPT deficiency not only severely disrupts maturational progression and meiotic apparatus, but also induces the metabolic dysfunction in oocytes. Furthermore, overexpression analysis demonstrated that NAMPT insufficiency induced NAD+ loss contributes to the compromised developmental potential of oocytes and early embryos from obese mice. Importantly, in vitro supplement and in vivo administration of nicotinic acid (NA) was able to ameliorate the obesity‐associated meiotic defects and oxidative stress in oocytes. Our results indicate a role of NAMPT in modulating oocyte meiosis and metabolism, and uncover the beneficial effects of NA treatment on oocyte quality from obese mice.  相似文献   

17.
Reaction of ox liver glutamate dehydrogenase with 1-fluoro-2,4-dinitrobenzene for 4 h at pH 8 caused 86% inactivation, almost complete desensitization to allosteric inhibition by GTP, but only partial desensitization to ADP activation. The enzyme remained hexameric after such treatment. NAD+, but not NADH or NADPH, partially protected activity. Protection was enhanced by GTP and decreased by ADP. GTP and NADH together protected effectively, although separately neither protected. GTP and NADPH gave partial protection of activity. Glutarate and succinate, inhibitors competitive with glutamate, gave substantial protection, slightly enhanced in the presence of NAD+. With glutarate, but not succinate, an initial activation was seen during chemical modification. The allosteric response to GTP was protected by GTP itself only when NAD+ or NAD(P)H was also present; other ligands failed to protect. Similarly ADP alone did not protect ADP sensitivity. NADH partially protected ADP sensitivity, although NADPH did not. ADP itself counteracted the protection given by NADH. GTP with NADH completely protected ADP sensitivity. This combination of ligands thus protects all the assayed properties. GTP with NADPH gave less complete protection of the ADP response. Observed protection patterns varied with the pH and coenzyme concentration of the assay mixture under constant conditions of chemical modification. Overall, the results are inconsistent with the view that dinitrophenylation directly blocks nucleotide binding sites, and suggest rather that it interferes with communication between sites.  相似文献   

18.
Boron (B) is a developmental and reproductive toxin. It is also essential for some organisms. Plants use uptake and efflux transport proteins to maintain homeostasis, and in humans, boron has been reported to reduce prostate cancer. Ca2+ signaling is one of the primary mechanisms used by cells to respond to their environment. In this paper, we report that boric acid (BA) inhibits NAD+ and NADP+ as well as mechanically induced release of stored Ca2+ in growing DU-145 prostate cancer cells. Cell proliferation was inhibited by 30% at 100μM, 60% at 250μM, and 97% at 1,000μM BA. NAD+-induced Ca2+ transients were partly inhibited at 250μM BA and completely at 1,000μM BA, whereas both NADP+ and mechanically induced transients were inhibited by 1,000μM BA. Expression of CD38 protein increased in proportion to BA exposure (0–1,000μM). In vitro mass spectrometry analysis showed that BA formed adducts with the CD38 products and Ca2+ channel agonists cyclic adenosine diphosphate ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP). Vesicles positive for the Ca2+ fluorophore fluo-3 acetoxymethyl ester accumulated in cells exposed to 250 and 1,000μM BA. The BA analog, methylboronic acid (MBA; 250 and 1,000μM), did not inhibit cell proliferation or NAD+, NADP+, or mechanically stimulated Ca2+ store release. Nor did MBA increase CD38 expression or cause the formation of intracellular vesicles. Thus, mammalian cells can distinguish between BA and its synthetic analog MBA and exhibit graded concentration-dependent responses. Based on these observations, we hypothesize that toxicity of BA stems from the ability of high concentrations to impair Ca2+ signaling.  相似文献   

19.

Objectives

To find an efficient and cheap system for NAD+ regeneration

Results

A NADH-ferricyanide dehydrogenase was obtained from an isolate of Escherichia coli. Optimal activity of the NADH dehydrogenase was at 45 °C and pH 7.5, with a K m value for NADH of 10 μM. By combining the NADH dehydrogenase, potassium ferricyanide and laccase, a bi-enzyme system for NAD+ regeneration was established. The system is attractive in that the O2 consumed by laccase is from air and the sole byproduct of the reaction is water. During the reaction process, 10 mM NAD+ was transformed from NADH in less than 2 h under the condition of 0.5 U NADH dehydrogenase, 0.5 U laccase, 0.1 mM potassium ferricyanide at pH 5.6, 30 °C

Conclusion

The bi-enzyme system employed the NADH-ferricyanide dehydrogenase and laccase as catalysts, and potassium ferricyanide as redox mediator, is a promising alternative for NAD+ regeneration.
  相似文献   

20.
Abstract

Endothelial cell activation and dysfunction could lead to endothelial injury that is an important factor in the development of vascular diseases. Vascular injury is strongly associated with disturbed endothelial cell energetics and pyridine nucleotide pool. This study aimed to evaluate the effects of inflammatory stimuli (IL-6, LPS), uric acid, hyperglycemia, fatty acids, flavonoids, statins and nonsteroidal anti-inflammatory drugs on cellular concentration of adenosine triphosphate (ATP), adenosine diphosphate (ADP) and nicotinamide adenine dinucleotide (NAD+) in cultured endothelial cells. Murine-immortalized heart endothelial cells (H5V cells) were treated with different concentrations of pro- and anti-atherosclerotic factors and intracellular concentration of nucleotides were measured using high performance liquid chromatography. Intracellular ATP concentration in H5V cells was not changed by inflammatory stimuli (IL-6 and LPS), uric acid, glucose, atorvastatin, acetylsalicylic acid, monounsaturated and polyunsaturated fatty acids. Only high concentration of palmitic acid (1?mM) and kaempferol (>0.1?mM) decreased intracellular ATP concentration. The concentration of intracellular ADP has not been altered by any of tested compounds. In turn, intracellular NAD+ pool was modified only by polyunsaturated fatty acids and atorvastatin. Linoleic acid, docosahexaenoic acid and atorvastatin increased cellular NAD+ concentration. Tested compounds have a small influence on murine endothelial cell energetics, but polyunsaturated fatty acids and atorvastatin increased intracellular NAD+ concentration that could be an important protective mechanism against endothelial cell injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号