首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Antibodies against 13-hydroxyoctadecadienoic acid (13-HODE) were produced in rabbits by immunizing the animal with 13-HODE-thyroglobulin conjugate. The antibodies appeared to be rather specific for 13-HODE since other hydroxy fatty acids showed minimal crossreaction. The radioimmunoassay was capable of detecting 50 pg per assay tube and was applied to the study of the biosynthesis of 13-HODE in platelets and leukocytes. In contrast to reported findings from endothelial cells, A-23187, thrombin and collagen stimulated synthesis and release of 13-HODE from platelets. However, insignificant synthesis of 13-HODE was found in leukocytes following A-23187 stimulation. Exogenous addition of linoleic acid stimulated the synthesis of 13-HODE from both platelets and leukocytes. The majority of 13-HODE synthesized was found in the medium. These studies suggest that both types of blood cells possess active (omega-6) lipoxygenase. Platelets may use endogenously released linoleic acid to synthesize 13-HODE, whereas leukocytes may utilize linoleic acid released from other cell types for 13-HODE synthesis.  相似文献   

2.
13(S)-Hydroxy-[12,13-3H]octadecadienoic acid (13-HODE), a linoleic acid oxidation product that has vasoactive properties, was rapidly taken up by bovine aortic endothelial cells. Most of the 13-HODE was incorporated into phosphatidylcholine, and 80% was present in the sn -2 position. The amount of 13-HODE retained in the cells gradually decreased, and radiolabeled metabolites with shorter reverse-phase high-performance liquid chromatography retention times (RT) than 13-HODE accumulated in the extracellular fluid. The three major metabolites were identified by gas chromatography combined with mass spectrometry as 11-hydroxyhexadecadienoic acid (11-OH-16:2), 9-hydroxytetradecadienoic acid (9-OH-14:2), and 7-hydroxydodecadienoic acid (7-OH-12:2). Most of the radioactivity contained in the cell lipids remained as 13-HODE. However, some 11-OH-16:2 and several unidentified products with longer RT than 13-HODE were detected in the cell lipids. Normal human skin fibroblasts also converted 13-HODE to the three major chain-shortened metabolites, but Zellweger syndrome fibroblasts produced only a very small amount of 11-OH-16:2. Therefore, the chain-shortened products probably are formed primarily by peroxisomal beta-oxidation. These findings suggest that peroxisomal beta-oxidation may constitute a mechanism for the inactivation and removal of 13-HODE from the vascular wall. Because this is a gradual process, some 13-HODE that is initially incorporated remains in endothelial phospholipids, especially phosphatidylcholine. This may be the cause of some of the functional perturbations produced by 13-HODE in the vascular wall.  相似文献   

3.
The 15-omega-lipoxygenase enzyme in endothelial cells metabolizes endogenous linoleic acid (18:2) into 13-hydroxyoctadecadienoic acid (13-HODE) under basal conditions, i.e., in unstimulated endothelial cells. 13-HODE is thought to regulate the non-adhesivity of the endothelium, contributing to vessel wall/blood cell biocompatibility. We performed experiments, therefore, to determine the relationship between basal levels of cAMP, 13-HODE synthesis, and platelet/endothelial cell adhesion. We found that 13-HODE synthesis increased with elevated cAMP levels and that the elevated 13-HODE levels correlated with increased 18:2 turnover in the triacylglycerol pool. In contrast, neither 18:2 nor arachidonic acid (20:4) turnover in the phospholipid nor prostacyclin (PGI2) production were changed with elevated cAMP levels. Platelet/endothelial cell adhesion was inversely proportional to 13-HODE synthesis. We conclude that intracellular 13-HODE influences platelet/vessel wall interactions, is synthesized from 18:2 released from the endogenous triacylglycerol pool, and that this pathway is modulated by intracellular cAMP levels.  相似文献   

4.
Abstract The effects of several inhibitors of lipoxygenases were investigated in murine spleen cell cultures activated with endotoxin (lipopolysaccharide) It was found that these inhibitors interfere with the proliferative response of the cultures. Indomethacin, a specific cyclooxygenase inhibitor, had no such effect. Endotoxin induced the synthesis of tumour necrosis factor α in spleen cells which was prevented by treatment with a lipoxygenase inhibitor. The inhibition of the mitogenic effect of endotoxin could be reversed by addition of 13-hydroxyoctadecadienoic acid. This was not the case with leukotriene B4 and C4 or 15-hydroxyeicosatetraenoic acid. In contrast, these substances had inhibitory effects on the mitogenicity of spleen cells. It is suggested that 13-hydroxyoctadecadienoic acid is involved in the development of the mitogenic reaction, possibly on the level of tumour necrosis factor α production of macrophages present in the cultures.  相似文献   

