首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of a regulatory subunit of calcineurin (CaN beta) during rat spermatogenesis was examined in rat testes using a monoclonal antibody Va1. Results showed that a testis-specific isoform of CaN beta was expressed only 3 weeks after birth, when meiosis begins, and increased in amount depending on the maturation of spermatogenesis. The matured sperm, which consists of only post-meiotic cells, is most likely to have only the testis-specific isoform of CaN beta. The brain type isoform of CaN beta was not detected in rat sperm. Immunoblot analysis of testes from different rodent species by a monoclonal antibody Va1 showed that all rodent species examined had their own homologues corresponding to a testis-specific isoform of CaN beta in rats, although they showed distinctively different molecular weights on SDS-PAGE compared to the testis-specific isoform in rats. Each homologue was shown to be specifically expressed in post-meiotic phase of spermatogenesis, as was seen in rats.  相似文献   

2.
Lier S  Paululat A 《Gene》2002,298(2):109-119
The eukaryotic 26S proteasome plays a central role in ubiquitin-dependent intracellular protein metabolism. The multimeric holoenzyme is composed of two major subcomplexes, known as the 20S proteolytic core particle and the 19S regulatory particle (RP). The RP can be further dissected into two multisubunit complexes, the lid and the base complex. The lid complex shares striking similarities with another multiprotein complex, the COP9 signalosome. Several subunits of both complexes contain the characteristic PCI domain, a structural motif important for complex assembly. The COP9 signalosome was shown to act as a versatile regulator in numerous pathways. To help define the molecular interactions of the signalosome during Drosophila development, we performed a yeast two-hybrid screen to identify proteins that physically interact with subunit 2 of the complex, namely Alien/CSN2. Here, we report that Drosophila Rpn6, a non-ATPase subunit of the RP lid complex, interacts with Alien/CSN2 via its PCI domain. The temporal and spatial expression patterns of Rpn6 and alien/CSN2 overlap on a large scale during development providing additional evidence for their interaction in vivo. Analyses of an Rpn6 P element insertion mutant and newly generated Rpn6 alleles reveal that Rpn6 is essential for Drosophila development.  相似文献   

3.
We have previously cloned a cDNA encoding TBP-1, a protein present in the rat spermatid manchette and outer dense fibers of the developing sperm. TBP-1 contains a heptad repeat of six-leucine zipper fingers at the amino terminus and highly conserved ATPase and DNA/RNA helicase motifs toward the carboxyl terminus. TBP-1 is one of the 20 subunits forming the 19S regulatory complex of the 26S proteasome, an ATP-dependent multisubunit protease found in most eukaryotic cells. We now report the isolation of the 26S proteasome from rat testis and sperm tail and its visualization by whole-mount electron microscopy using negative staining. The 26S proteasome from rat testis was fractionated by Sephacryl S-400/Mono-Q chromatography using homogenates suspended in a 10% glycerol-supplemented buffer. Chromatographic fractions were analyzed by immunoblotting using a specific anti-TBP-1 serum. During the purification of Sak57, a keratin filament present in outer dense fibers from epididymal sperm, we detected a substantial amount of 26S proteasomes. Intact 26S proteasomes from rat testis display a rod-shaped particles about 45 nm in length and 11-17 nm in diameter. Each particle consists of a 20S barrel-shaped component formed by four rings (alphabetabetaalpha), capped by two polar 19S regulatory complexes, each identified by an element known as the "Chinese dragon head motif". TBP-1 is an ATPase-containing subunit of the 19S regulatory cap. Rat sperm preparations displayed both dissociated 26S proteasomes and Sak57 filaments. We hypothesize that 26S proteasomes in the perinuclear-arranged manchette are in a suitable location for recognition, sequestration, and degradation of accumulating ubiquitin-conjugated somatic and transient testis-specific histones during spermiogenesis. In the sperm tail, the 26S proteasome may have a role in the remodeling of the outer dense fibers and other tail components during epididymal transit.  相似文献   

4.
Most Rho family GTPases serve as key molecular switches in a wide spectrum of biological processes. An increasing number of studies have expanded their roles to the spermatogenesis. Several members of Rho family have been confirmed to be essential for mammalian spermatogenesis, but the precise roles of this family in male reproduction have not been well studied yet. Here we report a surprising function of an atypical and testis-specific Rho GTPase, RSA-14-44 in spermatogenesis. Featured by unique structural and expressional patterns, RSA-14-44 is distinguished from three canonical members of Rho cluster. Thus, we define RSA-14-44 as a new member of Rho GTPases family and rename it RhoS (Rho in spermatogenic cells). RhoS associates with PSMB5, a catalytic subunit of the proteasome, in a series of stage-specific spermatogenic cells. More importantly, RhoS does not directly modulate the cellular proteasome activity, but participates in regulating the stability of "unincorporated" PSMB5 precursors. Meanwhile, our data demonstrate that the activation of RhoS is prerequisite for negatively regulating the stability of PSMB5 precursors. Therefore, our finding uncovers a direct and functional connection between the Rho GTPase family and the pathway of proteasome biogenesis and provide new clues for deciphering the secrets of spermatogenesis.  相似文献   

