首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
We have studied the effects of C28R2, a basic peptide derived from the autoinhibitory domain of the plasma membrane Ca-ATPase, on enzyme activity, oligomeric state, and E1-E2 conformational equilibrium of the Ca-ATPase from skeletal and cardiac sarcoplasmic reticulum (SR). Time-resolved phosphorescence anisotropy (TPA) was used to determine changes in the distribution of Ca-ATPase among its different oligomeric species in SR. C28R2, at a concentration of 1-10 microM, inhibits the Ca-ATPase activity of both skeletal and cardiac SR (CSR). In skeletal SR, this inhibition by C28R2 is much greater at low (0.15 microM) than at high (10 microM) Ca2+, whereas in CSR the inhibition is the same at low and high Ca2+. The effects of the peptide on the rotational mobility of the Ca-ATPase correlated well with function, indicating that C28R2-induced protein aggregation and Ca-ATPase inhibition are much more Ca-dependent in skeletal than in CSR. In CSR at low Ca2+, phospholamban (PLB) antibody (functionally equivalent to PLB phosphorylation) increased the inhibitory effect of C28R2 slightly. Fluorescence of fluorescein 5-isothiocyanate-labeled SR suggests that C28R2 stabilizes the E1 conformation of the Ca-ATPase in skeletal SR, whereas in CSR it stabilizes E2. After the addition of PLB antibody, C28R2 still stabilizes the E2 conformational state of CSR. Therefore, we conclude that C28R2 affects Ca-ATPase activity, conformation, and self-association differently in cardiac and skeletal SR and that PLB is probably not responsible for the differences.  相似文献   

2.
Chen B  Bigelow DJ 《Biochemistry》2002,41(47):13965-13972
We have measured conformational changes of phospholamban (PLB) induced both by its interaction with the SR Ca-ATPase and by phosphorylation of Ser-16 by cAMP-dependent protein kinase (PKA) using an engineered PLB having a single cysteine (Cys-24) derivatized with the fluorophore 2-(4'-maleimidylanilino)naphthalene-6-sulfonic acid (ANSmal). This modified mutant PLB is fully functional when co-reconstituted with the affinity-purified Ca-ATPase in liposomes. ANSmal emission properties and its solvent accessibility indicate that Cys-24 is in an aqueous environment outside the membrane. Fluorescence quenching and time-resolved anisotropy measurements of ANSmal-PLB demonstrate distinct structures for PLB in the free and Ca-ATPase-bound state. Both solvent exposure and probe motions of ANSmal are enhanced upon interaction of PLB with the Ca-ATPase. This conformational transition entails conversion of free PLB in a conformation which is insensitive to one which is sensitive to the phosphorylation state of PLB. Upon phosphorylation of Ca-ATPase-bound PLB, a decreased level of solvent exposure of ANSmal is observed, suggesting that the amino acid sequence of PLB near the lipid-water interface acts as a conformational switch in response to the phosphorylation of PLB. A longer correlation time, resolved by anisotropy measurements, corresponding to polypeptide chain fluctuations, is substantially restricted by interaction of PLB with the Ca-ATPase. This restriction is not reversed by phosphorylation of PLB, indicating that the region around Cys-24 near the lipid-water interface does not undergo dissociation from the Ca-ATPase. These results suggest that the phosphorylation by PKA induces a redistribution of PLB-Ca-ATPase protein contacts to relieve the inhibitory effect of PLB for the activation of calcium transport.  相似文献   

3.
Ferrington DA  Yao Q  Squier TC  Bigelow DJ 《Biochemistry》2002,41(44):13289-13296
Alterations in expression levels of phospholamban (PLB) relative to the sarcoplasmic reticulum (SR) Ca-ATPase have been suggested to underlie defects of calcium regulation in the failing heart and other cardiac pathologies. To understand how variation in PLB expression relative to that of the Ca-ATPase can modulate calcium transport, we have investigated the inhibition of the Ca-ATPase by PLB in native SR membranes from slow-twitch skeletal and cardiac muscle and in reconstituted proteoliposomes. Quantitative immunoblotting in combination with affinity-purified protein standards was used to measure protein concentrations of PLB and of the Ca-ATPase. Functional inhibition of the Ca-ATPase was determined from both the calcium concentrations for half-maximal activation (Ca(1/2)) and the shift in the calcium concentrations following release of PLB inhibition (i.e., (Delta)Ca(1/2)) by incubation with monoclonal antibodies against PLB, which are equivalent to phosphorylation of PLB by cAMP-dependent protein kinase. We report that equivalent levels of PLB inhibition and antibody-induced activation ((Delta)Ca(1/2) = 0.25 +/- 0.02 microM) are observed in SR membranes from slow-twitch skeletal and cardiac muscle, where molar stoichiometries of PLB expressed per Ca-ATPase vary, respectively, from 0.9 +/- 0.1 to 4.1 +/- 0.8. Similar levels of inhibition to those observed in isolated SR vesicles were observed using reconstituted proteoliposomes following co-reconstitution of affinity-purified Ca-ATPase with PLB. These results indicate that total expression levels of one PLB per Ca-ATPase result in full inhibition of the Ca-ATPase and, based on the measured K(D) (140 +/- 30 microM), suggests one PLB complexed with two Ca-ATPase molecules is sufficient for full inhibition of activity. Therefore, the excess PLB expressed in the heart over that required for inhibition suggests a capability for graded responses of the Ca-ATPase activity to endogenous kinases and phosphatases that modulate the level of phosphorylation necessary to relieve inhibition of the Ca-ATPase by PLB.  相似文献   