5.
Fumaric acid is shown to be a competitive inhibitor of wheat germ lipoxygenase.  相似文献   

6.
A major bioactive metabolite of linoleic acid formed by the action of 15-lipoxygenase-1 is 13(S)-hydroxy-cis-9, trans-11-octadecadienoic acid (13(S)-HODE). 13(S)-HODE is an important intracellular signal agent and is involved in cell proliferation and differentiation in various biological systems. Separation and quantification of 13(S)-HODE from biological materials has previously been achieved only by using radiolabeled linoleic acid as the substrate and two serially connected or two separate HPLC columns to achieve separation of 13(S)-HODE. In the current method, separation and quantification of 13(S)-HODE was achieved by use of a normal-phase HPLC and a solvent system containing hexane/isopropanol/acetonitrile/acetic acid (800/8/30/1, v/v) using isocratic elution with detection at 235 nm. With the currently described method, good separation from unreacted interfering compounds and quantification for 13(S)-HODE were achieved within 35 min with a minimum detection limit of 0.5 ng per injection.  相似文献   

7.
8.
Caffeic acid is a selective inhibitor for leukotriene biosynthesis   总被引:16,自引:0,他引:16  
.eukotrienes are significantly involved in immunoregulation and in a variety of diseases, including asthma, inflammation and various allergic conditions. They are initially biosynthesized by 5-lipoxygenase from arachidonic acid, which can also be metabolized to prostaglandin endoperoxide by cyclooxygenase. The specific inhibitors for 5-lipoxygenase would be useful not only as tools for investigating the regulation mechanism of leukotriene biosynthesis, but also as drugs for clinical use. Although recently a few selective inhibitors have been reported, most of them are difficult to obtain, since they are new compounds. We found that caffeic acid, which is one of the most common reagents, is a selective inhibitor for 5-lipoxygenase and therefore for leukotriene biosynthesis. The inhibitory effect of its methyl ester on 5-lipoxygenase (ID50 = 4.8 X 10(-7) M) was stronger than that of caffeic acid itself (ID50 = 3.7 X 10(-6) M). Caffeic acid inhibited 5-lipoxygenase in a non-competitive manner. Caffeic acid and its methyl ester did not inhibit prostaglandin synthase activity at all, at least up to 5 X 10(-4) M, but rather stimulate at higher doses. The biosynthesis of leukotriene C4 and D4 in mouse mast tumor cells was also inhibited completely with 10(-4) caffeic acid. Besides, caffeic acid had little effect on arachidonic acid metabolism in platelet at less than 1 X 10(-5) M, but at higher doses it showed a definite inhibitory effect, i.e., thromboxane B2, HHT (12(S)-hydroxy-5,8,10-heptadecatetraenoic acid) and 12-HETE (12(S)-hydroxy-5,8,10,14-eicosatetraenoic acid) syntheses were inhibited 33, 40 and 80% at 1 X 10(-4) M, respectively. Platelet aggregation induced by arachidonic acid was also inhibited by caffeic acid at high dose, while platelet aggregation induced by ADP is not influenced by caffeic acid at all. The observations on caffeic acid and its derivatives may contribute to leukotriene research.  相似文献   

9.
10.
The lipoxygenase (LOX) pathway was proposed to compete with hydrolysis and be partly responsible for the metabolism of polyunsaturated N-acylethanolamines (PU-NAEs). Treatment of Arabidopsis seedlings with lauroylethanolamide (NAE 12:0) resulted in elevated levels of PU-NAE species, and this was most pronounced in plants with reduced NAE hydrolase activity. Enzyme activity assays revealed that NAE 12:0 inhibited LOX-mediated oxidation of PU lipid substrates in a dose-dependent and competitive manner. NAE 12:0 was 10-20 times more potent an inhibitor of LOX activities than lauric acid (FFA 12:0). Furthermore, treatment of intact Arabidopsis seedlings with NAE 12:0 (but not FFA 12:0) substantially blocked the wound-induced formation of jasmonic acid (JA), suggesting that NAE 12:0 may be used in planta to manipulate oxylipin metabolism.  相似文献   

