首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《IRBM》2008,29(2-3):89-104
The principle of molecular imprinting has repeatedly been proven a successful and effective means of creating sites of specific recognition within polymers. After almost three decades of development, we finally have some evidence of large molecule imprinting. In this review, the authors aim to bring the molecular imprinting community up-to-date. We describe here some of the new and innovative work that endeavours to take molecular imprinting away from its chromatographic, synthetic past and make use of this technique in new, exciting and developing fields, such as drug delivery, biotechnology, biosensors, protein/drug recognition and in the development of novel materials. The main discussion analyses a variety of different two-dimensional and three-dimensional approaches recently developed for the recognition of larger molecules or biomolecules, such as proteins, viruses and cells, and how the traditional imprinting methods have been adapted to suit the mass transfer requirements of these biological templates. We also review a relatively new technique that has emerged from the imprinting approach, which aims to develop novel materials from the imprints of biological materials.  相似文献   

2.
Surface molecular imprinting, as compared to molecular imprinted bulk polymers, has the advantages of higher re-occupation percentage of the reception sites, fast response, integration of sensing element and transducer, etc. In this study, a potentiometric protein sensor was developed based on the surface molecular imprinting technique. Using the self-assembled monolayers of alkanethiol with hydroxyl terminal groups as the matrix material, and target protein molecules as the template, the sensing layer was created on the surface of the gold-coated silicon chip-an electrochemical transducer. Potentiometric measurement demonstrated that the sensor could selectively detect myoglobin or hemoglobin molecules, either with or without the presence of other protein molecules in the same solution.  相似文献   

3.
The molecular imprinting technique can be defined as the formation of specific nano-sized cavities by means of template-directed synthesis. The resulting molecularly imprinted polymers (MIPs), which often have an affinity and a selectivity approaching those of antibody-antigen systems, have thus been coined "artificial antibodies." MIPs are characterized by their high specificity, ease of preparation, and their thermal and chemical stability. They have been widely studied in connection with many potential applications, including their use for separation and isolation purposes, as antibody mimics (biomimetic assays and sensors), as enzyme mimics, in organic synthesis, and in drug delivery. The non-covalent imprinting approach, developed mainly in Lund, has proven to be more versatile than the alternative covalent approach because of its preparation being less complicated and of the broad selection of functional monomers and possible target molecules that are available. The paper presents a review of studies of this versatile technique in the areas of separation and drug development, with emphasis being placed on work carried out in our laboratory.  相似文献   

4.
Polymer‐based protein recognition systems have enormous potential within clinical and diagnostic fields due to their reusability, biocompatibility, ease of manufacturing, and potential specificity. Imprinted polymer matrices have been extensively studied and applied as a simple technique for creating artificial polymer‐based recognition gels for a target molecule. Although this technique has been proven effective when targeting small molecules (such as drugs), imprinting of proteins have so far resulted in materials with limited selectivity due to the large molecular size of the protein and aqueous environment. Using coarse‐grained molecular simulation, we investigate the relation between protein makeup, polymer properties, and the selectivity of imprinted gels. Nonspecific binding that results in poor selectivity is shown to be strongly dependent on surface chemistry of the template and competitor proteins as well as on polymer chemistry. Residence time distributions of proteins diffusing within the gels provide a transparent picture of the relation between polymer constitution, protein properties, and the nonspecific interactions with the imprinted gel. The pronounced effect of protein surface chemistry on imprinted gel specificity is demonstrated.  相似文献   

5.
6.
Molecular imprinting has proved to be an effective technique for the creation of recognition sites on a polymer scaffold. Protein imprinting has been a focus for many chemists working in the area of molecular recognition, since the creation of synthetic polymers that can specifically recognise proteins is a very challenging but potentially extremely rewarding objective. It is expected that molecularly imprinted polymers (MIPs) with specificity for proteins will find application in medicine, diagnostics, proteomics, environmental analysis, sensors and drug delivery. In this review, the authors provide an overview of the progress achieved in the decade between 1994 and 2005, with respect to the challenging area of MIPs for protein recognition. The discussion furnishes a comparative analysis of different approaches developed, underlining their relative advantages and disadvantages and highlighting trends and possible future directions.  相似文献   

7.
Molecular imprinting involves the synthesis of polymers in the presence of a template to produce complementary binding sites with specific recognition ability. The technique has been successfully applied as a measurement and separation technology, producing a uniquely robust and antibody-like polymeric material. Low molecular weight molecules have been extensively exploited as imprint templates, leading to significant achievements in solid-phase extraction, sensing and enzyme-like catalysis. By contrast, macromolecular imprinting remains underdeveloped, principally because of the lack of binding site accessibility. In this review, we focus on the most recent developments in this area, not only covering the widespread use of biological macro-templates but also highlighting the emerging use of synthetic macro-templates, such as dendrimers and hyperbranched polymers.  相似文献   

