首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As part of our studies on polyamine biosynthesis in yeast, the metabolism of methylthioadenosine was studied in a mutant that lacks methylthioadenosine phosphorylase (meu1delta). The nucleoside accumulates in this mutant and is mainly excreted into the culture medium. Intracellular accumulation of the nucleoside is enough to account for the inhibition of spermidine synthase and thus to indirectly regulate the polyamine content of the meu1delta cells. By comparing the results with this mutant with a meu1delta spe2delta mutant that cannot synthesize spermidine or spermine, we showed that >98% of methylthioadenosine is produced as a byproduct of polyamine synthesis (i.e., from decarboxylated S-adenosylmethionine). In contrast, in MEU1+ SPE2+ cells methylthioadenosine does not accumulate and is metabolized through the methionine salvage pathway. Using a met15delta mutant we show that this pathway (i.e., involving polyamine biosynthesis and methylthioadenosine metabolism) is a significant factor in the metabolism of methionine, accounting for 15% of the added methionine.  相似文献   

2.
The aggressive nature and poor prognosis of lung cancer led us to explore the mechanisms driving disease progression. Utilizing our invasive cell‐based model, we identified methylthioadenosine phosphorylase (MTAP) and confirmed its suppressive effects on tumorigenesis and metastasis. Patients with low MTAP expression display worse overall and progression‐free survival. Mechanistically, accumulation of methylthioadenosine substrate in MTAP‐deficient cells reduce the level of protein arginine methyltransferase 5 (PRMT5)‐mediated symmetric dimethylarginine (sDMA) modification on proteins. We identify vimentin as a dimethyl‐protein whose dimethylation levels drop in response to MTAP deficiency. The sDMA modification on vimentin reduces its protein abundance but trivially affects its filamentous structure. In MTAP‐deficient cells, lower sDMA modification prevents ubiquitination‐mediated vimentin degradation, thereby stabilizing vimentin and contributing to cell invasion. MTAP and PRMT5 negatively correlate with vimentin in lung cancer samples. Taken together, we propose a mechanism for metastasis involving vimentin post‐translational regulation.  相似文献   

3.
The cleavage of the methylthio group from methylthioadenosine is shown to involve two enzymes, a nucleosidase which catalyses the phosphorolytic cleavage of methylthioadenosine to yield adenine and 5-methylthioribose-1-phosphate and an enzyme which uses the latter compound as substrate and catalyses the release of the methylthio group as an ether-extractable product. Three malignant murine hematopoietic cell lines which require methylthio group supplementation for proliferation in vitro are shown to lack methylthioadenosine nucleosidase activity while retaining activity of the second enzyme. Four cell lines which are methylthio-independent in vitro contain activity of both enzymes. The data suggest that the requirement for exogenous methylthio groups in certain cells is caused by the block in their biosynthetic pathway imposed by methylthioadenosine nucleoside phosphorylase deficiency. Secondarily, the data suggest that all cells require methylthio or related groups for division.  相似文献   

4.
S-adenosylmethionine and its products   总被引:1,自引:0,他引:1  
Summary. S-adenosylmethionine is involved in many processes, mainly methylation, polyamine synthesis and radical-based catalysis. It is synthesised through the catalysis of differently regulated enzyme forms. When it is used, the compounds formed are reutilized in different ways: in case of methylation, its end product is homocysteine, which can be remethylated to methionine, give rise to cysteine in the so-called transsulphuration pathway, or be released; in the case of polyamine synthesis, the methylthioadenosine formed is cleaved and gives rise to compounds which can be reutilized; during radical-based catalysis, 5-deoxyadenosine is formed and this, too, is cleaved and reutilized. Authors’ address: Prof. M. A. Grillo Dipartimento di Medicina e Oncologia Sperimentale, Biochimica, Università di Torino, Torino, Italy  相似文献   

5.
Two human lymphoblastic cell lines, deficient in methylthioadenosine phosphorylase (MTAP) activity, were found to have increased rates of de novo purine synthesis. These MTAP cell lines were K562, an undifferentiated leukemic line and CCRF-CEM, a leukemic line of T-cell origin. Another T-cell line, CCRF-HSB-2 was found to be deficient in activity. However, this line did not demonstrate elevated rates of purine synthesis. Purine metabolism in the above cell cultures was compared with MTAP+ human B-cell lines and two human T-cell lines (MOLT-3 and MOLT-4). In all the MTAP+ cell lines, the rate of de novo purine synthesis was inhibited by the presence of methylthioadenosine in the assay medium (10 μM concentration produced more than 90% inhibition). However, purine synthesis in the MTAP cells was resistant to inhibition by methylthioadenosine. Adenine in the assay medium inhibited de novo purine synthesis in MTAP+ and MTAP cells to a similar degree. This inhibition was dose dependent and was elicited by concentrations similar to those of methylthioadenosine. Growth of the cell lines in culture was not affected by either methylthioadenosine or adenine at the concentrations which produced inhibition of purine synthesis. These results suggest that purine synthesis in MTAP+ cells is inhibited by adenine formed from the phosphorolytic cleavage of methylthioadenosine by methylthioadenosine phosphorylase.  相似文献   