4.
Li J  Bigelow DJ  Squier TC 《Biochemistry》2004,43(13):3870-3879
Phospholamban (PLB) is a major target of the beta-adrenergic cascade in the heart, functioning to modulate contractile force by altering the rate of calcium re-sequestration by the Ca-ATPase. Functionally, inhibition by PLB binding is manifested by shifts in the calcium dependence of Ca-ATPase activation toward higher calcium levels; phosphorylation of PLB by PKA reverses the inhibitory action of PLB. To investigate structural changes in the cytoplasmic portion of PLB that result from either the phosphorylation of PLB by cAMP-dependent protein kinase (PKA) or calcium binding to the Ca-ATPase, we have used frequency-domain fluorescence spectroscopy to measure the spatial separation and conformational heterogeneity between N-(1-pyrenyl)maleimide, covalently bound to a single cysteine (Cys(24)) engineered near the membrane surface of the transmembrane domain of PLB, and Tyr(6) in the cytosolic domain. Irrespective of calcium activation of the Ca-ATPase or phosphorylation of Ser(16) in PLB by PKA, we find that PLB remains tightly associated with the Ca-ATPase in a well-defined conformation. However, calcium activation of the Ca-ATPase induces an increase in the overall dimensions of the cytoplasmic portion of bound PLB, whereas PLB phosphorylation results in a more compact structure, consistent with increased helical content induced by a salt link between phospho-Ser(16) and Arg(13). Thus, enzyme activation of the Ca-ATPase may occur through different mechanisms: calcium binding to high-affinity sites within the Ca-ATPase functions to overcome conformational constraints imposed by PLB on the N-domain of the Ca-ATPase; alternatively, phosphorylation stabilizes the backbone fold of PLB to release inhibitory interactions with the Ca-ATPase.  相似文献   

5.
Kinetics studies of the cardiac Ca-ATPase expressed in Sf21 cells (Spodoptera frugiperda insect cells) have been carried out to test the hypotheses that phospholamban inhibits Ca-ATPase cycling by decreasing the rate of the E1.Ca to E1'.Ca transition and/or the rate of phosphoenzyme hydrolysis. Three sample types were studied: Ca-ATPase expressed alone, Ca-ATPase coexpressed with wild-type phospholamban (the natural pentameric inhibitor), and Ca-ATPase coexpressed with the L37A-phospholamban mutant (a more potent monomeric inhibitor, in which Leu(37) is replaced by Ala). Phospholamban coupling to the Ca-ATPase was controlled using a monoclonal antibody against phospholamban. Gel electrophoresis and immunoblotting confirmed an equivalent ratio of Ca-ATPase and phospholamban in each sample (1 mol Ca-ATPase to 1.5 mol phospholamban). Steady-state ATPase activity assays at 37 degrees C, using 5 mM MgATP, showed that the phospholamban-containing samples had nearly equivalent maximum activity ( approximately 0.75 micromol. nmol Ca-ATPase(-1).min(-1) at 15 microM Ca(2+)), but that wild-type phospholamban and L37A-phospholamban increased the Ca-ATPase K(Ca) values by 200 nM and 400 nM, respectively. When steady-state Ca-ATPase phosphoenzyme levels were measured at 0 degrees C, using 1 microM MgATP, the K(Ca) values also shifted by 200 nM and 400 nM, respectively, similar to the results obtained by measuring ATP hydrolysis at 37 degrees C. Measurements of the time course of phosphoenzyme formation at 0 degrees C, using 1 microM MgATP and 268 nM ionized [Ca(2+)], indicated that L37A-phospholamban decreased the steady-state phosphoenzyme level to a greater extent (45%) than did wild-type phospholamban (33%), but neither wild-type nor L37A-phospholamban had any effect on the apparent rate of phosphoenzyme formation relative to that of Ca-ATPase expressed alone. Measurements of inorganic phosphate (P(i)) release concomitant with the phosphoenzyme formation studies showed that L37A-phospholamban decreased the steady-state rate of P(i) release to a greater extent (45%) than did wild-type phospholamban (33%). However, independent measurements of Ca-ATPase dephosphorylation after the addition of 5 mM EGTA to the phosphorylated enzyme showed that neither wild-type phospholamban nor L37A-phospholamban had any effect on the rate of phosphoenzyme decay relative to Ca-ATPase expressed alone. Computer simulation of the kinetics data indicated that phospholamban and L37A-phospholamban decreased twofold and fourfold, respectively, the equilibrium binding of the first Ca(2+) ion to the Ca-ATPase E1 intermediate, rather than inhibiting rate of the E.Ca to E'.Ca transition or the rate of phosphoenzyme decay. Therefore, we conclude that phospholamban inhibits Ca-ATPase cycling by decreasing Ca-ATPase Ca(2+) binding to the E1 intermediate.  相似文献   

