首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 488 毫秒
1.
IL-4 is a pluripotent lymphokine acting on various cell types. We investigated the role of human IL-4 on the generation of lymphokine-activated killer (LAK) activity. Human IL-4 alone did not induce LAK activity and inhibited IL-2 induction of LAK activity from unstimulated PBMC, peripheral blood null cells, spleen cells, and lymph node cells in a dose-dependent manner. IL-4 also inhibited several phenomena induced by IL-2 such as cell proliferation, augmentation of NK activity, increase of Leu-19+ cells, and expression of IL-2R(p55) on either CD3+ or Leu-19+ cells. IL-4, however, augmented cell proliferation with other T cell mitogens including PHA, Con A, PMA, or allo-MHC Ag with or without IL-2. In contrast to unstimulated cells, IL-4 alone induced marked cell proliferation and LAK activity as well as Leu-19+ cells from in vitro IL-2 preactivated PBMC or null cells, and did not inhibit IL-2 induced cell proliferation, LAK activity, Leu-19+ cells and IL-2R(p55) expression, but rather augmented them with low doses of IL-2. Although IL-4 alone induced LAK activity from peripheral blood of some patients previously given IL-2, IL-4 inhibited in vitro LAK generation with IL-2 from these cells in most cases. Therefore, IL-4 appears to directly inhibit the IL-2 activation pathway via IL-2R(p70) and prevent resting LAK precursors from proliferating and differentiating into final effector cells. However, once cells were sufficiently preactivated by IL-2, IL-4 induced LAK activity and did not inhibit IL-2 activation of these cells. These data suggest an immunoregulatory role of IL-4 on human null cells and T cells.  相似文献   

2.
Peripheral blood mononuclear cells (PBMC) irradiated with high dose gamma-radiation (1000-5000 rad) are commonly used as feeder cells during the cloning of T lymphocytes, natural killer (NK) and lymphokine activated killer (LAK) cells. We report here that such gamma-irradiated PBMC can be stimulated with interleukin 2 (IL-2) to express the ability to lyse a variety of tumor cell targets. The non-major histocompatibility complex (MHC) restricted cytotoxicity demonstrated by irradiated PBMC is, however, lower than that expressed by their non-irradiated counterparts. The numbers of viable, gamma-irradiated LAK cells are significantly increased by the addition of the mitogen, phytohemagglutinin (PHA). Purification of the gamma-irradiated cells expressing cytotoxic activity by flow cytometry determined that the effector cells were predominantly CD3- cells, although some CD3+ cells also expressed moderate LAK activity. The ability of gamma-irradiated cells to proliferate in the presence of PHA alone, or with IL-2 + PHA, was maximal at day 4-5; but proliferation, as detected by 3H-thymidine uptake, was not detectable beyond 12-15 days of in vitro culture. Because many of the LAK, T cell and NK cell cloning procedures require the presence of feeder layers, growth factors (usually IL-2) and mitogens, the presence of residual feeder cells expressing cytotoxic activity may affect the specificity of such clones. Thus, efforts should be made to ensure that such gamma-radiation-resistant cells capable of expressing cytotoxic activity are completely eliminated before the cloned cells are used for further experiments.  相似文献   

3.
Various subpopulations of human leukocytes may be induced by lymphokines to exert cytotoxic activity. In man major histocompatibility complex non-restricted tumor cell lysis by interleukin-2 (IL-2) induced peripheral blood lymphocytes is attributed mainly to natural killer cells. These T cell receptor negative large granular lymphocytes are called lymphokine activated killer (LAK) cells. In order to explore the potential of LAK cells in tumor therapy, several clinical studies have been conducted, using IL-2 alone or in combination with ex vivo IL-2-activated peripheral blood lymphocytes. Objective responses have reproducibly been achieved only in renal cell carcinoma and malignant melanoma and were associated with considerable toxicity. In view of restricted efficacy and increasing doubts as to whether LAK cells indeed account for the in vivo observed responses, more recent strategies focus on tumor antigen specific cytotoxic T cells or tumor infiltrating lymphocytes. Successful translation of this approach into clinical practice, however, may be dependent on some basic problems of tumor immunology to be solved which were thought to be by-passed by the LAK cell approach.  相似文献   

