首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amplification of a particular DNA fragment from a mixture of organisms by PCR is a common first step in methods of examining microbial community structure. The use of group-specific primers in community DNA profiling applications can provide enhanced sensitivity and phylogenetic detail compared to domain-specific primers. Other uses for group-specific primers include quantitative PCR and library screening. The purpose of the present study was to develop several primer sets targeting commonly occurring and important groups. Primers specific for the 16S ribosomal sequences of Alphaproteobacteria, Betaproteobacteria, Bacilli, Actinobacteria, and Planctomycetes and for parts of both the 18S ribosomal sequence and the internal transcribed spacer region of Basidiomycota were examined. Primers were tested by comparison to sequences in the ARB 2003 database, and chosen primers were further tested by cloning and sequencing from soil community DNA. Eighty-five to 100% of the sequences obtained from clone libraries were found to be placed with the groups intended as targets, demonstrating the specificity of the primers under field conditions. It will be important to reevaluate primers over time because of the continual growth of sequence databases and revision of microbial taxonomy.  相似文献   

2.
Serial analysis of ribosomal sequence tags (SARST) is a novel technique for characterizing microbial community composition. The SARST method captures sequence information from concatemers of short 16S rDNA polymerase chain reaction (PCR) amplicons from complex populations of DNA. Here, we describe a similar method, serial analysis of V6 ribosomal sequence tags (SARST-V6), which targets the V6 hypervariable region of bacterial 16S rRNA genes. The SARST-V6 technique exploits internal primer sequences to generate compatible restriction digest overhangs, thereby improving upon the efficiency of SARST. Serial analysis of V6 ribosomal sequence tags of bacterial community composition in hydrothermal marine sediments from Guaymas Basin resembled results of cloning and sequencing of single, full-length PCR products from ribosomal RNA genes of the same microbial community. Both methods identified the same major bacterial groups, but only SARST-V6 recovered thermodesulfobacteria and gamma-proteobacteria sequences, while only full-length PCR product cloning recovered candidate division OP11 se-quences. There were differences in the relative frequencies of some phylotypes. The disparities reflect differences in the amplicon pool obtained during initial amplification that may result from different primer affinities or DNA degradation. These results demonstrate the utility of SARST-V6 in collecting taxonomically informative data for high-throughput analysis of microbial communities.  相似文献   

3.

Background

Assessment of the biodiversity of communities of small organisms is most readily done using PCR-based analysis of environmental samples consisting of mixtures of individuals. Known as metagenetics, this approach has transformed understanding of microbial communities and is beginning to be applied to metazoans as well. Unlike microbial studies, where analysis of the 16S ribosomal DNA sequence is standard, the best gene for metazoan metagenetics is less clear. In this study we designed a set of PCR primers for the mitochondrial 12S ribosomal DNA sequence based on 64 complete mitochondrial genomes and then tested their efficacy.

Methodology/Principal Findings

A total of the 64 complete mitochondrial genome sequences representing all metazoan classes available in GenBank were downloaded using the NCBI Taxonomy Browser. Alignment of sequences was performed for the excised mitochondrial 12S ribosomal DNA sequences, and conserved regions were identified for all 64 mitochondrial genomes. These regions were used to design a primer pair that flanks a more variable region in the gene. Then all of the complete metazoan mitochondrial genomes available in NCBI''s Organelle Genome Resources database were used to determine the percentage of taxa that would likely be amplified using these primers. Results suggest that these primers will amplify target sequences for many metazoans.

Conclusions/Significance

Newly designed 12S ribosomal DNA primers have considerable potential for metazoan metagenetic analysis because of their ability to amplify sequences from many metazoans.  相似文献   

4.
A group-specific primer, F243 (positions 226 to 243, Escherichia coli numbering), was developed by comparison of sequences of genes encoding 16S rRNA (16S rDNA) for the detection of actinomycetes in the environment with PCR and temperature or denaturing gradient gel electrophoresis (TGGE or DGGE, respectively). The specificity of the forward primer in combination with different reverse ones was tested with genomic DNA from a variety of bacterial strains. Most actinomycetes investigated could be separated by TGGE and DGGE, with both techniques giving similar results. Two strategies were employed to study natural microbial communities. First, we used the selective amplification of actinomycete sequences (E. coli positions 226 to 528) for direct analysis of the products in denaturing gradients. Second, a nested PCR providing actinomycete-specific fragments (E. coli positions 226 to 1401) was used which served as template for a PCR when conserved primers were used. The products (E. coli positions 968 to 1401) of this indirect approach were then separated by use of gradient gels. Both approaches allowed detection of actinomycete communities in soil. The second strategy allowed the estimation of the relative abundance of actinomycetes within the bacterial community. Mixtures of PCR-derived 16S rDNA fragments were used as model communities consisting of five actinomycetes and five other bacterial species. Actinomycete products were obtained over a 100-fold dilution range of the actinomycete DNA in the model community by specific PCR; detection of the diluted actinomycete DNA was not possible when conserved primers were used. The methods tested for detection were applied to monitor actinomycete community changes in potato rhizosphere and to investigate actinomycete diversity in different soils.  相似文献   