6.
The effects of orthophosphate, nucleotide analogues, ADP, and covalent phosphorylation on the tryptic fragmentation patterns of the E1 and E2 forms of scallop Ca-ATPase were examined. Sites preferentially cleaved by trypsin in the E1 form of the Ca-ATPase were detected in the nucleotide (N) and phosphorylation (P) domains, as well as the actuator (A) domain. These sites were occluded in the E2 (Ca(2+)-free) form of the enzyme, consistent with mutual protection of the A, N, and P domains through their association into a clustered structure. Similar protection of cytoplasmic Ca(2+)-dependent tryptic cleavage sites was observed when the catalytic binding site for substrate on the E1 form of scallop Ca-ATPase was occupied by Pi, AMP-PNP, AMP-PCP, or ADP despite the presence of saturating levels of Ca2+. These results suggest that occupation of the catalytic site on E1 can induce condensation of the cytoplasmic domains to yield a unique structural intermediate that may be related to the form of the enzyme in which the active site is prepared for phosphoryl transfer. The effect of Pi on the E2 form of the scallop Ca-ATPase was also investigated, when it was found that formation of E2-P led to extreme resistance toward secondary cleavage by trypsin and stabilization of enzymatic activity for long periods of time.  相似文献   

7.
Our model of phospholamban (PLB) regulation of the cardiac Ca(2+)-ATPase in sarcoplasmic reticulum (SERCA2a) states that PLB binds to the Ca(2+)-free, E2 conformation of SERCA2a and blocks it from transitioning from E2 to E1, the Ca(2+)-bound state. PLB and Ca(2+) binding to SERCA2a are mutually exclusive, and PLB inhibition of SERCA2a is manifested as a decreased apparent affinity of SERCA2a for Ca(2+). Here we extend this model to explain the reversal of SERCA2a inhibition that occurs after phosphorylation of PLB at Ser(16) by protein kinase A (PKA) and after binding of the anti-PLB monoclonal antibody 2D12, which recognizes residues 7-13 of PLB. Site-specific cysteine variants of PLB were co-expressed with SERCA2a, and the effects of PKA phosphorylation and 2D12 on Ca(2+)-ATPase activity and cross-linking to SERCA2a were monitored. In Ca(2+)-ATPase assays, PKA phosphorylation and 2D12 partially and completely reversed SERCA2a inhibition by decreasing K(Ca) values for enzyme activation, respectively. In cross-linking assays, cross-linking of PKA-phosphorylated PLB to SERCA2a was inhibited at only two of eight sites when conducted in the absence of Ca(2+) favoring E2. However, at a subsaturating Ca(2+) concentration supporting some E1, cross-linking of phosphorylated PLB to SERCA2a was attenuated at all eight sites. K(Ca) values for cross-linking inhibition were decreased nearly 2-fold at all sites by PLB phosphorylation, demonstrating that phosphorylated PLB binds more weakly to SERCA2a than dephosphorylated PLB. In parallel assays, 2D12 blocked PLB cross-linking to SERCA2a at all eight sites regardless of Ca(2+) concentration. Our results demonstrate that 2D12 restores maximal Ca(2+)-ATPase activity by physically disrupting the binding interaction between PLB and SERCA2a. Phosphorylation of PLB by PKA weakens the binding interaction between PLB and SERCA2a (yielding more PLB-free SERCA2a molecules at intermediate Ca(2+) concentrations), only partially restoring Ca(2+) affinity and Ca(2+)-ATPase activity.  相似文献   

