首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. In hepatocytes from starved rats, vasopressin, angiotensin (angiotensin II) and oxytocin stimulated gluconeogenesis from lactate by 25--50%; minimal effective concentrations were about 0.02pM, 1 nM and 0.2 nM respectively. 2. Vasopressin and angiotensin also stimulated gluconeogenesis from alanine, pyruvate, serine and glycerol. EGTA decreased gluconeogenesis from these substrates. 3. Hormonal stimulation of gluconeogenesis from lactate was abolished in the absence of extracellular Ca2+. 4. Insulin did not prevent stimulation of gluconeogenesis by vasopressin or angiotensin. 5. The potency of the stimulatory effects of vasopressin and angiotensin on hepatic gluconeogenesis suggests they are operative in vivo. Also, the data suggest that Ca2+ plays a role in the stimulation by these hormones.  相似文献   

2.
The importance of the sn-glycerol- 3-phosphate (G-3-P) electron transfer shuttle in hormonal regulation of gluconeogenesis was examined in hepatocytes from rats with decreased mitochondrial G-3-P dehydrogenase activity (thyroidectomized) or increased G-3-P dehydrogenase activity [triiodothyronine (T(3)) or dehydroepiandrosterone (DHEA) treated]. Rates of glucose formation from 10 mM lactate, 10 mM pyruvate, or 2.5 mM dihydroxyacetone were somewhat less in hypothyroid cells than in cells from normal rats but gluconeogenic responses to calcium addition and to norepinephrine (NE), glucagon (G), or vasopressin (VP) were similar to the responses observed in cells from normal rats. However, with 2. 5 mM glycerol or 2.5 mM sorbitol, substrates that must be oxidized in the cytosol before conversion to glucose, basal gluconeogenesis was not appreciably altered by hypothyroidism but responses to calcium and to the calcium-mobilizing hormones were abolished. Injecting thyroidectomized rats with T(3) 2 days before preparing the hepatocytes greatly enhanced gluconeogenesis from glyc erol and restored the response to Ca(2+) and gluconeogenic hormones. Feeding dehydroepiandrosterone for 6 days depressed gluconeogenesis from lactate or pyruvate but substantially increased glucose production from glycerol in euthyroid cells and restored responses to Ca(2+) in hypothyroid cells metabolizing glycerol. Euthyroid cells metabolizing glycerol or sorbitol use the G-3-P and malate/aspartate shuttles to oxidize excess NADH generated in the cytosol. The transaminase inhibitor aminooxyacetate (AOA) decreased gluconeogenesis from glycerol 40%, but had little effect on responses to Ca(2+) and NE. However, in hypothyroid cells, with minimal G-3-P dehydrogenase, AOA decreased gluconeogenesis from glycerol more than 90%. Thus, the basal rate of gluconeogenesis from glycerol in the euthyroid cells is only partly dependent on electron transport from cytosol to mitochondria via the malate/aspartate shuttle and almost completely dependent in the hypothyroid state, and the hormone enhancement of the rate in euthyroid cells involves primarily the G-3-P cycle. These data are consistent with Ca(2+) being mobilized by gluconeogenic hormones and G-3-P dehydrogenase being activated by Ca(2+) so as to permit it to transfer reducing equivalents from the cytosol to the mitochondria.  相似文献   

