首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 469 毫秒
1.
This is the second of two papers presenting the data from an experiment on the application of aerobically-digested sewage sludge (AES), anaerobic lagoon septic wastes (ANS), sewage sludge compost and fertilizer to soils for grass forage and feed corn production at two different sites in Nova Scotia. Crop yields, plant tissue and Mehlich-1 extractable soil nutrients were evaluated; 15 elements were analyzed in the plant tissue and 9 elements in the soil extracts. This paper describes the Ca, Mg, S, Fe, Mn, Cu, Zn and B content of the crops and the Mehlich-1 extractable content of the soils. The response to the amendments was not consistent at the two sites with the two different crops. We found that the septic sludge (ANS) produced the highest forage Fe, Cu and Zn levels and was equal to compost in elevating corn stover and forage S and the forage B content. The compost produced the highest forage Ca and corn Zn, the AES produced the highest corn Mn, and fertilizer produced the highest forage Mn. None of the amendments produced excessive levels of the above nutrients; rather, the amendments improved the feed quality of the forage and corn stover. Lastly, it was noted that the Mehlich-1 extract only had a significantly positive correlation with forage Cu content.  相似文献   

2.
The effects of application of nitrogen as calcium nitrate, urea or ammonium sulphate at two rates through the trickle irrigation system on pH and nutrient status of the wetted volume of soil below the emitters and on growth and nutrition of courgette (zucchini) plants (Cucurbita pepo L.) was investigated. Soil acidification, caused by nitrification, occurred to a large extent in the volume of soil immediately below the emitters in the urea and ammonium sulphate treatments. Acidification was greater at the high rate of N addition and more pronounced with ammonium sulphate than urea. A significant amount of applied urea appeared to move through the soil as urea and consequently, at the same rate of N addition, levels of ammonium were lower directly below the emitter and those of nitrate were higher further away from the emitters for the urea than ammonium sulphate treatments. Soil acidification below the emitters resulted in significant decreases in levels of exchangeable Ca, Mg and K and increases in levels of exchangeable Al, EDTA-extractable Fe, Mn, Zn and Cu and bicarbonate-extractable P. Vegetative growth and harvestable yields of courgettes were increased by both irrigation and nitrogen applications. Vegetative growth was generally greater at the low rate of N addition than at the high one and generally followed the order calcium nitrate > urea > ammonium sulphate. However, fruit yields followed the order urea > ammonium sulphate > calcium nitrate and were larger at the high rate of N for urea and ammonium sulphate treatments and unaffected by rate for the calcium nitrate treatments. It is suggested that with fertigation, the form of applied N can have significant physiological effects of plant growth and yields because N may be applied into the root zone on numerous occasions during the growing season.  相似文献   

3.
长期施肥对玉米生育期土壤微生物量碳氮及酶活性的影响   总被引:36,自引:0,他引:36  
以小麦-玉米轮作长期肥料定位试验为平台,探讨不同养分管理对玉米生育期塿土微生物量碳、氮和酶活性动态变化的影响。试验包括6个处理,分别为不施肥(CK)、单施氮肥(N)、氮磷配合(NP)、氮磷钾配合(NPK)、NPK+秸秆(SNPK)以及有机肥+NPK(MNPK)。结果表明玉米生育期土壤微生物量碳、氮变化显著。不同施肥管理下土壤微生物量碳、氮的高低显著性分别为MNPK>SNPK、NP、NPK>N、CK。玉米生育期内土壤酶活性也变化显著,蔗糖酶、脲酶和纤维素酶在玉米抽雄期达到活性高峰,而磷酸酶在玉米拔节期出现活性高峰。不同施肥管理对土壤酶活性的影响总体表现为MNPK处理最高,其次为SNPK处理,再次为NPK和NP处理,N和CK处理最低。不同施肥处理间土壤微生物量碳、氮以及酶活性与土壤有机碳、全氮、速效磷水平密切相关。塿土长期施用氮磷或氮磷钾化肥可以提高土壤微生物量碳、氮以及酶活性。一季作物秸秆还田配合氮磷钾化肥与氮磷钾相比有提高土壤微生物量碳、氮以及酶活性的趋势。在等氮量下,有机肥配合化肥与其他施肥模式相比,均显著提升土壤化学肥力因素、微生物量碳氮和酶活性。因此,塿土上建议进行有机无机肥配合以提高土壤肥力,保持土壤生物健康。  相似文献   