8.
S Negash  S Huang  T C Squier 《Biochemistry》1999,38(25):8150-8158
Phospholamban (PLB) is a major target of the beta-adrenergic cascade in the heart, and functions to modulate rate-limiting conformational transitions involving the transport activity of the Ca-ATPase. To investigate structural changes within the Ca-ATPase that result from the phosphorylation of PLB by cAMP-dependent protein kinase (PKA), we have covalently bound the long-lived phosphorescent probe erythrosin isothiocyanate (Er-ITC) to cytoplasmic sequences within the Ca-ATPase. Under these labeling conditions, the Ca-ATPase remains catalytically active, indicating that observed changes in rotational dynamics reflect normal conformational transitions. Two major Er-ITC labeling sites were identified using electrospray ionization mass spectrometry (ESI-MS), corresponding to Lys464 and Lys650, which are respectively located within the phosphorylation and nucleotide binding domains of the Ca-ATPase. Frequency-domain phosphorescence measurements of the rotational dynamics of Er-ITC bound to these cytoplasmic sequences within the Ca-ATPase permit the resolution of the dynamic structure of individual domain elements relative to the overall rotational motion of the entire Ca-ATPase polypeptide chain. We observe a significant decrease in the rotational dynamics of Er-ITC bound to the Ca-ATPase upon phosphorylation of PLB by PKA, as evidenced by an increase in the residual anisotropy. These results suggest that phosphorylation of PLB results in a structural reorientation of the phosphorylation or nucleotide binding domains with respect to the membrane normal. In contrast, calcium activation of the Ca-ATPase in the presence of dephosphorylated PLB results in no detectable change in the rotational dynamics of Er-ITC, suggesting that calcium binding and PLB phosphorylation have distinct effects on the conformation of the Ca-ATPase. We suggest that PLB functions to alter the efficiency of phosphoenyzme formation following calcium activation of the Ca-ATPase by modulating the spatial arrangement between ATP bound in the nucleotide binding domain and Asp351 in the phosphorylation domain.  相似文献   

9.
We have used chemical synthesis, functional reconstitution, and electron paramagnetic resonance (EPR) to probe the functional dynamics of phospholamban (PLB), which regulates the Ca-ATPase (SERCA) in cardiac sarcoplasmic reticulum. The transmembrane domain of PLB inhibits SERCA at low [Ca(2+)], but the cytoplasmic domain relieves this inhibition upon Ser16 phosphorylation. Monomeric PLB was synthesized with Ala11 replaced by the 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) spin label, which reports peptide backbone dynamics directly. PLB was reconstituted into membranes in the presence or absence of SERCA. TOAC-PLB showed normal inhibitory function, which was reversed by phosphorylation at Ser16 or by micromolar [Ca(2+)]. EPR showed that the PLB cytoplasmic domain exhibits two resolved conformations, a tense T state that is ordered and a relaxed R state that is dynamically disordered and extended. PLB phosphorylation shifts this equilibrium toward the R state and makes it more dynamic (hyperextended). Phosphorylation strongly perturbs the dynamics of SERCA-bound PLB without dissociating the complex, while micromolar [Ca(2+)] has no effect on PLB dynamics. A lipid anchor synthetically attached to the N terminus of PLB permits Ca-dependent SERCA inhibition but prevents the phosphorylation-induced disordering and reversal of inhibition. We conclude that the relief of SERCA inhibition by PLB phosphorylation is due to an order-to-disorder transition in the cytoplasmic domain of PLB, which allows this domain to extend above the membrane surface and induce a structural change in the cytoplasmic domain of SERCA. This mechanism is distinct from the one that relieves PLB-dependent SERCA inhibition upon the addition of micromolar [Ca(2+)].  相似文献   