6.
5-Methylthioribose. Its effects and function in mammalian cells   总被引:1,自引:0,他引:1  
The growth responses of 5-deoxy-5-methylthioribose on a 5'-deoxy-5'-methylthioadenosine phosphorylase containing cell line (BW5147) and the methylthioadenosine phosphorylase-deficient cell line (L1210D) were examined. Methylthioribose was shown to dramatically affect these cells, increasing their growth rate, saturation density, and viability. It was also found that methylthioribose could satisfy the methylthio dependence of the enzyme-deficient cell line, L1210D. A model is proposed to explain the selective growth of methylthioadenosine phosphorylase-deficient cells in medium lacking a methylthio donor but containing fetal calf serum. It is hypothesized that cellularly exported methylthioadenosine is degraded to methylthioribose in the presence of medium containing serum of high methylthioadenosine phosphorylase activity (i.e. fetal calf serum). The resultant methylthioribose can then be used to satisfy the methylthio requirement of these cells. To test this theory, various purified preparations of bovine liver methylthioadenosine phosphorylase were used to artificially increase the specific activity of methylthioadenosine phosphorylase in horse serum. In each case, it was demonstrated that only medium containing serum of enzyme activity nearly equal to that of the glutathione-stimulated fetal calf serum activity, supported the growth of methylthio-dependent cells in the absence of methylthio compounds. The data suggest that the degradation of methylthioadenosine and subsequent formation of methylthioribose represents an essential process in the growth of mammalian cells.  相似文献   

7.
5'-Deoxy-5'-methylthioadenosine (methylthioadenosine) is cleaved to adenine and 5-methylthioribose-1-phosphate (methylthioribose-1-P). Methylthioribose-1-P is converted to 2-keto-4-methylthiobutyrate ( ketomethylthiobutyrate ) which is transaminated to methionine. We report that one subline of a heterogeneous human colon carcinoma, DLD-1 Clone D, only forms methylthioribose-1-P from methylthioadenosine or 5'-deoxy-5'-methylthioinosine (methylthioinosine), a deaminated derivative of methylthioadenosine, whereas Clone A converts methylthioadenosine and methylthioinosine to methionine, as shown by growth studies in culture of Clone A and Clone D cells and radioactive studies utilizing [methyl-14C]methylthioadenosine or [methyl-14C]methylthioinosine in the presence of extracts of these cells lines. To characterize this defect, we utilized three protein fractions isolated from rat liver which together convert methylthioribose-1-P to ketomethylthiobutyrate . Addition of only Fraction A to Clone D sonicates restores its ability to convert methylthioadenosine to methionine. This fraction is responsible for converting methylthioribose-1-P to 5- methylthioribulose -1-phosphate; radioactive studies confirm this observation. Thus, Clone D is deficient in an enzyme contained in Fraction A; this represents a qualitative biochemical difference between the two clones derived from a single human tumor.  相似文献   

8.
The enzyme methylthioadenosine phosphorylase functions in both purine and polyamine metabolism is dividing mammalian cells. To determine the effects of the loss of this enzyme on cell growth and metabolism, we selected two methylthioadenosine phosphorylase-deficient mutant clones of the transplantable murine T lymphoma cell line R1.1. The first had 3.5% of wild type methylthioadenosine phosphorylase activity. The second was completely enzyme-deficient. The loss of the enzyme did not alter the growth rate, cloning efficiency, or tumor-forming ability of the T lymphoma cells. The methylthioadenosine phosphorylase-deficient clones excreted substantial amounts of methylthioadenosine into the culture medium (0.13 and 0.32 nmol/h/mg of protein, respectively) and were unable to utilize the methylthioadenosine phosphorylase substrate 2',5'-dideoxyadenosine as a purine source when de novo purine synthesis was blocked. Spermine levels were 10-20% lower in the enzyme-deficient clones than in wild type cells. The loss of methylthioadenosine phosphorylase rendered the mutants exquisitely sensitive to the antiproliferative effects of methylthioadenosine. Methylthioadenosine at 3-6 microM inhibited their growth by 50%. The toxic effects of methylthioadenosine were not attributable to inhibition of purine, pyrimidine, or polyamine synthesis.  相似文献   