4.
Mineral elements are important components of medicinal herbs, and their concentrations are affected by many factors. In this study, Ca, Mg, Na, K, Fe, Mn, Cu, and Zn concentrations in wild Saposhnikovia divaricata and its rhizosphere soil collected from seven locations at two different times in China were measured, and influences of rhizosphere soil on those minerals in plant were evaluated. The results showed that mean concentrations of eight minerals in plant samples decreased in the order: Ca > Mg > Na > K > Fe > Zn > Mn > Cu, and those in the soil samples followed the following order: Na > Fe > Ca > K > Mg > Mn > Zn > Cu. Mean concentrations of Ca, Na, Mg, and K in plants were higher than those in soils, while higher mean concentrations of the other four minerals were found in soils. It was found that there was a positive correlation of Mg, Na, and Cu concentrations in the plant with those in the soil respectively, but a negative correlation of Mn concentration in plant with that in the soil. Except Ca, K, and Mn, the other five minerals in plant were all directly affected by one or more chemical compositions of soil. The results also indicate that pH value and concentrations of total nitrogen, Mg, Mn, and Cu in soil had significant correlations with multimineral elements in plant. In a word, mineral elements uptake of S. divaricata can be changed by adjusting the soil fertility levels to meet the need of appropriate quality control of S. divaricata.  相似文献   

5.
Summary The influence of community and edaphic variables on tissue nutrient concentration was assessed for seven species on aCarex wetland in southern Quebec, Canada.Potassium and sodium tissue levels were considerably higher and Ca and Mg 35% lower than in a deciduous forest. Macronutrient concentrations decreased in the order K>N>Ca>Mg>Na>P. Micronutrient concentrations (Fe>Mn>Zn>Cu) ranged from 0.038–0.005 mg/g. This was 2–3 times less abundant than in an adjacentScirpus wetland. Inter-species coefficient of variation in N, P and K was low (14%) compared to variation in Ca, Mg, and the micronutrients (35%).Principal components analysis of interrelations between tissue elements indicated a clear distinction between N, P, K, Cu, Mn, and Zn levels and ash, Ca, Mg, Na, and Fe levels on the first component. This difference related closely to water depth and fire incidence. The coincidence of burning with water depth and the period of maximum snowmelt and runoff in the Spring suggested the loss of N, P, K, Cu, Mn and Zn by volotilization, runoff, or leaching.Stem density was the most important parameter influencing tissue N, P, and K concentrations whereas soil nitrogen levels were important in ash, Ca, and Mg concentrations. Water depth was the most important variable in the case of Cu, Fe, Mn, Na and Zn levels. Typha angustifolia had the highest level of total nutrients in green tissue,Carex lanuginosa the lowest. Principal components analysis indicated soil nitrogen, water depth, and soil potassium levels, in that order, were the three most important variables influencing the patterns of tissue element variation among species.Potassium and sodium levels in 1-year old litter were 11% and 0.4% compared to concentrations in green tissue. Iron and manganese, both subject to oxidation and adsorption to litter at the soil surface, were distinctly higher (2247% and 199%) in litter than green tissue. Concentrations of these and other elements in litter were consistent with results reported in literature and indicated litter was especially active as a site of cation exchange in the system.  相似文献   

6.
The effect of wood ash, sawdust, ground cocoa husk, spent grain and rice bran upon root development, ash content, pod yield and nutrient status and soil fertility for okra (Abelmoschus esculentum L NHAe 47 variety) was studied. The five organic fertilizer treatments were compared to chemical fertilizer (400kg/ha/crop NPK 15-15-15) and unfertilized controls in four field experiments replicated four times in a randomized complete block design. The results showed that the application of 6tha(-1) of plant residues increased (P<0.05) the soil N, P, K, Ca, Mg, pH, and SOM; pod N, P, K, Ca, Mg and ash; root length; and pod yield of okra in all four experiments relative to the control treatment. For instance, spent grain treatment increased the okra pod yield by 99%, 33%, 50%, 49%, 65% and 67% compared to control, NPK, wood ash, cocoa husk, rice bran and sawdust treatments respectively. In the stepwise regression, out of the total R(2) value of 0.83 for the soil nutrients to the pod yield of okra; soil N accounted for 50% of the soil fertility improvement and yield of okra. Spent grain, wood ash and cocoa husk were the most effective in improving okra pod weight, pod nutrients, ash content, root length and soil fertility whereas the rice bran and sawdust were the least effective. This was because the spent grain, wood ash and cocoa husk had lower C/N ratio and higher nutrient composition than rice bran and sawdust, thus, the former enhanced an increase in pod nutrients, composition for better human dietary intake, increased the root length, pod weight of okra and improved soil fertility and plant nutrition crop. The significance of the increases in okra mineral nutrition concentration by plant residues is that consumers will consume more of these minerals in their meals and monetarily spend less for purchasing vitamins and mineral supplement drugs to meet health requirements. In addition, the increase in plant nutrition and soil fertility would help to reduce the high cost of buying synthetic inorganic fertilizers and maintain the long term productivity of soils for sustainable cultivation of okra.  相似文献   