10.
We have investigated the functional role of the flexible hinge region centered near the sequence TIEMP(21), which connects the N-terminal cytosolic and C-terminal membrane-spanning helical domains of phospholamban (PLB). Specifically, we ask if the conformation of this region is important to attain optimal inhibitory interactions with the Ca-ATPase. A genetically engineered PLB mutant was constructed in which Pro(21) was mutated to an alanine (P21A-PLB(C)); in this construct, all three transmembrane cysteines were substituted with alanines to stabilize the monomeric form of PLB, and a unique cysteine was introduced at position 24 near the hinge element (A24C), permitting the site-specific attachment of fluorescein-5-maleimide (FMal) to monitor structure changes. In agreement with prior measurements in cardiac SR microsomes, the calcium concentration associated with half-maximal activation (Ca(1/2)) of the Ca-ATPase, 290 +/- 10 nM, is shifted to 580 +/- 20 nM when co-reconstituted with PLB(C) (Pro21) as a result of a reduction in the cooperativity associated with the calcium-dependent structural transition. Kinetic simulations indicate that PLB(C) association with the Ca-ATPase results in a 75% reduction in the equilibrium constant associated with the formation of the second high-affinity calcium binding site. In comparison, there is a 43% reduction in KCa(1/2) upon reconstitution of the Ca-ATPase with P21A-PLB(C), which can be simulated by decreasing the equilibrium constant associated with the calcium-dependent structural activation by 50%. The diminished inhibitory action of P21A-PLB(C) is associated with alterations in the structure of the hinge element, as evidenced by the diminished solvent accessibility of FMal relative to the native structure. Likewise, increases in the alpha-helical content and decreases in the mobility of the carboxyl-terminal domain of P21A-PLB(C) are observed using circular dichroism and fluorescence spectroscopy. Collectively, these results indicate that the overall dimensions of the carboxyl-terminal domain of PLB are increased through a stabilization of secondary structural elements upon mutation in P21A-PLB(C) that result in a reduction in the ability of the amino-terminal cytosolic portion of PLB to productively inhibit the Ca-ATPase. Further, these results suggest that the unstructured characteristics of the flexible hinge region in PLB are critical for optimal inhibitory interactions with the Ca-ATPase and suggest its role as a conformational switch.  相似文献   

11.
Using a chemically defined reconstitution system, we performed a systematic study of key factors in the regulation of the Ca-ATPase by phospholamban (PLB). We varied both the lipid/protein and PLB/Ca-ATPase ratios, determined the effects of PLB phosphorylation, and compared the regulatory effects of several PLB mutants, as a function of Ca concentration. The reconstitution system allowed us to determine accurately not only the PLB effects on K(Ca) (Ca concentration at half-maximal activity) of the Ca-ATPase, but also the effects on V(max) (maximal activity). Wild-type PLB (WT-PLB) and two gain-of-function mutants, N27A-PLB and I40A-PLB, showed not only the previously reported increase in K(Ca), but also an increase in V(max). Specifically, V(max) increases linearly with the intramembrane PLB concentration, and is approximately doubled when the sample composition approaches that of cardiac SR. Upon phosphorylation of PLB at Ser-16, the K(Ca) effects were almost completely reversed for WT- and N27A-PLB but were only partially reversed for I40A-PLB. Phosphorylation induced a V(max) increase for WT-PLB, and a V(max) decrease for N27A- and I40A-PLB. We conclude that PLB and PLB phosphorylation affect V(max) as well as K(Ca), and that the magnitude of both effects is sensitive to the PLB concentration in the membrane.  相似文献   

12.
Phospholamban (PLB), a 52-amino acid integral membrane protein, regulates the Ca-ATPase (calcium pump) in cardiac sarcoplasmic reticulum through PLB phosphorylation mediated by beta-adrenergic stimulation. Based on site-directed mutagenesis and coexpression with Ca-ATPase (SERCA2a) in Sf21 insect cells or in HEK 293 cells, and on spin label detection of PLB oligomeric state in lipid bilayers, it has been proposed that the monomeric form of PLB is the inhibitory species, and depolymerization of PLB is essential for its regulatory function. Here we have studied the relationship between PLB oligomeric state and function by in vitro co-reconstitution of PLB and its mutants with purified Ca-ATPase. We compared wild type-PLB (wt-PLB), which is primarily a pentamer on SDS-polyacrylamide gel electrophoresis (PAGE) at 25 degrees C, with two of its mutants, C41L-PLB and L37A-PLB, that are primarily tetramer and monomer, respectively. We found that the monomeric mutant L37A-PLB is a more potent inhibitor than wt-PLB, supporting the previous proposal that PLB monomer is the inhibitory species. On the other hand, C41L-PLB, which has a monomeric fraction comparable to that of wt-PLB on SDS-PAGE at 25 degrees C, has no inhibitory activity when assayed at 25 degrees C. However, at 37 degrees C, a 3-fold increase in the monomeric fraction of C41L-PLB on SDS-PAGE resulted in inhibitory activity comparable to that of wt-PLB. Upon increasing the temperature from 25 to 37 degrees C, no change in fraction monomer or inhibitory activity for wt-PLB and L37A-PLB was observed. Based on these results, the extent of inhibition of Ca-ATPase by PLB or its mutants appears to depend not only on the propensity of PLB to dissociate into monomers but also on the relative potency of the particular PLB monomer when interacting with the Ca-ATPase.  相似文献   