4.
The accumulation of endogenous substrates in patients with adenosine deaminase deficiency or purine nucleoside phosphorylase deficiency is believed to be responsible for the immunodeficiency observed in these patients. To identify the lymphocyte populations that are most susceptible to these substrates, we investigated the effect of their nucleoside analogs on a number of T and B cell functions of human lymphocytes. We found that tubercidin (Tub), 2-chloro 2'deoxyadenosine (2CldA), 2-fluoro adenine arabinoside-5'phosphate (FaraAMP), and 9-beta-D-arabinosyl guanine (AraGua) inhibited the proliferative responses of human peripheral blood mononuclear cells (PBMC) to polyclonal activators (PHA, OKT3 mab) or to allogeneic PBMC in mixed lymphocyte cultures (MLC). Addition of recombinant IL-2 from the beginning of the culture did not alter the inhibition by Tub of the proliferative responses of PBMC. These purine nucleoside analogs also inhibited the proliferative responses of purified human peripheral blood CD4+ and CD8+ T cells to PHA and of purified B cells to SAC. The concentrations of these nucleosides required to achieve a given degree of inhibition of proliferative responses of T lymphocyte subpopulations or B cells was similar, suggesting that these analogs do not exhibit any selectivity for these purified lymphocyte populations. Tub and FaraAMP, respectively, inhibited and enhanced, at the effector phase, both NK cytotoxicity and specific T cell-mediated cytotoxicity. In contrast to these findings, LAK cytotoxicity at the effector phase was not significantly inhibited by Tub, and was not enhanced by FaraAMP. Both analogs inhibited rIL-2-induced proliferative responses of PBMC, but did not affect the generation of LAK cytotoxicity (induction phase) against the K562 targets when added at the beginning of the culture. This suggests that DNA synthesis is not required for LAK cell induction. Both Tub and FaraAMP inhibited immunoglobulin production (IgG and IgM) by PBMC in the PWM-induced system. These results demonstrate that purine nucleoside analogs significantly inhibited a number of functions of human lymphocytes. Although selectivity for T lymphocyte subpopulations and B cells was not observed, a differential effect of Tub and FaraAMP on LAK cytotoxicity versus NK cytotoxicity and specific T cell cytotoxicity was found.  相似文献   

5.
In order to select the most cytotoxic effector cells for adoptive immunotherapy, lymphokine activated killer (LAK) cells, tumor infiltrating lymphocytes (TILs) and autologous mixed lymphocyte tumor cell culture (MLTC) cells derived from peripheral blood mononuclear cells (PBMC) in the same subject with head and neck carcinomas were prepared. The autologous tumor cell killing activity and cell surface phenotypes of each of the three effector cells were studied. MLTC cells cultured with interleukin-2 (IL-2) showed the strongest cytotoxic activity among these three different effector cells. Although TILs had suppressed killing activity immediately after isolation, after successive cultivations with IL-2, a cytotoxic activity against autologous tumor cells stronger than that of LAK cells appeared. Both IL-2 stimulated MLTC cells and TILs showed an enrichment of CD8 positive and CDU negative cells in a CD3 positive subpopulation.Abbreviations CD cluster differentiation - IL-2 interleukin-2 - LA lymphokine activated - LAK lymphokine activated killer - MLTC mixed lymphocyte tumor cell culture - NK natural killer - PBMC peripheral blood mononuclear cells - TILs tumor infiltrating lymphocytes  相似文献   