5.
G C Wang  Y Wang 《Applied microbiology》1997,63(12):4645-4650
PCR is routinely used in amplification and cloning of rRNA genes from environmental DNA samples for studies of microbial community structure and identification of novel organisms. There have been concerns about generation of chimeric sequences as a consequence of PCR coamplification of highly conserved genes, because such sequences may lead to reports of nonexistent organisms. To quantify the frequency of chimeric molecule formation, mixed genomic DNAs from eight actinomycete species whose 16S rRNA sequences had been determined were used for PCR coamplification of 16S rRNA genes. A large number of cloned 16S ribosomal DNAs were examined by sequence analysis, and chimeric molecules were identified by multiple-sequence alignment with reference species. Here, we report that the level of occurrence of chimeric sequences after 30 cycles of PCR amplification was 32%. We also show that PCR-induced chimeras were formed between different rRNA gene copies from the same organism. Because of the wide use of PCR for direct isolation of 16S rRNA sequences from environmental DNA to assess microbial diversity, the extent of chimeric molecule formation deserves serious attention.  相似文献   

6.
For the detection and identification of predominant bacteria in human feces, 16S rRNA-gene-targeted group-specific primers for the Bacteroides fragilis group, Bifidobacterium, the Clostridium coccoides group, and Prevotella were designed and evaluated. The specificity of these primers was confirmed by using DNA extracted from 90 species that are commonly found in the human intestinal microflora. The group-specific primers were then used for identification of 300 isolates from feces of six healthy volunteers. The isolates were clearly identified as 117 isolates of the B. fragilis group, 22 isolates of Bifidobacterium, 65 isolates of the C. coccoides group, and 17 isolates of Prevotella, indicating that 74% of the isolates were identified with the four pairs of primers. The remaining 79 isolates were identified by 16S ribosomal DNA sequence analysis and consisted of 40 isolates of Collinsella, 24 isolates of the Clostridium leptum subgroup, and 15 isolates of disparate clusters. In addition, qualitative detection of these bacterial groups was accomplished without cultivation by using DNA extracted from the fecal samples. The goal for this specific PCR technique is to develop a procedure for quantitative detection of these bacterial groups, and a real-time quantitative PCR for detection of Bifidobacterium is now being investigated (T. Requena, J. Burton, T. Matsuki, K. Munro, M. A. Simon, R. Tanaka, K. Watanabe, and G. W. Tannock, Appl. Environ. Microbiol. 68:2420-2427, 2002). Therefore, the approaches used to detect and identify predominant bacteria with the group-specific primers described here should contribute to future studies of the composition and dynamics of the intestinal microflora.  相似文献   

7.
PCR Primers for Metazoan Nuclear 18S and 28S Ribosomal DNA Sequences   总被引:1,自引:0,他引:1  

Background

Metagenetic analyses, which amplify and sequence target marker DNA regions from environmental samples, are increasingly employed to assess the biodiversity of communities of small organisms. Using this approach, our understanding of microbial diversity has expanded greatly. In contrast, only a few studies using this approach to characterize metazoan diversity have been reported, despite the fact that many metazoan species are small and difficult to identify or are undescribed. One of the reasons for this discrepancy is the availability of universal primers for the target taxa. In microbial studies, analysis of the 16S ribosomal DNA is standard. In contrast, the best gene for metazoan metagenetics is less clear. In the present study, we have designed primers that amplify the nuclear 18S and 28S ribosomal DNA sequences of most metazoan species with the goal of providing effective approaches for metagenetic analyses of metazoan diversity in environmental samples, with a particular emphasis on marine biodiversity.

Methodology/Principal Findings

Conserved regions suitable for designing PCR primers were identified using 14,503 and 1,072 metazoan sequences of the nuclear 18S and 28S rDNA regions, respectively. The sequence similarity of both these newly designed and the previously reported primers to the target regions of these primers were compared for each phylum to determine the expected amplification efficacy. The nucleotide diversity of the flanking regions of the primers was also estimated for genera or higher taxonomic groups of 11 phyla to determine the variable regions within the genes.