3.
Glucose output from perfused livers of 48 h-starved rats was stimulated by phenylephrine (2 microM) when lactate, pyruvate, alanine, glycerol, sorbitol, dihydroxyacetone or fructose were used as gluconeogenic precursors. Phenylephrine-induced increases in glucose output were immediately preceded by a transient efflux of Ca2+ and a sustained increase in oxygen uptake. Phenylephrine decreased the perfusate [lactate]/[pyruvate] ratio when sorbitol or glycerol was present, but increased the ratio when alanine, dihydroxyacetone or fructose was present. Phenylephrine induced a rapid increase in the perfusate [beta-hydroxybutyrate]/[acetoacetate] ratio and increased total ketone-body output by 40-50% with all substrates. The oxidation of [1-14C]octanoate or 2-oxo[1-14C]glutarate to 14CO2 was increased by up to 200% by phenylephrine. All responses to phenylephrine infusion were diminished after depletion of the hepatic alpha-agonist-sensitive pool of Ca2+ and returned toward maximal responses after Ca2+ re-addition. Phenylephrine-induced increases in glucose output from lactate, sorbitol and glycerol were inhibited by the transaminase inhibitor amino-oxyacetate by 95%, 75% and 66% respectively. Data presented suggest that the mobilization of an intracellular pool of Ca2+ is involved in the activation of gluconeogenesis by alpha-adrenergic agonists in perfused rat liver. alpha-Adrenergic activation of gluconeogenesis is apparently accompanied by increases in fatty acid oxidation and tricarboxylic acid-cycle flux. An enhanced transfer of reducing equivalents from the cytoplasmic to the mitochondrial compartment may also be involved in the stimulation of glucose output from the relatively reduced substrates glycerol and sorbitol and may arise principally from an increased flux through the malate-aspartate shuttle.  相似文献   

4.
In hepatocytes isolated from fasted normal rats and incubated without albumin or gelatin, norepinephrine stimulated gluconeogenesis from fructose or dihydroxyacetone only in the absence of added calcium and from sorbitol or glycerol only in the presence of added calcium. The effects of calcium, norepinephrine, or calcium in combination with norepinephrine on the concentration of intermediary metabolites were therefore studied in hepatocytes metabolizing fructose or sorbitol as the representative oxidized or reduced substrate, respectively. With fructose as the substrate, addition of calcium increased the concentrations of lactate, pyruvate, glyceraldehyde 3-phosphate, and β-hydroxybutyrate, but decreased the concentrations of phosphoenolpyruvate, 2-phosphoglycerate, 3-phosphoglycerate, glucose 6-phosphate, malate, citrate, and α-oxoglutarate. With sorbitol as the substrate, calcium increased the concentrations of pyruvate, malate, β-hydroxybutyrate, and glucose. With either substrate, calcium caused a decrease in the lactate/ pyruvate ratio and an increase in the β-hydroxybutyrate/acetoacetate ratio, indicating the stimulation of transfer of reducing equivalents from cytosol to mitochondria. With sorbitol as the substrate, and with calcium present, norepinephrine promoted further electron transfer from cytosolic to mitochondrial NAD. Enhanced cytosolic calcium concentrations, when cells are exposed to catecholamines in the presence of medium calcium, stimulate the mitochondrial α-glycerophosphate dehydrogenase and thus the transfer of electrons between cell compartments.  相似文献   

5.
Atractyloside inhibited gluconeogenesis from dihydroxyacetone in hepatocytes from fasted rats and increased lactate synthesis. In the presence of atractyloside, lactate/pyruvate and beta-hydroxybutyrate/aceto-acetate ratios were increased and the accumulation of Fru-2,6-P2 was prevented. In the absence of atractyloside, gluconeogenesis from dihydroxyacetone was stimulated by dibutyryl-cAMP and, to a much lesser extent, by norepinephrine and vasopressin. Omission of Ca2+ increased the stimulation by norepinephrine but prevented that by vasopressin. High concentrations (greater than or equal to 40 microM) of atractyloside abolished the stimulation of gluconeogenesis by dibutyryl-cAMP but not that by norepinephrine or vasopressin. Exogenous Ca2+ was not required for hormonal stimulation in the presence of atractyloside. The stimulation by norepinephrine was inhibited by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N-tetraacetic acid or prazosin but not by propranolol. Atractyloside caused decreases of all glycolytic intermediates and an activation of pyruvate kinase. Norepinephrine partially reversed these effects. The mitochondrial and cytosolic ATP/ADP ratios were determined by digitonin fractionation of hepatocytes. Norepinephrine or vasopressin increased the cytosolic ATP/ADP in the presence of atractyloside. We suggest that the increased availability of cytosolic ATP could be responsible for the stimulation of gluconeogenesis by these hormones.  相似文献   