6.
Summary The present study was designed to investigate the in vitro effect of OK-432 on interleukin-2-(IL-2) induced lymphokine activated killer (LAK) generation, and especially to test whether OK-432 can substitute for IL-2 or act in synergism with IL-2 for activation of cytotoxic lymphocytes. Surprisingly, our results showed that the addition of OK-432 to 4-day LAK activation cultures significantly inhibited both the generation of cytotoxic effectors to the natural killer (NK) resistant Daudi cell line and the proliferative responses of lymphocytes in a dose dependent manner. The inhibition of activation was total at 0.5 KE/ml of OK-432, a dose which was still effective in augmenting NK activity against K562. The addition of penicillin G potassium (PCGk), which is contained in OK-432 at a concentration of 134,700 units/mg of dried cocci, to the LAK culture system also inhibited LAK generation at equivalent concentrations as contained in the OK-432 preparation. This inhibition of LAK generation by OK-432 was significantly eliminated by dialysis of OK-432. These results indicated that the inhibition of LAK generation was partly due to PCGk contained in the OK-432 preparation, and that OK-432 did not act synergistically with IL-2 in standard LAK activation systems.  相似文献   

7.
The induction of lymphokine-activated killer (LAK) cells against fresh human leukemia cells was investigated. Two thirds of the 62 leukemias examined were susceptible to the lytic effect of allogeneic IL-2 induced LAK cells in vitro. No substantial differences could be detected between myeloid or lymphoid leukemias or with regard to the FAB subtype or the immunophenotype. Culturing mononuclear cells from peripheral blood or bone marrow of leukemia patients with IL-2 resulted in an expansion of residual large granular lymphocytes and development of cytotoxic activity. The combination of IL-2 with IFN-gamma or the presence of tumor cells during the activation process led to an enhancement of LAK cell cytotoxicity. These results suggest that LAK cells may be useful in the treatment of leukemia.  相似文献   

8.
IL-7 has been shown to induce low levels of lymphokine-activated killer cell (LAK) activity in bulk PBMC populations. We report here that immunomagnetically purified CD56+ cells from peripheral blood generated high LAK activity in response to IL-7. The LAK activity induced by IL-7 was comparable to, or slightly lower than, the LAK activity induced by IL-2. When analyzing cells from the same donor, no detectable LAK-generating effect of IL-7 was registered in the PBMC population, in contrast to a substantial effect in the CD56+ population. IL-2 induced 8- to 15-fold higher proliferative activity in CD56+ cells, relative to IL-7. At suboptimal concentrations of IL-2, IL-7 had a synergistic effect on the proliferation. IL-2-neutralizing antibodies did not abrogate the IL-7-induced proliferation or LAK generation. Both IL-7 and IL-2 induced comparable levels of 75-kDa TNFR expression, whereas IL-2R alpha expression was higher in IL-7-stimulated CD56+ cells. Low levels of TNF were produced in response to IL-7 at day 5, as opposed to a 50-fold higher TNF production in response to IL-2. No IL-2 or IL-6 production was detected. Our data indicate that IL-7 has profound and direct effects on CD56+ cells.  相似文献   

9.
Human peripheral blood lymphocytes cultured for 4 days in the interleukin 2 (IL-2)-containing cell-free supernatant of the MLA144 cell line (MLA144CM) are cytolytic to NK-susceptible and NK-resistant tumor target cells. This lymphokine-activated killer (LAK) activity is dependent on IL-2 as development of LAK activity is inhibited in the presence of a monoclonal antibody (MoAb) reacting with the IL-2 receptor (anti-Tac). Addition of cyclosporin A (CyA) to mixed lymphocyte cultures inhibits the development of allospecific cytotoxic activity and inhibits the development of IL-2 responsiveness. However, development of LAK activity is unaffected by the inclusion of CyA in the cultures, showing that the LAK precursor can be functionally distinguished from the allospecific cytotoxic precursor cell. Development of LAK activity does not require mature NK cells as shown by the generation of LAK activity from NK inactive human thymocytes and lymph node cells. In addition, depletion of NK activity from human PBL does not impair the development of LAK activity.  相似文献   