13.
Li J  Xiong Y  Bigelow DJ  Squier TC 《Biochemistry》2004,43(2):455-463
Mutagenesis and cross-linking measurements have identified specific contact interactions between the cytosolic and the transmembrane sequences of phospholamban (PLB) and the Ca-ATPase, and in conjunction with the high-resolution structures of PLB and the Ca-ATPase, have been used to construct models of the PLB-ATPase complex, which suggest that PLB adopts a more extended structure within this complex. To directly test these predictions, we have used fluorescence resonance energy transfer to measure the average conformation and heterogeneity between chromophores covalently bound to the transmembrane and cytosolic domains of PLB reconstituted in proteoliposomes. In the absence of the Ca-ATPase, the cytosolic domain of PLB assumes a wide range of structures relative to the transmembrane sequence, which can be described using a model involving a Gaussian distribution of distances with an average distance (Rav) of less than 21 A and a half-width (HW) of 36 A. This conformational heterogeneity of PLB is consistent with the 10 structures resolved by NMR for the C41F mutant of PLB in organic cosolvents. In contrast, PLB bound to the Ca-ATPase assumes a unique and highly ordered conformation, where Rav = 14.0 +/- 0.3 A and HW = 3.7 +/- 0.6 A. The small spatial separation between the bound chromophores on PLB is inconsistent with an extended conformation of bound PLB in current models. Thus, to satisfy known interaction sites of PLB and the Ca-ATPase, these findings suggest a reorientation of the nucleotide binding domain of the Ca-ATPase toward the bilayer surface to bring known PLB binding sites into close juxtaposition with residues near the amino-terminus of PLB. Induction of an altered conformation of the nucleotide binding domain of the Ca-ATPase by PLB binding is suggested to underlie the reduced calcium sensitivity associated with PLB inhibition of the pump.  相似文献   

14.
The fluorescein 5'-isothiocyanate (FITC)-labeled lamb kidney Na+/K+-ATPase has been used to investigate enzyme function and ligand-induced conformational changes. In these studies, we have determined the effects of two monoclonal antibodies, which inhibit Na+/K+-ATPase activity, on the conformational changes undergone by the FITC-labeled enzyme. Monitoring fluorescence intensity changes of FITC-labeled enzyme shows that antibody M10-P5-C11, which inhibits E1 approximately P intermediate formation (Ball, W.J. (1986) Biochemistry 25, 7155-7162), has little effect on the E1 in equilibrium E2 transitions induced by Na+, K+, Mg2+ Pi or Mg2+. ouabain. The M10-P5-C11 epitope, which appears to reside near the ATP-binding site, does not significantly participate in these ligand interactions. In contrast, we find that antibody 9-A5 (Schenk, D.B., Hubert, J.J. and Leffert, H.L. (1984) J. Biol. Chem. 259, 14941-14951) inhibits both the Na+/K+-ATPase and p-nitrophenylphosphatase activity. Its binding produces a 'Na+-like' enhancement in FITC fluorescence, reduces the ability of K+ to induce the E1 in equilibrium E2 transition and converts E2.K+ to an E1 conformation. Mg2+ binding to the enzyme alters both the conformation of this epitope region and its coupling of ligand interactions. In the presence of Mg2+, 9-A5 binding stabilizes an E1.Mg2+ conformation such that K+-, Pi- and ouabain-induced E1----E2 or E1----E2-Pi transitions are inhibited. Oubain and Pi added together overcome this stabilization. These studies indicate that the 9-A5 epitope participates in the E1 in equilibrium E2 conformational transitions, links Na+-K+ interactions and ouabain extracellular binding site effects to both the phosphorylation site and the FITC-binding region. Antibody-binding studies and direct demonstration of 9-A5 inhibition of enzyme phosphorylation by [32P]Pi confirm the results obtained from the fluorescence studies. Antibody 9-A5 has also proven useful in demonstrating the independence of Mg2+ ATP and Mg2+Pi regulation of ouabain binding. In addition, [3H]ouabain and antibody-binding studies demonstrate that FITC-labeling alters the enzyme's responses to Mg2+ as well as ATP regulation.  相似文献   