8.
Molecular imprinting in monolayer surfaces   总被引:1,自引:0,他引:1  
A comprehensive report on molecularly imprinted monolayers (MIMs) is presented, but does not include bulk-polymer thin film coatings on surfaces, inorganic surface imprinting, polymer grafting and layer-by-layer methods. Due to difficulties in imprinting large molecules and obtaining fast binding responses with traditional network polymer materials, MIMs have been developed with the aim of enhancing mass-transfer of analytes in imprinted materials. Three approaches to MIM fabrication have been developed with respect to the formation of the pre-organized template-matrix complex. In the first approach, the molecular binding sites are formed in a monolayer on a glass or gold surface. The second approach uses a template-macromolecule complex to form binding sites in the solution phase that are immobilized onto a surface; and the third approach transfers an imprinted Langmuir film onto a gold surface. Mass transfer in these MIMs in most cases is on the order of minutes, and both small and large molecules (proteins) have been imprinted.  相似文献   

9.
Gao S  Wang W  Wang B 《Bioorganic chemistry》2001,29(5):308-320
The ability to custom-make fluorescent sensors for different analytes could have a tremendous impact in a variety of areas. Template-directed polymerization or molecular imprinting seems to be a promising approach for the preparation of high-affinity and specific binding sites for different template molecules. However, the application of molecular imprinting in the preparation of fluorescent sensors has been hampered by the lack of suitable fluorescent tags, which would respond to the binding event with significant fluorescence intensity changes. We have designed and synthesized a fluorescent monomer (1) that allows for the preparation of fluorescent sensors of cis diols using molecular imprinting methods. This monomer has been used for the preparation of imprinted polymers as sensitive fluorescent sensors for D-fructose. The imprinted polymers prepared showed significant fluorescence intensity enhancement upon binding with the template carbohydrate.  相似文献   

10.
Combinatorial methods in molecular imprinting   总被引:4,自引:0,他引:4  
Molecular imprinting is a general method for synthesizing robust, network polymers with highly specific binding sites for small molecules. Recently, combinatorial and computational approaches have been employed to select an optimal molecularly imprinted polymer (MIP) formulation for a targeted analyte. The use of MIPs in the combinatorial field, specifically their use for screening libraries of small molecules, has also been developed.  相似文献   

11.
By adopting the novel surface molecular imprinting technique put forward by us not long ago, a creatinine molecule-imprinted material with high performance was prepared. The functional macromolecule polymethacrylic acid (PMAA) was first grafted on the surfaces of micron-sized silica gel particles in the manner of “grafting from” using 3-methacryloxypropyltrimethoxysilane (MPS) as intermedia, resulting in the grafted particles PMAA/SiO2. Subsequently, the molecular imprinting was carried out towards the grafted macromolecule PMAA using creatinine as template and with ethylene glycol diglycidyl ether (EGGE) as crosslinker by right of the intermolecular hydrogen bonding and electrostatic interaction between the grafted PMAA and creatinine molecules. Finally, the creatinine-imprinted material MIP-PMAA/SiO2 was obtained. The binding character of MIP-PMAA/SiO2 for creatinine was investigated in depth with both batch and column methods and using N-hydroxysuccinimide and creatine as two contrast substances, whose chemical structures are similar to creatinine to a certain degree. The experimental results show that the surface-imprinted material MIP-PMAA/SiO2 has excellent binding affinity and high recognition selectivity for creatinine. Before imprinting, PMAA/SiO2 particles nearly has not recognition selectivity for creatinine, and the selectivity coefficients of PMAA/SiO2 for creatinine relative to N-hydroxysuccinimide and creatine are only 1.23 and 1.30, respectively. However, after imprinting, the selectivity coefficients of MIP-PMAA/SiO2 for creatinine in respect to N-hydroxysuccinimide and creatine are remarkably enhanced to 11.64 and 12.87, respectively, displaying the excellent recognition selectivity and binding affinity towards creatinine molecules.  相似文献   

