首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bacterial insertion sequence IS911 transposes via a covalently closed circular intermediate. Circle formation involves transposase-mediated pairing of both insertion sequence ends. While full-length transposase, OrfAB, binds poorly in vitro to IS911 DNA fragments carrying a copy of the IS911 end, truncated protein derivatives carrying the first 135 (OrfAB[1-135]) or 149 (OrfAB[1-149]) amino acid residues bind efficiently. They generate a paired-end complex containing two such fragments which resembles that expected for the first synaptic complex. Shorter protein derivatives lacking a region involved in multimerisation do not form these complexes but modify the binding of OrfAB[1-135] and OrfAB[1-149]. DNaseI footprinting demonstrated that OrfAB[1-149] protects a sub-terminal (internal) region of the inverted repeats which includes two blocks of sequence (beta and gamma) conserved between the left (IRL) and right (IRR) ends. DNA binding assays in vitro and measurement of recombination activity in vivo of sequential deletion derivatives of the two inverted repeats suggested a model in which the N-terminal region of OrfAB binds the conserved boxes beta and gamma in a sequence-specific manner and anchors the two insertion sequence ends into a paired-end complex. The external region of the inverted repeat is proposed to contact the C-terminal transposase domain carrying the catalytic site.  相似文献   

2.
It is shown here that the bacterial insertion sequence IS 911 exhibits a temperature-sensitive transposition phenotype. Previous results have demonstrated that elevated levels of the IS 911 transposase OrfAB generate significant quantities of a figure-eight form, created by cleavage and circularization of one of the transposon strands, and of an excised circular form, in which both transposon strands have been circularized. We show here that the level of both types of molecule observed in vivo was greatly reduced at 42°C compared with 37°C. On the other hand, reducing the temperature to 30°C resulted in a significant increase in production. Transposition activity at this temperature was sufficiently high to permit detection in vivo of an excised circular form of a defective single IS 911 chromosomal copy when OrfAB is supplied in trans . A similar temperature–activity profile is observed for a cell-free reaction that uses partially purified OrfAB and generates the figure-eight form uniquely. Moreover, two point mutants of OrfAB were obtained, which render the reactions partially temperature resistant both in vivo and in vitro . These results suggest that some property of transposase itself is sensitive to elevated temperatures.  相似文献   

3.
IS911 transposition involves a closed circular insertion sequence intermediate (IS-circle) and two IS-encoded proteins: the transposase OrfAB and OrfA which regulates IS911 insertion. OrfAB alone promotes insertion preferentially next to DNA sequences resembling IS911 ends while the addition of OrfA strongly stimulates insertion principally into DNA targets devoid of the IS911 end sequences. OrfAB shares its N-terminal region with OrfA. This includes a helix-turn-helix (HTH) motif and the first three of four heptads of a leucine zipper (LZ). OrfAB binds specifically to IS911 ends via its HTH whereas OrfA does not. We show here: that OrfA binds DNA non-specifically and that this requires the HTH; that OrfA LZ is required for its multimerization; and that both motifs are essential for OrfA activity. We propose that these OrfA properties are required to assemble a nucleoprotein complex committed to random IS911 insertion. This control of IS911 insertion activity by OrfA in this way would assure its dispersion.  相似文献   

4.
Efficient intermolecular transposition of bacterial insertion sequence IS911 involves the activities of two element-encoded proteins: the transposase, OrfAB, and a regulatory factor, OrfA. OrfA shares the majority of its amino acid sequence with the N-terminal part of OrfAB. This includes a putative helix-turn-helix and three of four heptads of a leucine zipper motif. OrfA strongly stimulates OrfAB-mediated intermolecular transposition both in vivo and in vitro. The present results support the notion that this is accomplished by direct interaction between these two proteins via the leucine zipper. We used both a genetic approach, based on gene fusions with phage lambda repressor, and a physical approach, involving co-immunoprecipitation, to show that OrfA not only undergoes oligomerisation but is capable of engaging with OrfAB to form heteromultimers, and that the leucine zipper is necessary for both types of interaction. Furthermore, mutation of the leucine zipper in OrfA inactivated its regulatory function. Previous observations demonstrated that the integrity of the leucine zipper motif was also important for OrfAB binding to the IS911 terminal inverted repeats. Here, we show, in gel shift experiments, using a derivative of OrfAB deleted for the C-terminal catalytic domain, OrfAB[1-149], that the protein is capable of pairing two inverted repeats to generate a species resembling a "synaptic complex". Preincubation of OrfAB[1-149] with OrfA dramatically reduced formation of this complex and favored formation of an alternative complex devoid of OrfA. Together these results suggest that OrfA exerts its regulatory effect by interacting transiently with OrfAB via the leucine zipper and modifying OrfAB binding to the inverted repeats.  相似文献   