5.
The testis-specific beta 2 tubulin of Drosophila is required for assembly and function of at least three architecturally different microtubule arrays (Kemphues et al., 1982). Two recessive male-sterile mutations in the B2t locus that encode partially functional, stable, variant forms of beta 2 tubulin cause defects in only certain microtubule-based processes during spermatogenesis. These mutations could thus identify aspects of beta tubulin primary structure critical for function only in specific microtubule arrays. In males carrying the B2t6 mutation, meiotic chromosome segregation and nuclear shaping are normal and flagellar axonemes are formed, but there is a subtle defect in axoneme structure; the outer doublet microtubules fill in with a central core normally seen only in the central pair and accessory microtubules. In homozygous B2t7 males, chromosome movement is usually normal during meiosis but cytokinesis often fails, cytoplasmic microtubules are assembled and nuclear shaping appears to be normal, but the flagellar axoneme lacks structural integrity. In contrast, the B2t8 allele affects a general property of tubulin, the ability to form normal side-to-side association of protofilaments (Fuller et al., 1987), and causes defects in meiosis, axoneme assembly and nuclear shaping. Certain combinations of these beta 2 tubulin mutations show interallelic complementation; in B2t6/B2t8 males functional sperm are produced and both variant subunits are incorporated into mature sperm, in the absence of wild-type beta 2 tubulin. Comparison of the phenotypes of the three partially functional beta 2 tubulin alleles reveals some aspects of tubulin primary structure more important for function in specific subsets of microtubule arrays, and other aspects required for the construction of microtubules in general.  相似文献   

6.
Analysis of Drosophila 26 S proteasome using RNA interference.   总被引:9,自引:0,他引:9  
We have utilized double-stranded RNA interference (RNAi) to examine the effects of reduced expression of individual subunits of the 26 S proteasome in Drosophila S2 cells. RNAi significantly decreased mRNA and protein levels of targeted subunits of both the core 20 S proteasome and the PA700 regulatory complex. Cells deficient in any of several 26 S proteasome subunits (e.g. d beta 5, dRpt1, dRpt2, dRpt5, dRpn2, and dRpn12) displayed decreased proteasome activity (as judged by hydrolysis of succinyl-Leu-Leu-Val-Tyr-aminomethylcoumarin), increased apoptosis, decreased cell proliferation without a specific block of the cell cycle, and accumulation of ubiquitinated cellular proteins. RNAi of many individual 26 S proteasome subunits promoted increased expression of many non-targeted subunits. This effect was not mimicked by chemical proteasome inhibitors such as lactacystin. Reduced expression of most targeted subunits disrupted the assembly of the 26 S proteasome. RNAi of six of eight targeted PA700 subunits disrupted that structure and caused accumulation of increased levels of uncapped 20 S proteasome. Notable exceptions included RNAi of dRpn10, a polyubiquitin binding subunit, and dUCH37, a ubiquitin isopeptidase. dRpn10-deficient cells showed a significant increase in succinyl-Leu-Leu-Val-Tyr-aminomethylcoumarin hydrolyzing activity of the 26 S proteasomes but accumulated polyubiquitinated proteins. d beta 5-Deficient cells had a phenotype similar to that of most PA700-deficient cells but also accumulated low molecular mass complexes containing subunits of the 20 S proteasome, probably representing unassembled precursors of the 20 S proteasomes. Cells deficient in several of the 26 S proteasome subunits were more resistant to otherwise toxic concentrations of various proteasome inhibitors. Our data suggest that those cells adapted to grow in conditions of impaired ubiquitin and proteasome-dependent protein degradation.  相似文献   