6.
The role of Ca2+ in stimulation of the malate-aspartate shuttle by norepinephrine and vasopressin was studied in perfused rat liver. Shuttle capacity was indexed by measuring the changes in both the rate of production of glucose from sorbitol and the ratio of lactate to pyruvate during the oxidation of ethanol. (T. Sugano et al. (1986) Amer. J. Physiol. 251, E385-E392). Asparagine (0.5 mM), but not alanine (0.5 mM) decreased the ethanol-induced responses. Norepinephrine and vasopressin had no effect on the ethanol-induced responses when the liver was perfused with sorbitol or glycerol. In the presence of 0.25 mM alanine, norepinephrine, vasopressin, and A23187 decreased the ethanol-induced responses that occurred with the increase of flux of Ca2+. In liver perfused with Ca2+-free medium, asparagine also decreased the ethanol-induced responses, but norepinephrine and vasopressin had no effect. Aminooxyacetate inhibited the effects of norepinephrine, A23187, and asparagine. Regardless of the presence or absence of perfusate Ca2+, the combination of glucagon and alanine had no effect on the ethanol-induced responses. Norepinephrine caused a decrease in levels of alpha-ketoglutarate, aspartate, and glutamate in hepatocytes incubated with Ca2+. The present data suggest that the redistribution of cellular Ca2+ may activate the efflux of aspartate from mitochondria in rat liver, resulting in an increase in the capacity of the malate-aspartate shuttle.  相似文献   

7.
The stimulation of hepatic glycogenolysis by the Ca2+-dependent hormones phenylephrine, vasopressin and angiotensin II was studied as a function of intracellular and extracellular Ca2+. In the isolated perfused rat liver the decline in glucose formation was monophasic ('half-life' approximately equal to 3 min) with vasopressin (1 nM) or angiotensin II (0.05 microM), but biphasic (half-life of 4.8 min and 17.6 min) in the presence of the alpha-agonist phenylephrine (0.01 mM), indicating either a different mode of mobilization or the mobilization of additional intracellular calcium stores. Under comparable conditions an elevated [Ca2+] level was maintained in the cytosol of hepatocytes for at least 10 min in the presence of phenylephrine, but not vasopressin. Titration experiments performed in the isolated perfused liver to restore cellular calcium revealed differences in the hormone-mediated uptake of Ca2+. The onset in glucose formation above that seen in the absence of exogenous calcium occurred at approximately 30 microM or 70-80 microM Ca2+ in the presence of phenylephrine or vasopressin respectively. The shape of the response curve was sigmoidal for vasopressin and angiotensin II, but showed a distinct plateau between 0.09 mM and 0.18 mM in the presence of phenylephrine. The plateau was also observed at phenylephrine concentrations as low as 0.5 microM. The formation of plateaus observed after treatment of the liver with A 23187, but not after EGTA, is taken as an indication that intracellular calcium stores are replenished. A participation of the mitochondrial compartment could be excluded by pretreatment of the liver with the uncoupler 2,4-dinitrophenol. Differences in the Ca2+ dependence of the glycogenolytic effects of these hormones were also revealed by kinetic analysis. It is concluded that phenylephrine differs from vasopressin and angiotensin II in that, in addition to a more common, non-mitochondrial pool, which is also responsive to the vasoactive peptides, the agonist mobilizes Ca2+ from a second, non-mitochondrial pool. The results are consistent with the proposal that Ca2+ transport across subcellular membranes may be subject to different hormonal control.  相似文献   

8.
1. The effect of Ca(2+), glucagon, adrenaline and adenosine 3':5'-cyclic monophosphate on gluconeogenesis by rat kidney-cortex slices was studied. 2. Glucose formation from a range of substrates, with the exception of glycerol, was increased by an increase in extracellular Ca(2+) concentration. 3. Hormones and adenosine 3':5'-cyclic monophosphate, at low Ca(2+) concentrations, stimulated glucose production from several substrates, but not from glycerol, fructose, malate or fumarate. 4. Hormonal stimulation was not detected in the absence of Ca(2+) or at 2.5mm-Ca(2+). 5. Ca(2+), hormones and adenosine 3':5'-cyclic monophosphate had no effect on phosphoenolpyruvate carboxylase activity. 6. It is proposed that Ca(2+) and adenosine 3':5'-cyclic monophosphate-mediated hormone action activate the same rate-limiting step in gluconeogenesis: this step is tentatively identified as the rate of transfer of substrates across the mitochondrial membrane.  相似文献   