10.
Culture of tumor-infiltrating lymphocytes (TIL) containing about 20% BMC2 tumor cells with recombinant human interleukin 2 (rIL-2) resulted in the diminish of tumor cells and the growth of lymphocytes. These IL-2-activated lymphocytes showed a strong cytotoxic activity against not only syngeneic tumor cells but also allogeneic tumor cells. Such broad-reactive killer cells, termed lymphokine-activated killer (LAK) cells, are also inducible from spleen cells by in vitro activation with IL-2. However, LAK cells generated from TIL (TIL-LAK) showed higher cytotoxic activity against BMC2 than LAK cells generated from spleen cells (S-LAK). Furthermore, it was demonstrated that TIL-LAK cells revealed marginal cytotoxic activity against normal Con A blasts and YAC-1 cells as opposed to S-LAK. Flow cytometric analysis of TIL-LAK indicated that TIL-LAK cells mainly consisted of Thy 1.2+, Ly 2+, asialo GM1+ cells. TIL-LAK cells displayed not only in vitro cytotoxicity but also in vivo anti-tumor activity. Furthermore, it was also confirmed that TIL-LAK cells could be induced in autochthonous mouse tumor systems and human gastric tumor systems.  相似文献   

11.
Induction of murine lymphokine-activated killer cells by recombinant IL-7   总被引:7,自引:0,他引:7  
The data demonstrate that IL-7, a cytokine that was originally identified, purified, and cloned based upon its ability to support the growth of pre-B cells in vitro, also induces proliferation and promotes the generation of lymphokine-activated killer (LAK) cell activity in populations of resting peripheral lymphoid cells. Although the kinetics of LAK induction by IL-7 (which peaked at days 6 to 8 of culture) was slower than that detected in cultures containing IL-2 (which peaked at day 4), IL-7 was significantly more effective at maintaining cytotoxic activity over longer periods of time, and greater viable cell recoveries, than was IL-2. A wide range of murine tumor target cells were found to be lysed in an MHC-unrestricted fashion by IL-7 induced LAK, but syngeneic Con A-induced lymphoblasts were not; nor were target cells from the human tumors K562 or Daudi lysed by IL-7 LAK. IL-7 LAK were induced in populations of lymphoid cells obtained from secondary lymphoid tissues (peripheral lymph nodes and spleen), but not from primary lymphoid tissues (thymus and bone marrow). LAK induced by IL-7 from unfractionated populations of lymphoid cells were completely eliminated by treatment with anti-CD8 or anti-Thy-1+C, and unaffected by treatment with anti-CD4, anti-asialo GM1 or anti-NK1.1+C. Interestingly, although no detectable CD4+ effector cells could be detected in populations of LAK generated from unfractionated populations of lymphoid cells stimulated by IL-7, they were found to be generated from populations of lymphoid cells from which CD8+ cells had been eliminated before being cultured in medium containing IL-7. These data suggest that CD4+ T cells do not normally give rise to IL-7-induced LAK unless they are first separated from CD8+ T cells. LAK induced by IL-7 appear to be distinct from LAK activity induced by IL-2 in that there is no detectable involvement of NK-like effector cells at either the precursor or effector cell stages.  相似文献   

12.
Interleukin-7 (IL-7) has an ability to stimulate the proliferation of pre-B cells. It has been shown that IL-7 can also activate T lymphocytes. We here demonstrate that IL-7 in combination with interleukin-2 (IL-2) can drive cell proliferation and enhance the autologous tumor cell lysis by peripheral blood mononuclear cells (PBMC) and autologous mixed lymphocyte tumor cell culture (MLTC)-derived effector cells (MLTC cells). These synergistic effects of IL-2 and IL-7 on the proliferation and the augmentation of autologous tumor cell lysis were found for both effector cells. These effects were inhibited by neutralizing antibodies to IL-2 or IL-7, and by a combination of both antibodies, significantly. In terms of phenotypical expression, CD3 positive cells comprised the vast majority of MLTC cells after culture in medium containing IL-2 and IL-7 with an increase of IL-2 receptor positive cells.Abbreviations CD cluster differentiation - IFN interferon - IL interleukin - JRU Japanese Reference Unit - LAK lymphokine activated killer - mAb monoclonal antibody - MLTC mixed lymphocyte tumor cell culture - PBMC peripheral blood mononuclear cells - TILs tumor infiltrating lymphocytes  相似文献   