5.
IS911 is a bacterial insertion sequence composed of two consecutive overlapping open reading frames (ORFs [orfA and orfB]) encoding the transposase (OrfAB) as well as a regulatory protein (OrfA). These ORFs are bordered by terminal left and right inverted repeats (IRL and IRR, respectively) with several differences in nucleotide sequence. IS911 transposition is asymmetric: each end is cleaved on one strand to generate a free 3′-OH, which is then used as the nucleophile in attacking the opposite insertion sequence (IS) end to generate a free IS circle. This will be inserted into a new target site. We show here that the ends exhibit functional differences which, in vivo, may favor the use of one compared to the other during transposition. Electromobility shift assays showed that a truncated form of the transposase [OrfAB(1-149)] exhibits higher affinity for IRR than for IRL. While there was no detectable difference in IR activities during the early steps of transposition, IRR was more efficient during the final insertion steps. We show here that the differential activities between the two IRs correlate with the different affinities of OrfAB(1-149) for the IRs during assembly of the nucleoprotein complexes leading to transposition. We conclude that the two inverted repeats are not equivalent during IS911 transposition and that this asymmetry may intervene to determine the ordered assembly of the different protein-DNA complexes involved in the reaction.  相似文献   

6.
7.
High levels of expression of the transposase OrfAB of bacterial insertion sequence IS911 leads to the formation of excised transposon circles, in which the two abutted ends are separated by 3 bp. Initially, OrfAB catalyses only single-strand cleavage at one 3' transposon end and strand transfer of that end to the other. It is believed that this molecule, in which both transposon ends are held together in a single-strand bridge, is then converted to the circular form by the action of host factors. The transposon circles can be integrated efficiently into an appropriate target in vivo and in vitro in the presence of OrfAB and a second IS911 protein OrfA. In the results reported here, we have identified linear transposon forms in vivo from a transposon present in a plasmid, raising the possibility that IS911 can also transpose using a cut-and-paste mechanism. However, the linear species appeared not to be derived directly from the plasmid-based copy by direct double-strand cleavages at both ends, but from preformed excised transposon circles. This was confirmed further by the observation that OrfAB can cleave a cloned circle junction both in vivo and in vitro by two single-strand cleavages at the 3' transposon ends to generate a linear transposon form with a 3'-OH and a three-nucleotide 5' overhang at the ends. Moreover, while significantly less efficient than the transposon circle, a precleaved linear transposon underwent detectable levels of integration in vitro. The possible role of such molecules in the IS911 transposition pathway is discussed.  相似文献   

8.
Efficient transposition of IS911 circles in vitro.   总被引:5,自引:0,他引:5       下载免费PDF全文
B Ton-Hoang  P Polard    M Chandler 《The EMBO journal》1998,17(4):1169-1181
An in vitro system has been developed which supports efficient integration of transposon circles derived from the bacterial insertion sequence IS911. Using relatively pure preparations of IS911-encoded proteins it has been demonstrated that integration into a suitable target required both the transposase, OrfAB, a fusion protein produced by translational frameshifting between two consecutive open reading frames, orfA and orfB, and OrfA, a protein synthesized independently from the upstream orfA. Intermolecular reaction products were identified in which one or both transposon ends were used. The reaction also generated various intramolecular transposition products including adjacent deletions and inversions. The circle junction, composed of abutted left and right IS ends, retained efficient integration activity when carried on a linear donor molecule, demonstrating that supercoiling in the donor molecule is not necessary for the reaction. Both two-ended integration and a lower level of single-ended insertions were observed under these conditions. The frequency of these events depended on the spacing between the transposon ends. Two-ended insertion was most efficient with a natural spacing of 3 bp. These results demonstrate that transposon circles can act as intermediates in IS911 transposition and provide evidence for collaboration between the two major IS911-encoded proteins, OrfA and OrfAB.  相似文献   