12.
The view that autosomal gene expression is controlled exclusively by protein trans-acting factors has been challenged recently by the identification of RNA molecules that regulate chromatin. In the majority of cases where RNA molecules are implicated in DNA control, the molecular mechanisms are unknown, in large part because the RNA.protein complexes are uncharacterized. Here, we identify a novel set of RNA-binding proteins that are well known for their function in chromatin regulation. The RNA-interacting proteins are components of the mammalian DNA methylation system. Genomic methylation controls chromatin in the context of transposon silencing, imprinting, and X chromosome dosage compensation. DNA methyltransferases (DNMTs) catalyze methylation of cytosines in CGs. The methyl-CGs are recognized by methyl-DNA-binding domain (MBD) proteins, which recruit histone deacetylases and chromatin remodeling proteins to effect silencing. We show that a subset of the DNMTs and MBD proteins can form RNA.protein complexes. We characterize the MBD protein RNA-binding activity and show that it is distinct from the methyl-CG-binding domain and mediates a high affinity interaction with RNA. The RNA and methyl-CG binding properties of the MBD proteins are mutually exclusive. We speculate that DNMTs and MBD proteins allow RNA molecules to participate in DNA methylation-mediated chromatin control.  相似文献   

13.
Design and selection of ligands for affinity chromatography   总被引:4,自引:0,他引:4  
Affinity chromatography is potentially the most selective method for protein purification. The technique has the purification power to eliminate steps, increase yields and thereby improve process economics. However, it suffers from problems regarding ligand stability and cost. Some of the most recent advances in this area have explored the power of rational and combinatorial approaches for designing highly selective and stable synthetic affinity ligands. Rational molecular design techniques, which are based on the ability to combine knowledge of protein structures with defined chemical synthesis and advanced computational tools, have made rational ligand design feasible and faster. Combinatorial approaches based on peptide and nucleic acid libraries have permitted the rapid synthesis of new synthetic affinity ligands of potential use in affinity chromatography. The versatility of these approaches suggests that, in the near future, they will become the dominant methods for designing and selection of novel affinity ligands with scale-up potential.  相似文献   

14.
Tristetraprolin (TTP) is a member of the CCCH zinc finger proteins and is an anti-inflammatory protein. Mice deficient in TTP develop a profound inflammatory syndrome with erosive arthritis, autoimmunity and myeloid hyperplasia. TTP binds to mRNA AU-rich elements with high affinity for UUAUUUAUU nucleotides and causes destabilization of those mRNA molecules. TTP is phosphorylated extensively in vivo and is a substrate for multiple protein kinases in vitro. A number of approaches have been used to identify its phosphorylation sites. This article highlights the recent progress and different approaches utilized for the identification of phosphorylation sites in mammalian TTP. Important but limited results are obtained using traditional methods, including in vivo labeling, site-directed mutagenesis, phosphopeptide mapping and protein sequencing. Mass spectrometry (MS), including MALDI/MS, MALDI/MS/MS, liquid chromatography/MS/MS, immobilized metal ion affinity chromatography (IMAC)/MALDI/MS/MS and multidimensional protein identification technology has led the way in identifying TTP phosphorylation sites. The combination of these approaches has identified multiple phosphorylation sites in mammalian TTP, some of which are predicted by motif scanning to be phosphorylated by several protein kinases. This information should provide the molecular basis for future investigation of TTP's regulatory functions in controlling proinflammatory cytokines.  相似文献   

15.
In conjunction with polyacrylamide gel electrophoresis (PAGE), molecular imprinting methods have been applied to produce a multilayer mini-slab in order to evaluate how selectively and specifically a hydrogel-based molecularly imprinted polymer (MIP) binds bovine haemoglobin (BHb, ~64.5 kDa). A three-layer mini-slab comprising an upper and lower layer and a MIP, or a non-imprinted control polymer dispersion middle layer has been investigated. The discriminating MIP layer, also based on polyacrylamide, was able to specifically bind BHb molecules in preference to a protein similar in molecular weight such as bovine serum albumin (BSA, ~66 kDa). Protein staining allowed us to visualise the protein retention strength of the MIP layer under the influence of an electric field. This method could be applied to other proteins with implications in effective protein capture, disease diagnostics, and protein analysis.  相似文献   

16.
Tristetraprolin (TTP) is a member of the CCCH zinc finger proteins and is an anti-inflammatory protein. Mice deficient in TTP develop a profound inflammatory syndrome with erosive arthritis, autoimmunity and myeloid hyperplasia. TTP binds to mRNA AU-rich elements with high affinity for UUAUUUAUU nucleotides and causes destabilization of those mRNA molecules. TTP is phosphorylated extensively in vivo and is a substrate for multiple protein kinases in vitro. A number of approaches have been used to identify its phosphorylation sites. This article highlights the recent progress and different approaches utilized for the identification of phosphorylation sites in mammalian TTP. Important but limited results are obtained using traditional methods, including in vivo labeling, site-directed mutagenesis, phosphopeptide mapping and protein sequencing. Mass spectrometry (MS), including MALDI/MS, MALDI/MS/MS, liquid chromatography/MS/MS, immobilized metal ion affinity chromatography (IMAC)/MALDI/MS/MS and multidimensional protein identification technology has led the way in identifying TTP phosphorylation sites. The combination of these approaches has identified multiple phosphorylation sites in mammalian TTP, some of which are predicted by motif scanning to be phosphorylated by several protein kinases. This information should provide the molecular basis for future investigation of TTP’s regulatory functions in controlling proinflammatory cytokines.  相似文献   