9.
Vasopressin stimulated gluconeogenesis from proline in hepatocytes from starved rats; this was attributed to an activation of oxoglutarate dehydrogenase (EC 1.2.4.2) [Staddon & McGivan (1984) Biochem. J. 217, 477-483]. The role of Ca2+ in the activation mechanism was investigated. (1) In the absence of extracellular Ca2+, vasopressin caused a stimulation of gluconeogenesis and a decrease in cell oxoglutarate content that were markedly transient when compared with the effects in the presence of Ca2+. (2) Ca2+ added to cells stimulated for 2 min by vasopressin in the absence of extracellular Ca2+ sustained the initial effects of vasopressin. Ca2+ added 15 min after vasopressin, a time at which both the rate of gluconeogenesis and the cell oxoglutarate content were close to the control values, caused a stimulation of gluconeogenesis and a decrease in cell oxoglutarate content. (3) Under conditions of cell-Ca2+ depletion, vasopressin had no effect on gluconeogenesis or cell oxoglutarate content. (4) Ionophore A23187 stimulated gluconeogenesis and caused a decrease in cell oxoglutarate content, but the phorbol ester 4 beta-phorbol 12-myristate 13-acetate had no effects. (5) These data suggest that the initial activation of oxoglutarate dehydrogenase by vasopressin is dependent on an intracellular Ca2+ pool and independent of extracellular Ca2+. For activation of a greater duration, a requirement for extracellular Ca2+ occurs. The activation of oxoglutarate dehydrogenase by A23187 is consistent with a mechanism involving Ca2+, but the lack of effect of 4 beta-phorbol 12-myristate 13-acetate indicates that protein kinase C is not involved in the mechanism of activation by vasopressin.  相似文献   

10.
The role of extracellular calcium in hormone-induced glycogenolysis was examined in a rat liver perfusion system by manipulating the perfusate calcium concentration and by using calcium antagonistic drugs. When the perfusate contained 1 mM CaCl2, 5 microM phenylephrine, 20 nM vasopressin, and 10 nM angiotensin II caused a persistent increase in glucose output and phosphorylase activity as well as a transient increase in 45Ca efflux from 45Ca preloaded liver. Verapamil hydrochloride (20-100 microM) inhibited the activation of glucose output by these hormones in a dose-dependent manner. This inhibitory effect was also associated with the inhibition of hormone-induced activation of phosphorylase and 45Ca efflux. In the absence of CaCl2 in the perfusate, the glycogenolytic effect of phenylephrine and its inhibition by verapamil were obtained equally as in the presence of CaCl2. However, the effects of vasopressin and angiotensin II were markedly attenuated and were not inhibited any further by verapamil. The substitution of diltiazem hydrochloride for verapamil produced essentially identical results. Cyclic AMP concentrations in the tissue did not change under any of these test conditions. The results indicate that the glycogenolytic effect of alpha-adrenergic agonists depends on intracellular calcium but those of vasopressin and angiotensin II on extracellular calcium, and support the concept that calcium antagonistic drugs inhibit the glycogenolytic effects of calcium-dependent hormones at least by inhibiting the mobilization of calcium ion from cellular pools.  相似文献   

11.
In the presence of 0.5 mM extracellular Ca2+ concentration both 1-34 human parathyroid hormone fragment (0.5 micrograms/ml) as well as 0.1 mM dibutyryl cAMP stimulated gluconeogenesis from lactate in renal tubules isolated from fed rabbits. However, these two compounds did not affect glucose synthesis from pyruvate as substrate. When 2.5 mM Ca2+ was present the stimulatory effect of the hormone fragment on gluconeogenesis from lactate was not detected but dibutyryl cAMP increased markedly the rate of glucose formation from lactate, dihydroxyacetone and glutamate, and inhibited this process from pyruvate and malate. Moreover, dibutyryl cAMP was ineffective in the presence of either 2-oxoglutarate or fructose as substrate. Similar changes in glucose formation were caused by 0.1 mM cAMP. As concluded from the 'crossover' plot the stimulatory effect of dibutyryl cAMP on glucose formation from lactate may result from an acceleration of pyruvate carboxylation due to an increase of intramitochondrial acetyl-CoA, while an inhibition by this compound of gluconeogenesis from pyruvate is likely due to an elevation of mitochondrial NADH/NAD+ ratio, resulting in a decrease of generation of oxaloacetate, the substrate of phosphoenolpyruvate carboxykinase. Dibutyryl cAMP decreased the conversion of fracture 1,6-bisphosphate to fructose 6-phosphate in the presence of both substrates which may be secondary to an inhibition of fructose 1,6-bisphosphatase.  相似文献   