9.
The IS1 bacterial insertion sequence family, considered to be restricted to Enterobacteria, has now been extended to other Eubacteria and to Archaebacteria, reviving interest in its study. To analyse the functional domains of the InsAB' transposase of IS1A, a representative of this family, we used an in vivo system which measures IS1-promoted rescue of a temperature-sensitive pSC101 plasmid by fusion with a pBR322::IS1 derivative. We also describe the partial purification of the IS1 transposase and the development of several in vitro assays for transposase activity. These included a DNA band shift assay, a transposase-mediated cleavage assay and an integration assay. Alignments of IS family members (http://www-is.biotoul.fr) not only confirmed the presence of an N-terminal helix-turn-helix and a C-terminal DDE motif in InsAB', but also revealed a putative N-terminal zinc finger. We have combined the in vitro and in vivo tests to carry out a functional analysis of InsAB' using a series of site-directed InsAB' mutants based on these alignments. The results demonstrate that appropriate mutations in the zinc finger and helix-turn-helix motifs result in loss of binding activity to the ends of IS1 whereas mutations in the DDE domain are affected in subsequent transposition steps but not in end binding.  相似文献   

10.
Initiation of transposition requires formation of a synaptic complex between both transposon ends and the transposase (Tpase), the enzyme which catalyses DNA cleavage and strand transfer and which ensures transposon mobility. We have used a single-molecule approach, tethered particle motion (TPM), to observe binding of a Tpase derivative, OrfAB[149], amputated for its C-terminal catalytic domain, to DNA molecules carrying one or two IS911 ends. Binding of OrfAB[149] to a single IS911 end provoked a small shortening of the DNA. This is consistent with a DNA bend introduced by protein binding to a single end. This was confirmed using a classic gel retardation assay with circularly permuted DNA substrates. When two ends were present on the tethered DNA in their natural, inverted, configuration, Tpase not only provoked the short reduction in length but also generated species with greatly reduce effective length consistent with DNA looping between the ends. Once formed, this 'looped' species was very stable. Kinetic analysis in real-time suggested that passage from the bound unlooped to the looped state could involve another species of intermediate length in which both transposon ends are bound. DNA carrying directly repeated ends also gave rise to the looped species but the level of the intermediate species was significantly enhanced. Its accumulation could reflect a less favourable synapse formation from this configuration than for the inverted ends. This is compatible with a model in which Tpase binds separately to and bends each end (the intermediate species) and protein-protein interactions then lead to synapsis (the looped species).  相似文献   

11.
The role played by insertion sequence IS911 proteins, OrfA and OrfAB, in the choice of a target for insertion was studied. IS911 transposition occurs in several steps: synapsis of the two transposon ends (IRR and IRL); formation of a figure-of-eight intermediate where both ends are joined by a single-strand bridge; resolution into a circular form carrying an IRR-IRL junction; and insertion into a DNA target. In vivo, with OrfAB alone, an IS911-based transposon integrated with high probability next to an IS911 end located on the target plasmid. OrfA greatly reduced the proportion of these events. This was confirmed in vitro using a transposon with a preformed IRR-IRL junction to examine the final insertion step. Addition of OrfA resulted in a large increase in insertion frequency and greatly increased the proportion of non-targeted insertions. The intermolecular reaction leading to targeted insertion may resemble the intramolecular reaction involving figure-of-eight molecules, which leads to the formation of circles. OrfA could, therefore, be considered as a molecular switch modulating the site-specific recombination activity of OrfAB and facilitating dispersion of the insertion sequence (IS) to 'non-homologous' target sites.  相似文献   

12.
P Polard  M F Prre  O Fayet    M Chandler 《The EMBO journal》1992,11(13):5079-5090
We have investigated the role of three IS911-specified proteins in transposition in vivo: the products of the upstream (OrfA) and downstream (OrfB) open reading frames, and a transframe protein (OrfAB) produced by -1 translational frameshifting between orfA and orfB. The production of OrfAB alone is shown to lead both to excision and to circularization of the element and to be sufficient for intermolecular transposition into a plasmid target. Simultaneous and independent production of OrfA is shown to stimulate OrfAB-mediated intermolecular transposition while greatly reducing the appearance of transposon circles. We have not been able to detect a role for OrfB. Although under certain conditions, the vector plasmid undergoes precise resealing after IS911 excision, the data suggest that this is not normally the case and that the donor plasmid is not generally conserved. The use of IS911 derivatives carrying mutations in the terminal 2 bp suggested that circle formation represents a site-specific intramolecular transposition event. We present a model which explains both intra- and intermolecular transposition events in terms of a single reaction mechanism of the 'cut and paste' type.  相似文献   