15.
Phosphorylation of phospholamban (PLB) at Ser16 and/ or Thr17 is believed to release its inhibitory effect on sarcoplasmic reticulum calcium ATPase. Ser16 phosphorylation of PLB has been suggested to cause a conformational change that alters the interaction between the enzyme and protein. Using computer simulations, the conformational sampling of Ser16 phosphorylated PLB in implicit membrane environment is compared here with the unphosphorylated PLB system to investigate these conformational changes. The results suggest that conformational changes in the cytoplasmic domain of PLB upon phosphorylation at Ser16 increase the likelihood of unfavorable interactions with SERCA in the E2 state prompting a conformational switch of SERCA from E2 to E1. Phosphorylation of PLB at Thr17 on the other hand does not appear to affect interactions with SERCA significantly suggesting that the mechanism of releasing the inhibitory effect is different between Thr17 phosphorylated and Ser16 phosphorylated PLB.  相似文献   

16.
Reddy LG  Jones LR  Thomas DD 《Biochemistry》1999,38(13):3954-3962
Phospholamban (PLB), a 52-amino acid protein, regulates the Ca-ATPase (calcium pump) in cardiac sarcoplasmic reticulum (SR) through PLB phosphorylation mediated by beta-adrenergic stimulation. The mobility of PLB on SDS-PAGE indicates a homopentamer, and it has been proposed that the pentameric structure of PLB is important for its regulatory function. However, the oligomeric structure of PLB must be determined in its native milieu, a lipid bilayer containing the Ca-ATPase. Here we have used fluorescence energy transfer (FET) to study the oligomeric structure of PLB in SDS and dioleoylphosphatidylcholine (DOPC) lipid bilayers reconstituted in the absence and presence of Ca-ATPase. PLB was labeled, specifically at Lys 3 in the cytoplasmic domain, with amine-reactive fluorescent donor/acceptor pairs. FET between donor- and acceptor-labeled subunits of PLB in SDS solution and DOPC lipid bilayers indicated the presence of PLB oligomers. The dependence of FET efficiency on the fraction of acceptor-labeled PLB in DOPC bilayers indicated that it is predominantly an oligomer having 9-11 subunits, with approximately 10% of the PLB as monomer, and the distance between dyes on adjacent PLB subunits is 0.9 +/- 0.1 nm. When labeled PLB was reconstituted with purified Ca-ATPase, FET indicated the depolymerization of PLB into smaller oligomers having an average of 5 subunits, with a concomitant increase in the fraction of monomer to 30-40% and a doubling of the intersubunit distance. We conclude that PLB exists primarily as an oligomer in membranes, and the Ca-ATPase affects the structure of this oligomer, but the Ca-ATPase binds preferentially to the monomer and/or small oligomers. These results suggest that the active inhibitory species of PLB is a monomer or an oligomer having fewer than 5 subunits.  相似文献   

17.
Li J  Bigelow DJ  Squier TC 《Biochemistry》2003,42(36):10674-10682
We have used frequency-domain fluorescence spectroscopy to investigate the structural linkage between the transmembrane and cytosolic domains of the regulatory protein phospholamban (PLB). Using an engineered PLB having a single cysteine (Cys(24)) derivatized with the fluorophore N-(1-pyrenyl)maleimide (PMal), we have used fluorescence resonance energy transfer (FRET) to measure the average spatial separation and conformational heterogeneity between PMal bound to Cys(24) in the transmembrane domain and Tyr(6) in the cytosolic domain near the amino terminus of PLB. In these measurements, PMal serves as a FRET donor, and Tyr(6) serves as a FRET acceptor following its nitration by tetranitromethane. The native structure of PLB is retained following site-directed mutagenesis and chemical modification, as indicated by the ability of the derivatized PLB to fully regulate the Ca-ATPase following their co-reconstitution. To assess how phosphorylation modulates the structure of PLB itself, FRET measurements were made following reconstitution of PLB in membrane vesicles made from extracted sarcoplasmic reticulum membrane lipids. We find that the cytosolic domain of PLB assumes a wide range of conformations relative to the transmembrane sequence, consistent with other structural data indicating the presence of a flexible hinge region between the transmembrane and cytosolic domains of PLB. Phosphorylation of Ser(16) by PKA results in a 3 A decrease in the spatial separation between PMal at Cys(24) and nitroTyr(6) and an almost 2-fold decrease in conformational heterogeneity, suggesting a stabilization of the hinge region of PLB possibly through an electrostatic linkage between phosphoSer(16) and Arg(13) that promotes a coil-to-helix transition. This structural transition has the potential to function as a conformational switch, since inhibition of the Ca-ATPase requires disruption of the secondary structure of PLB in the vicinity of the hinge element to permit association with the nucleotide binding domain at a site located approximately 50 A above the membrane surface. Following phosphorylation, the stabilization of the helical content in the hinge domain will disrupt this inhibitory interaction by reducing the maximal dimension of the cytosolic domain of PLB. Thus, stabilization of the structure of PLB following phosphorylation of Ser(16) is part of a switching mechanism, which functions to alter binding interactions between PLB and the nucleotide binding domain of the Ca-ATPase that modulates enzyme inhibition.  相似文献   