11.
Acid sphingomyelinase (A-SMase, EC 3.1.4.12) catalyzes the lysosomal degradation of sphingomyelin to phosphorylcholine and ceramide. Inherited deficiencies of acid sphingomyelinase activity result in various clinical forms of Niemann-Pick disease, which are characterised by massive lysosomal accumulation of sphingomyelin. Sphingomyelin hydrolysis by both, acid sphingomyelinase and membrane-associated neutral sphingomyelinase, plays also an important role in cellular signaling systems regulating proliferation, apoptosis and differentiation. Here, we present a potent and selective novel inhibitor of A-SMase, L-alpha-phosphatidyl-D-myo-inositol-3,5-bisphosphate (PtdIns3,5P2), a naturally occurring substance detected in mammalian, plant and yeast cells. The inhibition constant Ki for the new A-SMase inhibitor PtdIns3,5P2 is 0.53 microM as determined in a micellar assay system with radiolabeled sphingomyelin as substrate and recombinant human A-SMase purified from insect cells. Even at concentrations of up to 50 microM, PtdIns3,5P2 neither decreased plasma membrane-associated, magnesium-dependent neutral sphingomyelinase activity, nor was it an inhibitor of the lysosomal hydrolases beta-hexosaminidase A and acid ceramidase. Other phosphoinositides tested had no or a much weaker effect on acid sphingomyelinase. Different inositol-bisphosphates were studied to elucidate structure-activity relationships for A-SMase inhibition. Our investigations provide an insight into the structural features required for selective, efficient inhibition of acid sphingomyelinase and may also be used as starting point for the development of new potent A-SMase inhibitors optimised for diverse applications.  相似文献   

12.
The relation between platelet-derived growth factor (PDGF)-induced smooth muscle cell migration, measured in Boyden chambers, and cellular arachidonic acid cascade was studied by using rat aortic smooth muscle cells. Partially purified PDGF stimulated cell migration significantly at a concentration of 1.33-133.0 micrograms/ml. Treatment of the cells with 10(-4)M of 5,8,11,14-eicosatetraynoic acid, an inhibitor of lipoxygenase and cyclooxygenase, and 10(-4)M of caffeic acid, a specific inhibitor of lipoxygenase, caused a significant suppression of PDGF-induced cell migration. Treatment with indomethacin, an inhibitor of cyclooxygenase, did not affect cell migration. These data indicate the involvement of a lipoxygenase product(s) of arachidonic acid in PDGF-associated smooth muscle cell migration.  相似文献   

13.
The effect of 13-hydroxyoctadeca-9,11-dienoic acid (13-HODE), a major lipoxygenase product of endothelial cell linoleic acid metabolism on thrombin-induced platelet thromboxane B2 (TxB2), and 12-hydroxyeico-satetraenoic acid (12-HETE) production was evaluated. 13-HODE inhibited thrombin-induced TxB2 production in human platelets in a concentration-dependent manner. At concentrations of 10 and 30 microM, 13-HODE inhibited TxB2 production by 28 +/- 8% (1SE, n = 5; P less than 0.05) and 48 +/- 6% (P less than 0.01) respectively. 13-HODE (30 microM) also inhibited the production of platelet hydroxyheptadecatrienoic acid (38 +/- 5%, P less than 0.01). A concomitant stimulation of 12-HETE production by 13-HODE was observed (25 +/- 5% and 49 +/- 22% over control values at 10 and 30 microM respectively, P less than 0.01). Our results demonstrate a differential effect of 13-HODE on thrombin stimulated platelet cyclooxygenase and lipoxygenase metabolites.  相似文献   

14.
Purified recombinant MurA (enolpyruvyl-UDP-GlcNAc synthase) overexpressed in Escherichia coli had significant amounts of UDP-MurNAc (UDP-N-acetylmuramic acid) bound after purification. UDP-MurNAc is the product of MurB, the next enzyme in peptidoglycan biosynthesis. About 25% of MurA was complexed with UDP-MurNAc after five steps during purification that should have removed it. UDP-MurNAc isolated from MurA was identified by mass spectrometry, NMR analysis, and comparison with authentic UDP-MurNAc. Subsequent investigation showed that UDP-MurNAc bound to MurA tightly, with K(d,UDP)(-)(MurNAc) = 0.94 +/- 0.04 microM, as determined by fluorescence titrations using ANS (8-anilino-1-naphthalenesulfonate) as an exogenous fluorophore. UDP-MurNAc binding was competitive with ANS and phosphate, the second product of MurA, and it inhibited MurA. The inhibition patterns were somewhat ambiguous, likely being competitive with the substrate PEP (phosphoenolpyruvate) and either competitive or noncompetitive with respect to the substrate UDP-GlcNAc (UDP-N-acetylglucosamine). These results indicate a possible role for UDP-MurNAc in regulating the biosynthesis of nucleotide precursors of peptidoglycan through feedback inhibition. Previous studies indicated that UDP-MurNAc binding to MurA was not tight enough to be physiologically relevant; however, this was likely an artifact of the assay conditions.  相似文献   

15.
  1. Download : Download high-res image (158KB)
  2. Download : Download full-size image
  相似文献   