7.
In the present study, we report the cDNA cloning, characterization, and developmental expression of the 20S proteasome alpha5 subunit from the Mediterranean fruit fly Ceratitis capitata (medfly). Using an RT-PCR fragment that corresponds to the amino-terminal region of the Drosophila melanogaster 20S proteasome alpha5 subunit, we isolated a 987-bp cDNA that encodes the complete coding region of the medfly ortholog, which was named CcPSMA5. CcPSMA5 consists of 241 amino acids and has a predicted molecular weight of 26.4 kDa and pI 4.75. Comparison of the CcPSMA5 amino acid sequence with the sequences of all known 20S proteasome alpha5 subunits from different organisms indicated that the medfly 20S proteasome alpha5 subunit has the strongest homology to that of Drosophila. In situ hybridization showed that the CcPSMA5 gene is mapped in the region 44B of chromosome 4. Northern blot hybridization analysis showed that the CcPSMA5 mRNA has a size of approximately 1.2 kb. High levels of the CcPSMA5 mRNA were detected in freshly laid eggs, indicating that they were maternally deposited. The mRNA expression pattern during medfly development suggests that the CcPSMA5 gene is upregulated before mid-embryogenesis and at the onset of metamorphosis.  相似文献   

8.
9.
We recently reported that the proteasomal peptidase activities are altered in the cerebellum of mice with myelin oligodendrocyte glycoprotein (MOG) peptide-induced experimental autoimmune encephalomyelitis (EAE). To determine whether these fluctuations are caused by proteasome activation/inactivation and/or changes in the levels of individual β subunits, we characterized the proteasome subunit composition by western blotting. The results show that the rise in proteasomal peptidase activity in acute EAE correlates with an augmented expression of inducible β subunits whereas the decline in activity in chronic EAE correlates with a reduction in the amount of standard β subunits. Using pure standard (s) and immuno (i) 20S particles for calibration, we determined that the changes in the levels of catalytic subunits account for all of the fluctuations in peptidase activities in EAE. The i-20S and s-20S proteasome were found to degrade carbonylated β-actin with similar efficiency, suggesting that the amount of protein carbonyls in EAE may be controlled by the activity of both core particles. We also found an increase in proteasome activator 11S regulatory particle and a decrease in inhibitor proteasome inhibitor with molecular mass of 31 kDa levels in acute EAE, reflecting a response to inflammation. Elevated levels of 19S regulatory particle and 11S regulatory particle in chronic EAE, however, may occur in response to diminished proteasomal activity in this phase. These findings are central towards understanding the altered proteasomal physiology in inflammatory demyelinating disorders.  相似文献   

10.
The 26S proteasome is the multiprotein complex that degrades proteins that have been marked for destruction by the ubiquitin pathway. It is made up of two multisubunit complexes, the 20S catalytic core and the 19S regulatory complex. We describe the isolation and characterization of conditional mutants in the regulatory complex and their use to investigate interactions between different subunits. In addition we have investigated the localization of the 26S proteasome in fission yeast, by immunofluorescence in fixed cells and live cells with the use of a GFP-tagged subunit. Surprisingly, we find that in mitotic cells the 26S proteasome occupies a discrete intracellular compartment, the nuclear periphery. Electron microscopic analysis demonstrates that the complex resides inside the nuclear envelope. During meiosis the localization showed a more dynamic distribution. In meiosis I the proteasome remained around the nuclear periphery. However, during meiosis II there was a dramatic relocalization: initially, the signal occupied the area between the dividing nuclei, but at the end of mitosis the signal dispersed, returning to the nuclear periphery on ascospore formation. This observation implies that the nuclear periphery is a major site of proteolysis in yeast during mitotic growth and raises important questions about the function of the 26S proteasome in protein degradation.  相似文献   

11.
The THO complex is a conserved multisubunit protein complex that functions in the formation of export-competent messenger ribonucleoprotein (mRNP). Although the complex has been studied extensively at the single-cell level, its exact role at the multicellular organism level has been poorly understood. Here, we isolated a novel Drosophila male sterile mutant, garmcho (garm). Positional cloning indicated that garm encodes a subunit of the Drosophila THO complex, THOC5. Flies lacking THOC5 showed a meiotic arrest phenotype with severe nucleolar disruption in primary spermatocytes. A functional GFP-tagged fusion protein, THOC5-GFP, revealed a unique pattern of THOC5 localization near the nucleolus. The nucleolar distribution of a testis-specific TATA binding protein (TBP)-associated factor (tTAF), SA, which is required for the expression of genes responsible for sperm differentiation, was severely disrupted in mutant testes lacking THOC5. But THOC5 appeared to be largely dispensable for the expression and nuclear export of either tTAF target mRNAs or tTAF-independent mRNAs. Taken together, our study suggests that the Drosophila THO complex is necessary for proper spermatogenesis by contribution to the establishment or maintenance of nucleolar integrity rather than by nuclear mRNA export in spermatocytes.  相似文献   