9.
The objective of this study is to investigate the activity of methylthioadenosine phosphorylase (MTA-Pase) in mammalian cells stimulated by serum to proliferate and during their cell cycle. A direct correlation between growth rate and MTA-Pase activity in chinese hamster ovary (CHO) cells was observed. High MTA-Pase activity was observed during the exponential growth phase followed by a low enzyme activity during plateau phase of growth. To understand whether the fluctuations in the enzyme activity was cell cycle dependent, initially the activity of MTA-Pase was studied in plateau phase (G0) CHO cells as they synchronously go into S phase upon plating in fresh medium. The MTA-Pase activity in G0 cells before initiation of growth was 10.3 n.mol/mg protein/30'. A peak activity of 16.0 n.mol/mg/30 min was found at 12 hr after stimulation of proliferation by serum. These results indicate a peak MTA-Pase activity between 10-12 hr after stimulation of proliferation coinciding with the initiation of DNA synthesis. The activity of the enzyme slowly decreased as the cells completed their DNA synthesis. To understand whether these fluctuations are cell cycle specific, HeLa cells were synchronized in different phases and MTA-Pase activity was studied. The specific activities of the enzyme were 2.76, 2.99, 3.97, 3.28 and 3.65 n.moles/mg/30 min. in mitosis, early G1, late G1, S and G2 phases of the cell cycle respectively. These results indicate that MTA-Pase activity peaks in late G1 phase before the initiation of DNA synthesis, similar to the polyamine biosynthetic enzymes and might play a role in the initiation of DNA synthesis by salvage of adenine into nucleotide pools.  相似文献   

10.
Histamine-N-methyltransferase (EC 2.1.1.8) was purified 1700-fold with a yield of 9% from rat kidney. Purification included ammonium sulfate precipitation, linear gradient DEAE-cellulose chromotography and S-adenosylhomocysteine affinity chromotography. The purified enzyme preparation showed a single protein band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a molecular weight of 35 000. The isoelectric point of the enzyme was at pH 5.2. The purified enzyme preparation did not contain detectable amounts of histamine. The purified enzyme was totally inhibited in 100 μM parahydroxymercuric benzoate and in 10 μM iodoacetamide, and it was found to be stabilized with dithiothreitol (1 mM), suggesting that the enzyme has an SH-group in the active center. The Km values for histamine and S-adenosylmethionine were 6.0 and 7.1 μM, respectively. 50% inhibition of histamine-N-methyltransferase was obtained at 28 μM S-adenosylhomocysteine and 100 μM methylhistamine. The purified enzyme was slightly inhibited in 1 mM methylthioadenosine. Histamine in concentrations higher than 25 μM caused substrate inhibition.  相似文献   

11.
Macrophages are shown to replace methylthio disulfides in supporting in vitro proliferation of three cell lines previously characterized as methylthio-dependent. Macrophages have the capacity to generate methylthio groups from methylthioadenosine. It is hypothesized that macrophages stimulate cell proliferation both in normal immune systems and in certain cancers by providing an abundance of methylthio groups. Fetal calf serum is shown to contain methylthio groups. It appears that, in cell cultures containing fetal calf serum, sulfhydryl compounds stimulate cell proliferation by making the methylthio groups in the serum available to the cells.  相似文献   

12.
In an attempt to study, in human body, the metaboism of 5′-methylthioadenosine, a byproduct of the polyamine biosynthesis, we examined whether this nucleoside is excreted into urine, and, if so, whether the amount increases when the synthesis of polyamines increases. We found that 5′-methylthioadenosine is a natural nucleoside in human urine as evidenced by two separate chromatography systems as well as the analysis of the acetylated compound by gas chromatography-mass spectrometry. Preliminary study did not show the elevation of urinary 5′-methylthioadenosine level in malignant patients, suggesting that the cleaving enzyme, 5′-methylthioadenosine phosphorylase, very efficiently removes this nucleoside in vivo.  相似文献   

13.
Extracts of certain malignant murine hematopoietic cells are shown to contain an enzyme which catalyses the release of the methylthio group from methylthioadenosine. The enzyme is extractable from cells of five cell lines which grow well in vitro without addition of S-methylthio compounds (RSSCH3). The enzyme activity is not present in cells of four lines which require methylthio groups for proliferation in vitro. The findings are consistent with the theory that the methylthio group is required in all dividing cells and that this group may be the essential product of the polyamine synthetic pathway.  相似文献   