18.
High pressure (100-150 MPa) increases the intensity and polarization of fluorescence of FITC-labeled Ca(2+)-ATPase in a medium containing 0.1 mM Ca2+, suggesting a reversible pressure-induced transition from the E1 into an E2-like state with dissociation of ATPase oligomers. Under similar conditions but using unlabeled sarcoplasmic reticulum vesicles, high pressure caused the reversible release of Ca2+ from the high-affinity Ca2+ sites of Ca(2+)-ATPase, as indicated by changes in the fluorescence of the Ca2+ indicator, Fluo-3; this was accompanied by reversible inhibition of the Ca(2+)-stimulated ATPase activity measured in a coupled enzyme system of pyruvate kinase and lactate dehydrogenase, and by redistribution of Prodan in the lipid phase of the membrane, as shown by marked changes in its fluorescence emission characteristics. In a Ca(2+)-free medium where the equilibrium favors the E2 conformation of Ca(2+)-ATPase the fluorescence intensity of FITC-ATPase was not affected or only slightly reduced by high pressure. The enhancement of TNP-AMP fluorescence by 100 mM inorganic phosphate in the presence of EGTA and 20% dimethylsulfoxide was essentially unaffected by 150 MPa pressure at pH 6.0 and was only slightly reduced at pH 8.0. As the enhancement of TNP-AMP fluorescence by Pi is associated with the Mg(2+)-dependent phosphorylation of the enzyme and the formation of Mg.E2-P intermediate, it appears that the reactions of Ca(2+)-ATPase associated with the E2 state are relatively insensitive to high pressure. These observations suggest that high pressure stabilizes the enzyme in an E2-like state characterized by low reactivity with ATP and Ca2+ and high reactivity with Pi. The transition from the E1 to the E2-like state involves a decrease in the effective volume of Ca(2+)-ATPase.  相似文献   

19.
We have used attenuated total reflection Fourier transform infrared (ATR-FTIR) and circular dichroism (CD) spectroscopies to identify secondary and dynamic structural changes within the Ca-ATPase that result from the functional inhibition of transport activity by phospholamban (PLB). Isotopically labeled [(13)C]PLB was expressed and purified from Escherichia coli and was functionally reconstituted with unlabeled Ca-ATPase, permitting the resolution of the amide I and II absorbance bands of the Ca-ATPase from those of [(13)C]PLB. Upon co-reconstitution of the Ca-ATPase with PLB, spectral shifts are observed in both the CD spectra and the amide I and II bands associated with the Ca-ATPase, which are indicative of increased alpha-helical stability. Corresponding changes in the kinetics of H/D exchange occur upon association with PLB, indicating that 100 +/- 20 residues in the Ca-ATPase that normally undergo rapid amide H/D exchange become exchange resistant. There are no corresponding large changes in the secondary structure of PLB. The affinity of the structural interaction between PLB and the Ca-ATPase is virtually identical to that associated with functional inhibition (K(d) = 140 +/- 30 microM), confirming that the inhibitory regulation of the Ca-ATPase by PLB involves the stabilization of alpha-helices within the Ca-ATPase.  相似文献   

20.
Magnesium stimulates phosphorylation of the calcium pump protein of the sarcoplasmic reticulum by inorganic phosphate, but the effect is reversed by high [Mg2+]. This reversal is readily explained in terms of the generally accepted existence of two conformational states of the enzyme, E1 and E2. E2 is the form of the enzyme that can be phosphorylated by Pi, and it has one binding site for Mg2+. E1 is the form of the enzyme that has two high-affinity Ca2+ binding sites, and it is phosphorylated by ATP when Ca2+ is bound. Mg2+ can bind weakly to the two Ca2+ sites and to a third site known to be present on E1; this stabilizes E1 at the expense of E2 when [Mg2+] is large. Stabilization of E1 at pH 6.2 and 25 degrees C was found to be a highly cooperative function of [Mg2+] and was not prevented by increasing [Pi]. The latter result requires the existence of a binding site for Pi on E1, with an affinity for Pi comparable to that of E2. Cooperativity with respect to [Mg2+] requires that E2 is the stable state of the enzyme in the absence of ligands, with an equilibrium constant [E2]/[E1] on the order of 10(3) or higher at pH 6.2 and 25 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号