12.
The final stage of spermatid terminal differentiation involves the removal of their bulk cytoplasm in a process known as spermatid individualization. Here we show that apoptotic proteins play an essential role during spermatid individualization in Drosophila melanogaster. Several aspects of sperm terminal differentiation, including the activation of caspases, are reminiscent of apoptosis. Notably, caspase inhibitors prevent the removal of bulk cytoplasm in spermatids and block sperm maturation in vivo, causing male sterility. We further identified loss-of-function mutations in one of the two Drosophila cyt-c genes, cyt-c-d, which block caspase activation and subsequent spermatid terminal differentiation. Finally, a giant ubiquitin-conjugating enzyme, dBruce, is required to protect the sperm nucleus against hypercondensation and degeneration. These observations suggest that an apoptosis-like mechanism is required for spermatid differentiation in Drosophila.  相似文献   

13.
14.
We previously reported that the ascidian sperm proteasome degrades the egg-coat protein extracellularly during fertilization. In order to explore an extracellular transport signal, we purified the proteasome from ascidian sperm and compared its subunit structure with egg and muscle proteasomes. The results showed that PSMA1/α6 subunit of the sperm proteasome is distinct from egg and muscle proteasomes. LC/MS/MS analysis revealed that the C-terminal 16 residues of sperm α6 subunit are processed. Whereas sperm-specific paralogous genes of α subunits are reported, its sperm-specific C-terminal processing is a newly discovered novel post-translational modification of the proteasome.  相似文献   

15.
The proteasome is the main proteolytic enzyme that functions in the ubiquitin-proteasome system. The 26S proteasome has multi-subunit protease complexes consisting of 20S subunits composed of four seven-numbered rings with two outer rings containing α subunits and two central rings composed of β subunits, and 19S caps of 6 ATPase and 11 non-ATPase subunits; however, it is unclear how these subunits are regulated and the 26S proteasomes assembled. To verify whether each subunit’s mRNA expression is associated with the mRNA expression of other proteasome subunits, we carried out expression analysis of 34 proteasome subunits mRNA on peripheral blood from 75 subjects. The expression of proteasome subunits mRNA was comparable in each individual of the studied population and the mRNA expression has been investigated in each 20S or 19S proteasome. Our results suggest that each type of subunit is regulated by respectively common factors, and that the 20S and 19S proteasomes are regulated by different systems.  相似文献   

16.
17.
18.
19.
The 26S proteasome is a multi‐catalytic ATP‐dependent protease complex that recognizes and cleaves damaged or misfolded proteins to maintain cellular homeostasis. The 26S subunit consists of 20S core and 19S regulatory particles. 20S core particle consists of a stack of heptameric alpha and beta subunits. To elucidate the structure‐function relationship, we have dissected protein‐protein interfaces of 20S core particle and analyzed structural and physiochemical properties of intra‐alpha, intra‐beta, inter‐beta, and alpha‐beta interfaces. Furthermore, we have studied the evolutionary conservation of 20S core particle. We find the size of intra‐alpha interfaces is significantly larger and is more hydrophobic compared with other interfaces. Inter‐beta interfaces are well packed, more polar, and have higher salt‐bridge density than other interfaces. In proteasome assembly, residues in beta subunits are better conserved than alpha subunits, while multi‐interface residues are the most conserved. Among all the residues at the interfaces of both alpha and beta subunits, Gly is highly conserved. The largest size of intra‐alpha interfaces complies with the hypothesis that large interfaces form first during the 20S assembly. The tight packing of inter‐beta interfaces makes the core particle impenetrable from outer wall of the cylinder. Comparing the three domains, eukaryotes have large and well‐packed interfaces followed by archaea and bacteria. Our findings provide a structural basis of assembly of 20S core particle in all the three domains of life.  相似文献   

20.
Complementary DNAs encoding two subunits of scallop (Patinopecten yessoensis) testis calcineurin were cloned, and the nucleotide sequences of their coding regions were determined. The deduced amino acid sequences of the catalytic subunit, calcineurin A (486 amino acid residues, M(r) 55,005.91), and the regulatory subunit, calcineurin B (170 residues, M(r) 19,237.67), showed high similarity to those of mammalian calcineurins, especially to the brain-type ones rather than to the testis-specific isoforms. Northern blot analysis showed that only a single species for each subunit was expressed in testis and the expression of each subunit increased dramatically from January to March during the maturation stages of the one-year cycle. The period when the maximum amount of mRNAs for calcineurin was expressed corresponds to the one immediately after meiosis, that is, the maturation stage in which 20-80% of the average testis is occupied by spermatozoa. The result is consistent with the one as to the expression of the testis-specific isoform of calcineurin A in mouse, which occurs immediately after meiosis. This is the first report on the stage-specific expression of calcineurin in invertebrate testis and its sequence similarity to the mammalian brain-type isoforms may indicate that the mammalian testis-specific isoforms appeared in evolution after the divergence of mammals from the mollusks and then diverged rapidly for specific functions in testis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号