13.
Summary Bryostatin 1 is a protein kinase C activator that inhibits growth of tumour cells and activates lymphocytes in vitro, properties that have encouraged its use in phase 1 clinical studies as an anticancer agent. We investigated interleukin-2(IL-2)-induced proliferation and lymphokine-activated killer (LAK) cell activity in peripheral blood mononuclear cells (PBMC) from cancer patients receiving Bryostatin intravenously. After Bryostatin administration both LAK generation and proliferation were enhanced when patients' PBMC were stimulated with IL-2 in vitro. However, when normal donors' PBMC were cultured in vitro in the presence Bryostatin and IL-2, LAK induction was inhibited while IL-2-driven proliferation was increased. These effects were also seen following only 2 h exposure to Bryostatin and could be elicited by conditioned medium from Bryostatin-pretreated cells. Neither IL-4 nor interferon was detected in the conditioned medium. Bryostatin in vitro was found to increase expression of IL-2 receptors on CD4+, CD8+ and CD56+ cells and augment the proportion of CD8+ cells in conjunction with IL-2. We conclude that Bryostatin in combination with IL-2 in vitro enhances proliferation and IL-2 receptor expression on lymphocytes, favouring CD8+ cells while suppressing the generation of LAK activity. Intravenous administration of Bryostatin increases the potential of IL-2 to induce proliferation and LAK activity in lymphocytes which, taken together with its putative direct antitumour effect, makes Bryostatin an interesting candidate for clinical trials in combination with IL-2.B.F. and P.L.S. are supported by the Cancer Research Campaign  相似文献   

14.
Interleukin 1 is a pleuripotent cytokine shown to synergize with IL-2 in the generation of lymphokine-activated killer (LAK) cells, when cultured with human peripheral blood mononuclear cells (PBMC) or peripheral blood lymphocytes (PBL). When IL-1 and low dose IL-2 are added in combination, both LAK cytotoxicity and proliferation are increased in short-term (5-6 day) and long-term (12-14 day) cultures compared with cells activated with IL-2 alone. The purpose of this study was to examine the contribution of tumor necrosis factor (TNF-alpha), lymphotoxin (LT, or TNF-beta) and the TNF receptor in the observed IL-1/IL-2 mediated synergy. Analysis of lymphocyte culture supernatants using the L929 bioassay and by specific ELISAs demonstrated an increased production of both TNF and LT in those cells cultured with IL-1 and IL-2. Utilizing specific neutralizing antisera, our experiments demonstrated the biologic activity of both cytokines, with LT-specific antibodies producing the greatest diminution of IL-1/IL-2 stimulated cell proliferation and cytotoxicity. The addition of IL-1 and IL-2 in combination markedly upregulated TNF-receptor expression (measured by Scatchard analysis) in comparison with cells stimulated with IL-2 alone. Characterization of the TNF-R by flow cytometric analysis revealed increased membrane expression of the 75 kDa, but not the 55 kDa, TNF binding protein as a result of IL-1 costimulation.  相似文献   