Conclusions/Significance

The identified nuclear ribosomal DNA primers (five primer pairs for 18S and eleven for 28S) and the results of the nucleotide diversity analyses provide options for primer combinations for metazoan metagenetic analyses. Additionally, advantages and disadvantages of not only the 18S and 28S ribosomal DNA, but also other marker regions as targets for metazoan metagenetic analyses, are discussed.  相似文献   

8.
A two-step multiplex PCR-based method was designed for the rapid detection of 16 species of lactobacilli known to be commonly present in sourdough. The first step of multiplex PCR was developed with a mixture of group-specific primers, while the second step included three multiplex PCR assays with a mixture of species-specific primers. Primers were derived from sequences that specify the 16S rRNA, the 16S-23S rRNA intergenic spacer region, and part of the 23S rRNA gene. The primer pairs designed were shown to exclusively amplify the targeted rrn operon fragment of the corresponding species. Due to the reliability of simultaneously identifying Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum, a previously described multiplex PCR method employing recA gene-derived primers was included in the multiplex PCR system. The combination of a newly developed, quick bacterial DNA extraction method from sourdough and this multiplex PCR assay allows the rapid in situ detection of several sourdough-associated lactobacilli, including the recently described species Lactobacillus rossii, and thus represents a very useful alternative to culture-based methodologies.  相似文献   

9.
Newly designed group-specific PCR primers for denaturing gradient gel electrophoresis (DGGE) were used to investigate foaming mycolata from a bioreactor treating an industrial saline waste-water. Genetic profiles on DGGE gels were different with NaCl at 1.65 and 8.24 g l−1, demonstrating that mycolata community was affected by salinity. A semi-nested PCR strategy resulted in more bands in community genetic profiles than direct amplification. DNA sequencing of bands confirmed the efficacy of the novel primers with sequences recovered being most similar to foam producing mycolata. The new group-specific primers/DGGE approach is a new step toward a more complete understanding of functionally important groups of bacteria involved in biological treatment of waste-water. Revisions requested 1 December 2005; Revisions received 19 December 2005  相似文献   

10.
Soil bacterial communities, which contain the highest level of prokaryotic diversity of any natural environment, are important for ecosystem functioning. A culture-independent metagenomic approach was employed in the present investigation to characterize the diversity of soil bacterial community composition in five geochemically and hydrologically different surface and subsurface soil habitats of Brahmaputra valley, Assam, North-East India, an Indo-Burma mega-biodiversity hotspot. The diversity of soil bacterial community was determined through sequence analysis of 16S–23S intergenic spacer regions (ISR). Polymerase chain reaction (PCR) universal primers, 1406F (5′-TGYACACACCGCCCGT-3′) and 155r (5′-GGGTTBCATTCRG-3′) were used for amplification of 16S–23S ribosomal DNA intergenic spacers of bacteria. Amplification resulted in an intense array of PCR products approximately ranging in size from 200 to 900 bp. Clear banding patterns were observed in analysed samples using the primer set in combination. A clear change in microbial ISR profile was observed on visual analysis of gel electrophoresis profiles. Fast alignment database searches of PCR amplicons of 16S–23S ISR sequence data revealed that the isolated sequences resembled five major phylogenetic groups of bacteria, namely α-, β- and γ-subdivisions of Proteobacteria, Acidobacterium and Comamonadaceae.  相似文献   

11.
In this study we have designed degenerate primers after comparative analysis of nifD gene sequences from public databases, and developed a PCR protocol for the amplification of nifD sequences from cyanobacteria. The primers were tested on a variety of nitrogenase-containing and nitrogenase-lacking bacteria. By using this protocol, we amplified nifD sequences from DNA that was isolated from three phototrophic microbial communities. Denaturing gradient gel electrophoresis (DGGE) and clone library analysis of the nifD amplicons showed the presence of distinct groups of diazotrophic cyanobacteria in each of the investigated microbial communities. Phylogenetic trees constructed from the sequences of nifD gene fragments are congruent with those based on ribosomal RNA gene sequences.  相似文献   

12.
New primers (N = 24) for the amplification and sequencing of the complete or near complete 12S ribosomal DNA, about 1000 bp of the control region, 390 bp of cytochrome oxidase I, and the near complete cytochrome b are described. The 12S ribosomal DNA primers successfully amplify DNA in tetrapods; other primers successfully amplify DNA in bufonoids and other anurans. An overview of published literature and sequence data banks identified 170 mitochondrial and 96 nuclear DNA primers that have been used or are highly likely to be useful in amphibians. Primer sequences, their locations within genes, and sequence location and identity in Xenopus and human and/or mouse are presented for each primer. The utility of each primer was estimated by identifying the smallest, yet most inclusive, taxonomic category within which each primer has been successful. Primers from all published sources are mapped together. We hope that these new primers, as well as the list of primers that have been useful in amphibians, will encourage further systematic and population genetic studies of amphibians.  相似文献   