16.
17.
LFM-A13, or alpha-cyano-beta-hydroxy-beta-methyl-N-(2,5-dibromophenyl)propenamide, was shown to inhibit Bruton's tyrosine kinase (Btk). Here we show that LFM-A13 efficiently inhibits erythropoietin (Epo)-induced phosphorylation of the erythropoietin receptor, Janus kinase 2 (Jak2) and downstream signalling molecules. However, the tyrosine kinase activity of immunoprecipitated or in vitro translated Btk and Jak2 was equally inhibited by LFM-A13 in in vitro kinase assays. Finally, Epo-induced signal transduction was also inhibited in cells lacking Btk. Taken together, we conclude that LFM-A13 is a potent inhibitor of Jak2 and cannot be used as a specific tyrosine kinase inhibitor to study the role of Btk in Jak2-dependent cytokine signalling.  相似文献   

18.
9,11-Iminoepoxyprosta-5,13-dienoic acid inhibits the thromboxane A2 synthetase in platelet and lung microsomal enzyme preparations and in intact platelets. It does not inhibit the protaglandin I2 synthetase in aorta or lung microsomes and intact Balb 3T3 fibroblasts. In lung microsomes, which contain both enzymes, 9,11-iminoepoxyprosta-5,13-dienoic acid inhibits only thromboxane A2 formation and augments prostaglandin I2 formation. This inhibitor is more selective than other reported prostaglandin endoperoxide analogs which inhibit the platelet thromboxane synthetase.  相似文献   

19.
In the present study, we report that phosphatidic acid (PA) functions as a novel, potent, and selective inhibitor of protein phosphatase 1 (PP1). The catalytic subunit of PP1alpha was inhibited by PA dose-dependently in a noncompetitive manner with a K(i) value of 80 nM. The inhibition by PA was specific to PP1 as PA failed to inhibit protein phosphatase 2A (PP2A) or PP2B. Furthermore, PA was the most effective and potent inhibitor of PP1 compared with other phospholipids. Because we recently showed that ceramides activated PP1, we next examined the effects of PA on ceramide stimulation of PP1. PA inhibited both basal and ceramide-stimulated PP1 activities, and ceramide showed potent and stereoselective activation of PP1 in the presence of PA. Next, the effects of PA on ceramide-induced responses were examined. Molt-4 cells took up PA dose- and time-dependently such that by 1 and 3 h, uptake of PA was 0.37 and 0. 65% of total PA added, respectively. PA at 30 microM and calyculin A at 10 nM (an inhibitor of PP1 and PP2A at low concentrations), but not okadaic acid at 10 nM (a PP2A inhibitor at low concentrations) prevented poly(ADP-ribose) polymerase proteolysis induced by C(6)-ceramide. Moreover, the combination of PA with okadaic acid prevented retinoblastoma gene product dephosphorylation induced by C(6)-ceramide. These data suggest that PA functions as a specific regulator of PP1 and may reverse or counteract those effects of ceramide that are mediated by PP1, such as apoptosis and retinoblastoma gene product dephosphorylation.  相似文献   

20.
It was previously demonstrated that sustained activation (30-60 min) of protein kinase C (PKC) results in translocation of PKC α and βII to the pericentrion, a dynamic subset of the recycling compartment whose formation is dependent on PKC and phospholipase D (PLD). Here we investigated whether the formation of the pericentrion modulates the ability of PKC to phosphorylate substrates, especially if it reduces substrate phosphorylation by sequestering PKC. Surprisingly, using an antibody that detects phosphosubstrates of classical PKCs, the results showed that the majority of PKC phosphosubstrates are phosphorylated with delayed kinetics, correlating with the time frame of PKC translocation to the pericentrion. Substrate phosphorylation was blocked by PLD inhibitors and was not observed in response to activation of a PKC βII mutant (F663D) that is defective in interaction with PLD and in internalization. Phosphorylation was also inhibited by blocking clathrin-dependent endocytosis, demonstrating a requirement for endocytosis for the PKC-dependent major phosphorylation effects. Serotonin receptor activation by serotonin showed a similar response to phorbol 12-myristate 13-acetate, implicating a potential role of delayed kinetics in G protein-coupled receptor signaling. Evaluation of candidate substrates revealed that the phosphorylation of the PKC substrate p70S6K kinase behaved in a similar manner. Gradient-based fractionation revealed that the majority of these PKC substrates reside within the pericentrion-enriched fractions and not in the plasma membrane. Finally, proteomic analysis of the pericentrion-enriched fractions revealed several proteins as known PKC substrates and/or proteins involved in endocytic trafficking. These results reveal an important role for PKC internalization and for the pericentrion as key determinants/amplifiers of PKC action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号