15.
The culture supernatants of Con A-activated human peripheral blood mononuclear cells (PBM) contained at least two regulatory factors upon B cell proliferation. One was B cell growth factor (BCGF), which activated antigen-stimulated B cells to proliferation and clonal expansion, and the other was its inhibitory factor, arbitrarily named B cell growth inhibitory factor (BIF). This BIF inhibited the effect of BCGF on anti-mu-stimulated B cells or the monoclonal mature B cell line (CLL-T.H.) obtained from the peripheral blood lymphocytes of B cell-type chronic lymphocytic leukemia patients, which were activated only with BCGF and without adding other proliferating stimuli (e.g., anti-mu). BIF activity was detected in the 24 hr culture supernatants of Con A-activated human PBM in FCS containing medium and also in serum-free RPMI 1640 medium. This substance with BIF activity could not be derived from FCS. Con A-induced BIF (m.w. of 80,000 and an isoelectric point of pH 5.4) was analyzed by Sephadex G-200 gel filtration and chromatofocusing. BIF was stable at pH 2.0 and at 56 degrees C for 30 min. Partially purified BIF had no effect on cell viability and almost no interferon activity (less than 1 IU/ml). BIF with high titer had a slight but significant inhibition on TCGF-dependent T cell growth and on PHA or Con A responses, but the extent of these inhibitions was far less than that of BCGF-dependent B cell growth. Absorption of BIF with Con A blasts made its inhibition on T cell growth even less. On the other hand, BIF activity could not be absorbed with Con A blasts but was almost absorbed with large numbers of CLL-T.H. cells. BIF had almost no inhibitory effect on the proliferation of a mouse fibroblast cell line (NIH 3T3), a mouse myeloma cell line (NS-1), human lymphoid cell lines (MOLT-4, HSB-2, and Daudi), or a human myeloid cell line (K-562). BIF-producing cells were estimated to be T cells and were identified as T8+ T cells. On the other hand, Con A-induced BCGF was demonstrated to be produced predominantly by T4+ T cells. These results show that human B cell proliferation is regulated by interaction between T4+ and T8+ cells via soluble factors, namely BCGF and BIF, respectively.  相似文献   

16.
CD28 is an antigen of 44 kDa which is expressed on the membrane of the majority of human T cells. The present study examines the functional effects of an anti-CD28 monoclonal antibody (mAb 9.3) on T cell activation induced with immobilized anti-CD3 mAb OKT3 or with mitogens, in the absence of accessory cells. To this end, we used blood resting T cells that were completely depleted of accessory cells (monocytes, B cells, and natural killer cells), and consequently did not respond to recombinant interleukin-2 (rIL-2), to immobilized OKT3, to PHA, or to Con A. Addition of mAb 9.3 to the cultures enhanced IL-2 receptor expression (Tac antigen) on PHA- or immobilized OKT3-stimulated T cells and induced IL-2 receptors on Con A-stimulated T cells. Moreover, addition of mAb 9.3 to cultures of T cells stimulated with PHA, Con A, or immobilized OKT3 resulted in IL-2 production. Soluble mAb 9.3 was a sufficient helper signal for T cell proliferation in response to PHA or immobilized OKT3. Crosslinking of mAb 9.3 by culture on anti-mouse IgG-coated plates enhanced the helper effect and was an essential requirement for the induction of T cell proliferation in response to Con A. No other anti-T cell mAb (anti-CD2, -CD4, -CD5, -CD7, -CD8) was found to provide a complete accessory signal for PHA or Con A stimulation of purified T cells. T cell proliferation induced by the combination of PHA and mAb 9.3 was strongly inhibited by the anti-IL-2 receptor mAb anti-Tac. In conclusion, mAb 9.3 can provide a signal bypassing monocyte requirement in T cell activation with immobilized OKT3, PHA, and Con A, resulting in an autocrine IL-2-dependent pathway of proliferation.  相似文献   

17.
Human rIL-4 was studied for its capacity to induce lymphokine-activated killer (LAK) cell activity. In contrast to IL-2, IL-4 was not able to induce LAK cell activity in cell cultures derived from peripheral blood. IL-4 added simultaneously with IL-2 to such cultures suppressed IL-2-induced LAK cell activity measured against Daudi and the melanoma cell line MEWO in a dose-dependent way. IL-4 also inhibited the induction of LAK cell activity in CD2+, CD3-, CD4-, CD8- cells, suggesting that IL-4 acts directly on LAK precursor cells. IL-4 added 24 h after the addition of IL-2 failed to inhibit the generation of LAK cell activity. Cytotoxic activity of various types of NK cell clones was not affected after incubation in IL-4 for 3 days, indicating that IL-4 does not affect the activity of already committed killer cells. No significant differences were observed in the percentages of Tac+, NKH-1+ and CD16+ cells after culturing PBL in IL-2, IL-4 or combinations of IL-2 and IL-4 for 3 days. IL-4 also inhibited the activation of non-specific cytotoxic activity in MLC, as measured against K-562 and MEWO cells. In contrast, the Ag-specific CTL activity against the stimulator cells was augmented by IL-4. Collectively, these data indicate that IL-4 prevents the activation of LAK cell precursors by IL-2, but does not inhibit the generation of Ag-specific CTL.  相似文献   