17.
A crucial step in scientific analysis can be sample preparation, and its importance increases in the same rate as the sensitivity of the following employed/desired analytical technique does. The need to analyze complex, viscous matrices is not new, and diverse approaches have been employed, with different success rates depending on the intended molecules. Solid-phase extraction, for example, has been successfully used in sample preparation for organic molecules and peptides. However, due to the usual methodological conditions, biologically active proteins are not successfully retrieved by this technique, resulting in a low rate of protein identification reported for the viscous amphibian skin secretion. Here we describe an ion-exchange batch processing sample preparation technique that allows viscous or adhesive materials (as some amphibian skin secretions) to be further processed by classical liquid chromatography approaches. According to our protocol, samples were allowed to equilibrate with a specific resin that was washed with appropriated buffers in order to yield the soluble protein fraction. In order to show the efficiency of our methodology, we have compared our results to classically prepared skin secretion, i.e., by means of filtration and centrifugation. After batch sample preparation, we were able to obtain reproductive resolved protein chromatographic profiles, as revealed by SDS-PAGE, and retrieve some biological activities, namely, hydrolases belonging to serine peptidase family. Not only that, but also the unbound fraction was rich in low molecular mass molecules, such as alkaloids and steroids, making this sample preparation technique also suitable for the enrichment of such molecules.  相似文献   

18.

Background

Binding affinity for human serum albumin (HSA) is one of the most important factors affecting the distribution and free blood concentration of many ligands. The effect of fatty acids (FAs) on HSA-ligand binding has long been studied. Since the elucidation of the 3-dimensional structure of HSA, molecular simulation approaches have been applied to studies of the structure–function relationship of HSA–FA binding.

Scope of review

We review current insights into the effects of FA binding on HSA, focusing on the biophysical insights obtained using molecular simulation approaches such as docking, molecular dynamics (MD), and binding free energy calculations.

Major conclusions

Possible conformational changes on binding of FA molecules to HSA have been observed through MD simulations. High- and low-affinity FA-binding sites on HSA have been identified based on binding free energy calculations. The relationship between the warfarin binding affinity of HSA and FA molecules has been clarified based on the results of simulations of multi-site FA binding that cannot be experimentally observed.

General significance

Molecular simulation approaches have great potentials to provide detailed biophysical insights into HSA as well as the effects of the binding of FAs or other ligands to HSA. This article is part of a Special Issue entitled Serum Albumin.  相似文献   

19.
Matching bioactive molecules with molecular targets is key to understanding their modes of action (MOA). Moving beyond the mere discovery of drugs, investigators are now just beginning to integrate both biochemical and chemical-genetic approaches for MOA studies. Beginning with simple screens for changes in cell phenotype upon drug treatment, drug bioactivity has been traditionally explored with affinity chromatography, radiolabeling, and cell-based affinity tagging procedures. However, such approaches can present an oversimplified view of MOA, especially in light of the recent realization of the extent of polypharmacology and the unexpected complexity of drug-target interactions. With the advent of more sophisticated tools for genetic manipulation, a flood of powerful techniques has been used to create characteristic drug MOA 'fingerprints'. In particular, whole genome expression profiling and deletion and overexpression libraries have greatly enhanced our understanding of bioactive compounds in vivo. Here we highlight challenges and advances in studying bioactive compound-target interactions.  相似文献   

20.
The review summarizes current knowledge on the main approaches used for creation of high affinity polymer analogs of antibodies (known as molecularly imprinted polymers, MIP) applicable for electroanalysis of functionally important proteins such as myoglobin, troponin T, albumin, ferritin, lysozyme, calmodulin. The main types of monomers for MIP preparation as well as methods convenient for analysis of MIP/protein interactions, such as surface plasmon resonance (SPR), nanogravimetry with the use of a quartz crystal resonator (QCM), spectral and electrochemical methods have been considered. Special attention is paid to experimental data on electrochemical registration of myoglobin by means of o-phenylenediaminebased MIP electrodes. It was shown that the imprinting factor calculated as a ratio of the myoglobin signal obtained after myoglobin insertion in MIP to the myoglobin signal obtained after myoglobin insertion in the polymer lacking the molecular template (NIP) is 2–4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号