12.
Renal gluconeogenesis was studied in suspended tubule fragments isolated by collagenase treatment of rat kidney cortices. Angiotensin II increased glucose formation from pyruvate, lactate, and to a lesser extent from oxoglutarate and glutamine, but not from other substrates such as malate, succinate, dihydroxyacetone or fructose. Stimulation was significant with peptide concentration exceeding 1 . 10(-8) M and was also shown with an 8-Sar derivative. Other peptides such as 4-Ala-8-Ile-angiotensin II, hexapeptide and bradykinin had no effect. The stimulatory action of angiotensin II was additive to that of L-lysine, and 3',5'-adenosine cyclic monophosphate, suggesting a different mechanism of action. In the presence of maximally stimulatory concentrations of oleate, phenylephrine and 3',5'-guanosine cyclic monophosphate, however, the stimulatory effect of angiotensin II was absent. Cyclic GMP levels, however, did not increase in tubules after angiotensin II and phenylephrine addition, making a messenger function of this nucleotide unlikely. Omission of Ca2+ from the medium markedly reduced basal gluconeogenesis but did not result in a complete loss of angiotensin II effect. Reduction of medium potassium to 2 mM, however, increased basal gluconeogenesis and blunted the peptide effect. 1 mM ouabain was also able to inhibit the stimulatory effect of angiotensin II. Therefore changes in intracellular potassium levels are discussed as a possible mechanism of angiontensin action, whereas calcium seems not to be specifically linked to this metabolic action of angiotensin on the proximal tubule.  相似文献   

13.
Adrenaline, noradrenaline, vasopressin and angiotensin increased 14CO2 production from [1-14C]oleate by hepatocytes from fed rats but not by hepatocytes from starved rats. The hormones did not increase 14CO2 production when hepatocytes from fed rats were depleted of glycogen in vitro. Increased 14CO2 production from ]1-14C]oleate in response to the hormones was observed when hepatocytes from starved rats were incubated with 3-mercaptopicolinate, an inhibitor of phosphoenolpyruvate carboxykinase. 3-Mercaptopicolinate inhibited uptake and esterification of [1-14C]oleate, slightly increased 14CO2 production from [1-14C]oleate and greatly increased the [3-hydroxybutyrate]/[acetoacetate] ratio. In the presence of 3-mercaptopicolinate 14CO2 production in response to the catecholamines was blocked by the alpha-antagonist phentolamine and required extracellular Ca2+. The effects of vasopressin and angiotensin were also Ca2+-dependent. The actions of the hormones of 14CO2 production from [I-14C]oleate by hepatocytes from starved rats in the presence of 3-mercaptopicolinate thus have the characteristics of the response to the hormones found with hepatocytes from fed rats incubated without 3-mercaptopicolinate. The stimulatory effects of the hormones on 14CO2 production from [1-14C]oleate were not the result of decreased esterification (as the hormones increased esterification) or increased beta-oxidation. It is suggested that the effect of the hormones to increase 14CO2 production from [1-14C]oleate are mediated by CA2+-activation of NAD+-linked isocitrate dehydrogenase, the 2-oxoglutarate dehydrogenase complex, and/or electron transport. The results also demonstrate that when the supply of oxaloacetate is limited it is utilized for gluconeogenesis rather than to maintain tricarboxylic acid-cycle flux.  相似文献   