13.
IS629 is 1,310 bp in length with a pair of 25-bp imperfect inverted repeats at its termini. Two partially overlapping open reading frames, orfA and orfB, are present in IS629, and two putative translational frameshift signals, TTTTG (T4G) and AAAAT (A4T), are located near the 3'-end of orfA. With the lacZ gene as the reporter, both T4G and A4T motifs are determined to be a -1 frameshift signal. Two peptides representing the two transframe products designated OrfAB' and OrfAB, are identified by a liquid chromatography-tandem mass spectrometric approach. Results of transposition assays show that OrfAB' is the transposase and that OrfAB aids in the transposition of IS629. Pulse-chase experiments and Escherichia coli two-hybrid assays demonstrate that OrfAB binds to and stabilizes OrfAB', thus increasing the transposition activity of IS629. This is the first transposable element in the IS3 family shown to have two functional frameshifted products involved in transposition and to use a transframe product to regulate transposition.  相似文献   

14.
When supplied with high levels of the IS911-encoded transposase, IS911-based transposons can excise as circles in which the right and left terminal inverted repeats are abutted. Formation of the circle junction is shown here to create a promoter, p(junc), which is significantly stronger than the indigenous promoter, pIRL, and is also capable of driving expression of the IS911 transposition proteins. High transposase expression from the circular transposon may promote use of the circle as an integration substrate. The results demonstrate that IS911 circles are highly efficient substrates for insertion into a target molecule in vivo. Insertion leads to the disassembly of p(junc) and thus to a lower level of synthesis of the transposition proteins. The observation that normal levels of IS911 transposition proteins supplied by wild-type copies of IS911 are also capable of generating transposon circles, albeit at a low level, reinforces the idea that the transposon circles might form part of the natural transposition cycle of IS911. These observations form the elements of a feedback control mechanism and have been incorporated into a model describing one possible pathway of IS911 transposition.  相似文献   

15.
16.
Transposon Tn5 employs a unique means of self-regulation by expressing a truncated version of the transposase enzyme that acts as an inhibitor. The inhibitor protein differs from the full-length transposase only by the absence of the first 55 N-terminal amino acid residues. It contains the catalytic active site of transposase and a C-terminal domain involved in protein-protein interactions. The three-dimensional structure of Tn5 inhibitor determined to 2.9-A resolution is reported here. A portion of the protein fold of the catalytic core domain is similar to the folds of human immunodeficiency virus-1 integrase, avian sarcoma virus integrase, and bacteriophage Mu transposase. The Tn5 inhibitor contains an insertion that extends the beta-sheet of the catalytic core from 5 to 9 strands. All three of the conserved residues that make up the "DDE" motif of the active site are visible in the structure. An arginine residue that is strictly conserved among the IS4 family of bacterial transposases is present at the center of the active site, suggesting a catalytic motif of "DDRE." A novel C-terminal domain forms a dimer interface across a crystallographic 2-fold axis. Although this dimer represents the structure of the inhibited complex, it provides insight into the structure of the synaptic complex.  相似文献   

17.
The IS911 bacterial transposable element uses -1 programmed translational frameshifting to generate the protein required for its mobility: translation initiated in one gene (orfA) shifts to the -1 frame and continues in a second overlapping gene (orfB), thus generating the OrfAB transposase. The A-AAA-AAG frameshift site of IS911 is flanked by two stimulatory elements, an upstream Shine-Dalgarno sequence and a downstream stem-loop. We show here that, while they can act independently, these stimulators have a synergistic effect when combined. Mutagenic analyses revealed features of the complex stem-loop that make it a low-efficiency stimulator. They also revealed the dual role of the upstream Shine-Dalgarno sequence as (i) a stimulator of frameshifting, by itself more potent than the stem-loop, and (ii) a mandatory determinant of initiation of OrfB protein synthesis on an AUU codon directly preceding the A6G motif. Both roles rely on transient base pairing of the Shine-Dalgarno sequence with the 3' end of 16S rRNA. Because of its effect on frameshifting, the Shine-Dalgarno sequence is an important determinant of the level of transposase in IS911-containing cells, and hence of the frequency of transposition.  相似文献   