18.
Human peripheral blood lymphocytes were mixed with erythrocyte-antibody (EA) complexes and separated into EA-rosette forming cell (EA-RFC)-enriched and EA-RFC-depleted suspensions. Thymidine incorporation of EA-RFC-enriched population in the presence of T cell mitogens (PHA, Con A, PWM) was about half of that of EA-RFC-depleted or of unseparated cells. The dose-response curves and kinetics of proliferation were found to be very similar in the three populations. Proliferative response of EA-RFC-enriched lymphocytes was strictly T cell dependent, although non-T cells were later recruited to incorporate thymidine. The interaction of T lymphocytes bearing surface receptors for IgG (TG) with insoluble complexes followed by a post-binding temperature sensitive event, resulted in the modulation of Fc receptors associated with an impaired proliferative response to PHA, Con A, and PWM, without significant change in metabolic cell activity as shown by cell viability, sponaneous leucine incorporation, or β2 microglobulin release.  相似文献   

19.
We established a cell line (STKM-1) from tumor cells obtained from carcinomatous pleural effusion of a gastric cancer patient. The lymphocytes separated from her peripheral blood or pleural effusion were cryopreserved and immunological experiments were performed after the establishment of the cell line. They were treated with IL-2 or with both IL-2 and mitomycin C (MMC)-treated autologous STKM-1 cells. The cytolytic activity against STKM-1 cells was elevated in lymphocytes cultured with IL-2, and was more prominently augmented in lymphocytes cultured with both IL-2 and MMC-treated STKM-1 cells. The elevation in cytolytic activity was more marked with pleural effusion lymphocytes than with the peripheral blood lymphocytes. The results suggest that the lymphocytes obtained from the pleural effusion would be an excellent source for adoptive immunotherapy.Abbreviations IL-2 interleukin-2 - LAK lymphokine activated killer - MLTC mixed lymphocyte tumor cell culture - MMC mitomycin C - MoAbs monoclonal antibodies - TIL tumor infiltrating lymphocytes  相似文献   

20.
IL-2-stimulated human lymphocytes, referred to as lymphokine-activated killer (LAK) cells, can develop a broad range of lytic activity against fresh tumor cells and cultured tumor cell lines. IL-1, a pleiotropic cytokine shown to synergize with IL-2 on LAK induction, is endogenously synthesized and secreted by LAK cells. Immunoblot analysis demonstrated that IL-2-stimulated PBL produced the 31- to 34-kDa pro-molecules of IL-1 within 24 h and maintained their expression for at least 96 h. The role of secreted IL-1 has been examined using rIL-1R antagonist (IL-1ra). The addition of IL-1ra to LAK activation culture resulted in dose-dependent inhibited lytic activity, which was more apparent in LAK cells cultured with higher doses of IL-2. However, IL-1ra had no effect on proliferative responses elicited in LAK cells by IL-2. Moreover, when IL-1 binding was blocked by IL-1ra, the expression of the IL-2R p55 subunit was reduced compared with control LAK cells. The effect of IL-1 binding blockade on expression of other cytokine mRNA was further examined by polymerase chain reaction analysis, and, specifically, inhibition of both TNF-alpha and TNF-beta mRNA expression by IL-1ra was observed in PBL stimulated with IL-2. The reduced biologic activity of TNF in culture supernatants correlated well with the inhibition of mRNA expression. These findings suggest that autocrine/paracrine IL-1 is involved in the initial generation of LAK activity and, in particular, that TNF expression could be induced via an IL-1 autocrine pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号