14.
Addition of sorbitol or xylitol to perfused chicken liver caused a biphasic increase in the rate of glucose production. The second increase correlated with a decrease in the lactate to pyruvate ratio. Increased glucose production in response to the addition of glycerol was not biphasic. Aminooxyacetate inhibited both the inherent second increase in glucose production and stimulatory effects of alanine and pyruvate. The stimulatory effects of norepinephrine and glucagon on gluconeogenesis from sorbitol decreased in the presence of methylene blue. Only the stimulatory effect of norepinephrine was inhibited by aminooxyacetate.  相似文献   

15.
The role of extracellular calcium in the glycogenolytic effects of calcium-dependent hormones was examined in a rat liver perfusion system. Decreasing the perfusate CaCl2 concentration resulted in a concentration-dependent inhibition of glucose output by maximal concentrations of vasopressin (20 nM) and angiotensin II (10 nM), but not of glucagon (1.4 nM), cyclic AMP (100 microM), dibutyryl cyclic AMP (10 microM) or phenylephrine (5 microM). However, the effect of phenylephrine was inhibited when livers were perfused with CaCl2-free perfusate containing 0.5 mM EGTA in a duration-dependent manner. These effects were exerted through the inhibition of the maximal response of each hormone, and were associated with a parallel decrease in phosphorylase activation but not with changes in tissue cyclic AMP concentrations. When livers were preloaded with 45Ca for 45 min and then washed for either 15 min or 45 min, these hormones elicited a rapid and transient 45Ca efflux regardless of the perfusate calcium concentration. The sequential perfusion of two hormones resulted in the loss of 45Ca efflux by the second hormone. These results suggest that the glycogenolytic effects of vasopressin and angiotensin II depend on the extracellular calcium and that of phenylephrine primarily on the cellular calcium. It was also demonstrated that these calcium-dependent hormones mobilize calcium from the same pools. However, the mobilization of cellular calcium does not necessarily correlate directly with the glycogenolytic actions of vasopressin and angiotensin II.  相似文献   

16.
Summary The characterization of a recently established system for the short-term culture of rainbow trout (Oncorhynchus mykiss) liver cells in chemically defined medium has been extended to studies on the metabolic competence of the cells and the characterization of their response to hormones. Three areas of metabolism have been addressed: a) the utilization of the exogenously added substrates fructose, lactate, glucose, dihydroxyacetone, and glycerol for glucose and lactate formation; b) the effects of the pancreatic hormones insulin and glucagon on cellular glucose formation, lactate formation, and fatty acid synthesis; and c) the effects of insulin and dexamethasone on the estradiol-dependent production of vitellogenin. Incubation of trout liver cells with fructose, lactate, glucose, dihydroxyacetone, or glycerol resulted in enhanced rates of cellular glucose and lactate production. Substrate-induced effects usually were more clearly expressed after extended (20 h) than after acute (5 h) culture periods. Addition of the hormones insulin or glucagon caused dose-dependent alterations in the flux of substrates to glucose and lactate. Rates of de novo synthesis of fatty acids from [14C]acetate were stimulated by insulin and inhibited by glucagon during acute and extended incubation periods. Treatment of liver cells isolated from male trout for 72 h with estradiol induced vitellogenin production and secretion into the medium. However, the addition of insulin or dexamethasone drastically reduced this estrogen-induced vitellogenesis. These results indicate that trout liver cells cultured in defined medium maintain central metabolic pathways, including glycolysis, gluconeogenesis, lipogenesis, and vitellogenesis as well as their responsiveness to various hormones, for at least 72 h. This cell culture system should provide an excellent model to further characterize metabolic processes in fish liver.  相似文献   