18.
The Escherichia coli insertion sequence, IS 2 , is a member of the IS 3 family of bacterial transposable elements. Its transposase is a fusion protein, OrfAB, made by a programmed −1 translational frameshift near to the end of orfA and just after the start of orfB . We have characterized two major products of IS 2 intramolecular transposition, which accumulate in cells that express the IS 2 OrfAB fusion protein at elevated levels. The more abundant product is a minicircle composed of the complete IS 2 with just a single basepair (occasionally 2 bp) separating the two IS ends. In all cases, this basepair is derived from the vector sequence immediately adjacent to the left IS 2 end (IRL). The second product is a figure-eight molecule that contains all the IS 2 and vector sequences present in the parental plasmid. One DNA strand contains the parental sequences unrearranged. The other contains a single-stranded version of the minicircle junction — the precise 3' end of IRR has been cleaved and joined to a target just outside the 5' end of IRL; the remaining vector sequences have a free 5' end, derived from cleavage at the 3' end of IRR, and a free 3' end, released upon cleavage of the target site adjacent to IRL. We propose that figure-eight molecules are the precursor to IS 2 minicircles and that the formation of these two products is the initial step in IS 2 intermolecular transposition. This proposed transposition pathway provides a means for a transposase that can cleave only one strand at each IS end to produce simple insertions and avoid forming co-integrates.  相似文献   

19.
IS911 transposition involves a free circular transposon intermediate where the terminal inverted repeat sequences are connected. Transposase synthesis is usually driven by a weak promoter, p(IRL), in the left end (IRL). Circle junction formation creates a strong promoter, p(junc), with a -35 sequence located in the right end and the -10 sequence in the left. p(junc) assembly would permit an increase in synthesis of transposase from the transposon circle, which would be expected to stimulate integration. Insertion results in p(junc) disassembly and a return to the low p(IRL)- driven transposase levels. We demonstrate that p(junc) plays an important role in regulating IS911 transposition. Inactivation of p(junc) strongly decreased IS911 transposition when transposase was produced in its natural configuration. This novel feedback mechanism permits transient and controlled activation of integration only in the presence of the correct (circular) intermediate. We have also investigated other members of the IS3 and other IS families. Several, but not all, IS3 family members possess p(junc) equivalents, underlining that the regulatory mechanisms adopted to fine-tune transposition may be different.  相似文献   

20.
Using a combined in vivo and in vitro approach, we demonstrated that the transposition products generated by IS911 from a dimeric donor plasmid are different from those generated from a plasmid monomer. When carried by a monomeric plasmid donor, free IS911 transposon circles are generated by intra-IS recombination in which one IS end undergoes attack by the other. These represent transposition intermediates that undergo integration using the abutted left (IRL) and right (IRR) ends of the element, the active IRR-IRL junction, to generate simple insertions. In contrast, the two IS911 copies carried by a dimeric donor plasmid not only underwent intra-IS recombination to generate transposon circles but additionally participated in inter-IS recombination. This also creates an active IRR-IRL junction by generating a head-to-tail IS tandem dimer ([IS]2) in which one of the original plasmid backbone copies is eliminated in the formation of the junction. Both transposon circles and IS tandem dimers are generated from an intermediate in which two transposon ends are retained by a single strand joint to generate a figure 8 molecule. Inter-IS figure 8 molecules generated in vitro could be resolved into the [IS]2 form following introduction into a host strain by transformation. Resolution did not require IS911 transposase. The [IS]2 structure was stable in the absence of transposase but was highly unstable in its presence both in vivo and in vitro. Previous studies had demonstrated that the IRR-IRL junction promotes efficient intermolecular integration and intramolecular deletions both in vivo and in vitro. Integration of the [IS]2 derivative would result in a product that resembles a co-integrate structure. It is also shown here that the IRR-IRL junction of the [IS]2 form and derivative structures can specifically target one of the other ends in an intramolecular transposition reaction to generate transposon circles in vitro. These results not only demonstrate that IS911 (and presumably other members of the IS3 family) is capable of generating a range of transposition products, it also provides a mechanistic framework which explains the formation and activity of such structures previously observed for several other unrelated IS elements. This behaviour is probably characteristic of a large number of IS elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号