13.
A Lactobacillus group-specific PCR primer, S-G-Lab-0677-a-A-17, was developed to selectively amplify 16S ribosomal DNA (rDNA) from lactobacilli and related lactic acid bacteria, including members of the genera Leuconostoc, Pediococcus, and WEISSELLA: Amplicons generated by PCR from a variety of gastrointestinal (GI) tract samples, including those originating from feces and cecum, resulted predominantly in Lactobacillus-like sequences, of which ca. 28% were most similar to the 16S rDNA of Lactobacillus ruminis. Moreover, four sequences of Leuconostoc species were retrieved that, so far, have only been detected in environments other than the GI tract, such as fermented food products. The validity of the primer was further demonstrated by using Lactobacillus-specific PCR and denaturing gradient gel electrophoresis (DGGE) of the 16S rDNA amplicons of fecal and cecal origin from different age groups. The stability of the GI-tract bacterial community in different age groups over various time periods was studied. The Lactobacillus community in three adults over a 2-year period showed variation in composition and stability depending on the individual, while successional change of the Lactobacillus community was observed during the first 5 months of an infant's life. Furthermore, the specific PCR and DGGE approach was tested to study the retention in fecal samples of a Lactobacillus strain administered during a clinical trial. In conclusion, the combination of specific PCR and DGGE analysis of 16S rDNA amplicons allows the diversity of important groups of bacteria that are present in low numbers in specific ecosystems to be characterized, such as the lactobacilli in the human GI tract.  相似文献   

14.
Two molecular protocols for the identification of mussel and scallop have been developed using specific primers targeting the mitochondrial 16S ribosomal DNA gene and the nuclear 18S ribosomal DNA gene. Primers for the mitochondrial 16S ribosomal DNA gene in multiplex polymerase chain reaction (PCR) protocols yielded diagnostic DNA fragments for the mussels Mytilus edulis, Mytilus galloprovincialis, and the hybrid Mytilus edulis/galloprovincialis (335 bp), the king scallop Pecten maximus (382 bp) and the black scallop Mimachlamys varia (398 bp). DNA from the queen scallop Aequipecten opercularis showed no consistent PCR amplification of the 16S rDNA gene. Primers for the nuclear 18S rDNA gene in standard PCR protocols yielded similar-sized, diagnostic DNA fragments (approx. 190 bp) for the mussels Mytilus edulis, Mytilus galloprovincialis, and the hybrid Mytilus edulis/galloprovincialis, the king scallop Pecten maximus, the black scallop Mimachlamys varia, and the queen scallop Aequipecten opercularis. Both protocols have been tested with Mytilus spp., P. maximus, and 6 other bivalve species from a wide range of locations in Irish and European waters. Cross reaction of the specific primers with DNA template from any of the 6 other bivalve species was not observed. Rapid DNA extraction using FTA Card technology and the16S rDNA primers allowed for the detection of at least 10 mussel larvae in a subsample of natural plankton.  相似文献   

15.
Ruminants rely on a complex rumen microbial community to convert dietary plant material to energy-yielding products. Here we developed a method to simultaneously analyze the community''s bacterial and archaeal 16S rRNA genes, ciliate 18S rRNA genes and anaerobic fungal internal transcribed spacer 1 genes using 12 DNA samples derived from 11 different rumen samples from three host species (Ovis aries, Bos taurus, Cervus elephas) and multiplex 454 Titanium pyrosequencing. We show that the mixing ratio of the group-specific DNA templates before emulsion PCR is crucial to compensate for differences in amplicon length. This method, in contrast to using a non-specific universal primer pair, avoids sequencing non-targeted DNA, such as plant- or endophyte-derived rRNA genes, and allows increased or decreased levels of community structure resolution for each microbial group as needed. Communities analyzed with different primers always grouped by sample origin rather than by the primers used. However, primer choice had a greater impact on apparent archaeal community structure than on bacterial community structure, and biases for certain methanogen groups were detected. Co-occurrence analysis of microbial taxa from all three domains of life suggested strong within- and between-domain correlations between different groups of microorganisms within the rumen. The approach used to simultaneously characterize bacterial, archaeal and eukaryotic components of a microbiota should be applicable to other communities occupying diverse habitats.  相似文献   