17.
The ability of Zn to modulate key metabolic processes was investigated in a study of gluconeogenesis in isolated hepatocytes from fasted rats. Zn (100 μM) inhibited glucose production from fructose by 41%, sorbitol by 28%; glycerol by 17%, and glyceraldehyde by 26%. Maximum inhibition of gluconeogenesis from fructose occurred at 25 μM Zn. Zn inhibited the rate of lactate production from fructose by 24% but not from sorbitol, glycerol, or glyceraldehyde. Fructose uptake by hepatocytes was not affected by Zn. A positive linear relationship (r=0.994) was obtained between inhibition by Zn of glucose and lactate production, indicating that a common step in both pathways is inhibited by Zn. The effect of Zn on fructokinase, aldolase-B, and triokinase activities was determined on semipurified rat liver enzyme preparations. Zn had no affect on triokinase activity but inhibited the two other enzymes in a dose-dependent manner, with the inhibition of aldolase-B being much greater than of fructokinase for concentrations of Zn between 2.5 and 20 μM. Zn increased the intracellular concentration of fructose-1-P in hepatocytes incubated with fructose, indicating a more potent Zn inhibition of aldolase-B than fructokinase. In addition, hepatocytes treated with Zn had decreased ATP and ADP concentrations, but had normal energy charge, suggesting an effect of Zn on adenine nucleotide degradation or synthesis. The demonstration that Zn inhibits two enzymes in fructose metabolism adds to the growing list of metabolic pathways that are catalyzed by enzymes that are sensitive to Zn.  相似文献   

18.
The effects of the Ca2+-mobilizing hormones noradrenaline, vasopressin and angiotensin on the unidirectional influx of Ca2+ were investigated in isolated rat liver cells by measuring the initial rate of 45Ca2+ uptake. The three hormones increased Ca2+ influx, with EC50 values (concentrations giving half-maximal effect) of 0.15 microM, 0.44 nM and 0.8 nM for noradrenaline, vasopressin and angiotensin respectively. The actions of noradrenaline and angiotensin were evident within seconds after their addition to the cells, whereas the increase in Ca2+ influx initiated by vasopressin was slightly delayed (by 5-15s). The activation of Ca2+ influx was maintained as long as the receptor was occupied by the hormone. The measurement of the resting and hormone-stimulated Ca2+ influxes at different external Ca2+ concentrations revealed Michaelis-Menten-type kinetics compatible with a saturable channel model. Noradrenaline, vasopressin and angiotensin increased both Km and Vmax. of Ca2+ influx. It is proposed that the hormones increase the rate of translocation of Ca2+ through a common pool of Ca2+ channels without changing the number of available channels or their affinity for Ca2+.  相似文献   

19.
Control of glycolysis and gluconeogenesis in rat kidney cortex slices   总被引:15,自引:12,他引:3       下载免费PDF全文
1. Glucose uptake or glucose formation has been studied in kidney cortex slices to investigate metabolic control of phosphofructokinase and fructose-diphosphatase activities. 2. Glucose uptake is increased and glucose formation is decreased by anoxia, cyanide or an uncoupling agent. Under these conditions the intracellular concentrations of glucose 6-phosphate and ATP decreased whereas that of fructose diphosphate either increased or remained constant, and the concentrations of AMP and ADP increased. 3. Glucose uptake was decreased, and glucose formation from glycerol or dihydroxyacetone was increased, by the presence of ketone bodies or fatty acids, or after starvation of the donor animal. Under these conditions, the concentrations of glucose 6-phosphate and citrate were increased, whereas those of fructose diphosphate and the adenine nucleotides were unchanged (see also Newsholme & Underwood, 1966). 4. It is concluded that anoxia and cell poisons increase glucose uptake and decrease gluconeogenesis by stimulating phosphofructokinase and inhibiting fructose diphosphatase, whereas ketone bodies, fatty acids or starvation increase gluconeogenesis and decrease glucose uptake through the citrate inhibition of phosphofructokinase.  相似文献   

20.
The effect of vasopressin, angiotensin II and phorbol myristate acetate on the alpha 1-adrenergic action (induced by epinephrine + propranolol), was studied. We selected three conditions: (a) ureagenesis in medium without added calcium and containing 25 microM EGTA; (b) ureagenesis using cells from hypothyroid animals, and (c) gluconeogenesis from dihydroxyacetone. Under these conditions epinephrine + propranolol produces clear metabolic effects, whereas the vasopressor peptides do not (although they stimulate phosphoinositide turnover). It was observed that the vasopressor peptides and the active phorbol ester inhibited in a concentration-dependent fashion the effect of epinephrine + propranolol. It is suggested that activation of protein kinase C by phorbol esters or physiological stimuli (hormones that activate phosphoinositide turnover, such as vasopressin or angiotensin II) modulate the hepatocyte alpha 1-adrenergic responsiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号