14.
5'-Methylthioadenosine (MTA) is formed from decarboxylated S-adenosylmethionine during biosynthesis of polyamines. This nucleoside is cleaved by methylthioadenosine phosphorylase (MTA Pase) to adenine and 5-methylthioribose-I-phosphate in mammalian cells. 5'-Difluoromethylthioadenosine (DFMTA), a synthetic analog of MTA, was not a substrate for MTA Pase, but was a strong competitive inhibitor of the enzyme (Ki = 0.48 microM). DFMTA caused marked accumulation of labeled MTA formed from [35S]methionine in Raji cells, which contain MTA Pase, but not in CCRF-CEM cells, which do not contain this enzyme, suggesting that it also inhibits the enzyme in intact cells. DFMTA inhibited the growth of a variety of cultured cells and its cytostatic effect was roughly proportional to the MTA Pase activity of the cells. MTA also depressed the growth of cultured cells but, in contrast with DFMTA, its inhibitory effect was greater in MTA Pase-deficient cells (CCRF-CEM) than MTA Pase-containing cells (Raji). Inhibition of growth of Raji cells by DFMTA was partially reversed by exogenous adenine, a reaction product of MTA Pase. These results suggest that the utilization of adenine formed from MTA was important for proliferation of cells containing MTA Pase under the culture conditions employed, and that DFMTA inhibited cell growth by inhibiting MTA Pase activity.  相似文献   

15.
Summary The yeast, Pachysolen tannophilus, can utilize the pentose D-xylose with accumulation of significant quantities of ethanol. Cell extracts of the organism contain NADPH-linked D-xylose reductase (aldose reductase EC 1.1.1.21) and NAD-dependent D-xylitol dehydrogenase (D-xylulose reductase EC 1.1.1.9). D-Xylose was required for induction of both the D-xylitol dehydrogenase and the D-xylose reductase. Neither enzyme was found in glucose grown cell-free extracts.  相似文献   

16.
17.
Enzymes for acetaldehyde and ethanol formation in legume nodules   总被引:3,自引:1,他引:2       下载免费PDF全文
Soybean (Glycine max L. var. Wilkin) nodules contain acetaldehyde and ethanol. The cytosol of soybean and other legume nodules contains pyruvic decarboxylase (EC 4.1.1.1) and alcohol dehydrogenase (EC 1.1.1.1). Some of the properties of these enzymes from soybean nodules are described. Their presence indicates that in the microaerobic nodule cytosol some carbohydrate is metabolized by fermentative pathways like those in the roots of flood-tolerant plants.  相似文献   

18.
Typical enzyme kinetics were observed when 5′-methylthioadenosine was used as substrate with extracts of malignant murine cells in a diffusion assay. The volatile product was measured after diffusion into a solution of the sulfhydryl reagent, 5,5′-dithiobis(2-nitrobenzoic acid), which it reduced to a yellow chromophore. Cysteine was required in the system. The volatile product was identified as H2S derived from the cysteine. The yield of H2S was similar to the amount of 2-keto-4-methylthiobutyric acid (KMTB) formed from methylthioadenosine when the KMTB was measured simultaneously in an ether extraction assay. KMTB could replace methylthioadenosine as a substrate capable of causing the formation of the diffusible product from cysteine. It is concluded that the following sequence of reactions takes place in the diffusion assay system: (1) 5′-methylthioadenosine + Pi → adenine + 5-methylthioribose-1-P, (2) 5-methylthioribose-1-P → KMTB, (3) KMTB + cysteine → methionine + 3-mercaptopyruvate, (4) 3-mercaptopyruvate + excess R-SH → pyruvate + H2S, (5) H2S + 5,5′-dithiobis(2-nitrobenzoic acid) → 5-mercapto-2-nitrobenzoic acid. Thus, the diffusion assay measures the amount of KMTB formed. The key enzyme, cysteine aminotransferase, EC 2.6.1.3, was partially purified from malignant cells and from liver and several of its characteristics are described. The diffusion assay using this enzyme is useful in measuring de novo synthesis of α-keto acids and it is applicable to crude enzyme preparations. The sensitivity is about 5 nmol of keto acid and the accurate range is 5 to 100 nmol.  相似文献   

19.
5'-Methylthioadenosine was taken up and immediately metabolized further by cultured baby-hamster kidney cells during the exponential phase of growth. The adenine moiety supplied the purine-nucleotide pool via the salvage pathway and was efficiently incorporated into nucleic acids. Catabolites of methylthioadenosine excreted by the cells included adenine, purinic compounds and metabolites of the ribose portion. 5'-Methylthiotubercidin had no significant effect on the cellular metabolism of methyl-thioadenosine, but greatly inhibited its uptake. erythro-9-(2-Hydroxy-3-nonyl)adenine had no effect on the uptake, but markedly interfered with the further utilization of methylthioadenosine after cleavage in the cells.  相似文献   

20.
Embryonal carcinoma (EC) cells contain an alkaline DNase whose specific activity is much higher than their differentiated derivatives. After partial purification on CM-Sephadex, fractions eluted at 0.15 M NaCl contain a DNase activity which is inhibited by G-actin. The possible role of this alkaline DNase activity in maintaining the unpolymerized state of actin filaments in EC cells is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号