16.
Autotrophic ammonia oxidizer (AAO) populations in soils from native, tilled, and successional treatments at the Kellogg Biological Station Long-Term Ecological Research site in southwestern Michigan were compared to assess effects of disturbance on these bacteria. N fertilization effects on AAO populations were also evaluated with soils from fertilized microplots within the successional treatments. Population structures were characterized by PCR amplification of microbial community DNA with group-specific 16S rRNA gene (rDNA) primers, cloning of PCR products and clone hybridizations with group-specific probes, phylogenetic analysis of partial 16S rDNA sequences, and denaturing gradient gel electrophoresis (DGGE) analysis. Population sizes were estimated by using most-probable-number (MPN) media containing varied concentrations of ammonium sulfate. Tilled soils contained higher numbers than did native soils of culturable AAOs that were less sensitive to different ammonium concentrations in MPN media. Compared to sequences from native soils, partial 16S rDNA sequences from tilled soils were less diverse and grouped exclusively within Nitrosospira cluster 3. Native soils yielded sequences representing three different AAO clusters. Probes for Nitrosospira cluster 3 hybridized with DGGE blots from tilled and fertilized successional soils but not with blots from native or unfertilized successional soils. Hybridization results thus suggested a positive association between the Nitrosospira cluster 3 subgroup and soils amended with inorganic N. DGGE patterns for soils sampled from replicated plots of each treatment were nearly identical for tilled and native soils in both sampling years, indicating spatial and temporal reproducibility based on treatment.  相似文献   

17.
18.
Ammonia-oxidizing bacteria were detected by PCR amplification of DNA extracted from filtered water samples throughout the water column of Mono Lake, California. Ammonia-oxidizing members of the beta subdivision of the division Proteobacteria (beta-subdivision Proteobacteria) were detected using previously characterized PCR primers; target sequences were detected by direct amplification in both surface water and below the chemocline. Denaturing gradient gel electrophoresis analysis indicated the presence of at least four different beta-subdivision ammonia oxidizers in some samples. Subsequent sequencing of amplified 16S rDNA fragments verified the presence of sequences very similar to those of cultured Nitrosomonas strains. Two separate analyses, carried out under different conditions (different reagents, locations, PCR machines, sequencers, etc.), 2 years apart, detected similar ranges of sequence diversity in these samples. It seems likely that the physiological diversity of nitrifiers exceeds the diversity of their ribosomal sequences and that these sequences represent members of the Nitrosomonas europaea group that are acclimated to alkaline, high-salinity environments. Primers specific for Nitrosococcus oceanus, a marine ammonia-oxidizing bacterium in the gamma subdivision of the Proteobacteria, did not amplify target from any samples.  相似文献   

19.
A two-step multiplex PCR-based method was designed for the rapid detection of 16 species of lactobacilli known to be commonly present in sourdough. The first step of multiplex PCR was developed with a mixture of group-specific primers, while the second step included three multiplex PCR assays with a mixture of species-specific primers. Primers were derived from sequences that specify the 16S rRNA, the 16S-23S rRNA intergenic spacer region, and part of the 23S rRNA gene. The primer pairs designed were shown to exclusively amplify the targeted rrn operon fragment of the corresponding species. Due to the reliability of simultaneously identifying Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum, a previously described multiplex PCR method employing recA gene-derived primers was included in the multiplex PCR system. The combination of a newly developed, quick bacterial DNA extraction method from sourdough and this multiplex PCR assay allows the rapid in situ detection of several sourdough-associated lactobacilli, including the recently described species Lactobacillus rossii, and thus represents a very useful alternative to culture-based methodologies.  相似文献   

20.
The polymerase chain reaction (PCR) is an in vitro procedure for primer-directed enzymatic amplification of specific template nucleic acid sequences. In order to determine whether a given actinomycete isolated from an actinorhiza (nodule) belongs to the genus Frankia or is a contaminant, we have developed a test based on the PCR. Primers complementary to sequences of two DNA regions corresponding to the nif genes (nifH and nifD) and the rRNA genes (16S and 23S) were specifically chosen to differentially amplify DNAs from Frankia strains but not those from other microorganisms. A series of positive and negative controls were set up by using universal or selective primers resulting in a discriminant amplification, which could be detected after agarose gel electrophoresis. In the nif region, degenerate oligonucleotide primers were used to amplify a target common to all the nitrogen-fixing microorganisms tested, while another set of primers amplified a target with a high specificity for Frankia strains. In the rRNA gene region, universal and specific primers were characterized and tested with DNAs from a wide range of microorganisms. The efficiency of this rapid and sensitive PCR assay was tested with an isolate obtained from Alnus nepalensis nodules, confirming results obtained by nodulation tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号