7.
Effects of Fe-EDDHA (Sequestrene 138), Fe-polyflavonoid (Rayplex), and an experimental iron lignosulfonate on dry matter yields, Fe content, and plant chlorosis of grain sorghum were studied under controlled conditions, using a normal and an Fe-deficient soil (DTPA extract). Application rates of 20, 40, and 80 ppm Fe were employed. Dry matter yields increased due to Fe applications. The lignosulfonate (Fe-LS) produced maximum dry matter yields followed by Fe-EDDHA and the polyflavonoid (Fe-PF) material. At the 80 ppm rate Fe-EDDHA and Fe-PF produced moderate and slight toxic effects, respectively. No toxic effect was noted with the Fe-LS material. Fe-EDDHA was found to be the most effective for correcting iron chlorosis, while the other two sources were similar in this respect. Except for the Fe-LS applied to the normal soil, all other treatments increased Fe content of plant shoots. In the Fe-deficient soil, Fe application lowered the Ca, Mg, Zn, and Mn concentrations in the plants. In the case of the normal soil, concentrations of these elements increased at the 20 ppm rate and underwent no further changes with higher rates. Treatments did not influence K and P concentrations of plants.Additional index words: Micronutrients, Iron compounds.  相似文献   

8.
赵欢  秦松  王正银  李会合  吕慧峰 《生态学杂志》2013,24(12):3431-3138
采用田间调查研究和室内化学分析方法,研究了涪陵区主要茎瘤芥种植区土壤肥力因子及其与茎瘤芥产量的关系.结果表明: 茎瘤芥种植区土壤有效钙、镁、铁、锰、铜和锌含量较丰富,分别为3034、260、11.2、26.1、1.15和1.50 mg·kg-1,有效磷适中,为19.3 mg·kg-1;但有机质、碱解氮、速效钾和有效硫含量较为缺乏,分别为9.05 g·kg-1、89.2 mg·kg-1、106 mg·kg-1和27.0 mg·kg-1.茎瘤芥产量与土壤pH、有效钙呈极显著正相关,而与有效铁呈极显著负相关关系.土壤肥力因子对茎瘤芥产量的影响为:有效锰>有效铜>pH>有效铁>速效钾>有效钙>有效镁>有效硫>碱解氮>有效锌>有机质>有效磷;通过逐步回归分析剔除不显著变量,建立了土壤有效钙与茎瘤芥产量间的线性方程:Y=31636+3.63X6.
  相似文献   

9.
采用盆栽试验,研究元谋干热河谷燥红土和变性土上生长的植物叶片以及凋落叶营养元素含量,并分析养分重吸收效率对土壤类型与物种互作的响应.结果表明: 土壤类型对叶片N、P、Ca、Mg、Cu、Zn、Fe、N∶P以及凋落叶N、P、Mn、N∶P均有显著影响;燥红土植物叶片与凋落叶N、Mn含量和N∶P显著高于变性土,而燥红土植物叶片P、Ca、Mg、Fe、Cu、Zn和凋落叶P含量显著低于变性土.燥红土植物叶片N含量较变性土高34.8%,而P含量低40.0%;在叶片凋落时,N、P、K表现为重吸收,而其他元素呈富集状态.燥红土凋落叶Ca、Mg、Mn富集系数显著高于变性土.物种仅对叶片N含量有显著影响,物种与土壤交互作用对植物叶片和凋落叶元素含量影响不显著,表明各土壤类型对不同物种元素含量的影响方式较为一致.土壤类型对植物元素含量的影响可进一步作用于干热河谷植物凋落物分解、植物-土壤的养分反馈以及生物地球化学循环.  相似文献   

10.
Summary The Ca, Mg, S, Mn and Cu contents in leaves ofCoffea canephora trees selected in 64 plots under a 4×4×2 NPK trial were determined after seven years of fertilizer application. It was observed that NPK applications increased Mn uptake, P application increased the uptake of Cu, Ca and S while application of N and K did not enhance the uptake of Cu, Mg, Ca and S. It was shown that as a result of NPK applications, Ca and Mg had become deficient in coffee leaves, which corroborates earlier findings based on soil analysis.  相似文献   

11.
Summary Concentration of N, P, K, Ca, Mg and S in summer groundnut crop was higher than in kharif while Zn, Fe, Mn and Cu contents were higher in summer crop. Kernel's N, P and Zn; Leaflet's Ca and Mn; Stem's K and Fe; Root's S and Cu and Petiole's Mg contents were highest. Shell's N, P, K, Mg, S, Zn and Cu; Kernel's Ca, Fe and Mn contents were the least. N, P, K, S, Zn and Cu concentrations decreased linearly as the crop grew. Ca, Mg, Fe and Mn concentrations did not display any distinct pattern. Ca concentration was positively correlated with pod yield in both the seasons.  相似文献   

12.
The recycling of livestock manure in cropping systems is considered to enhance soil fertility and crop productivity. However, there have been no systematic long-term studies of the effects of manure application on soil and crop macro- and micro-nutrients, heavy metals, and crop yields in China, despite their great importance for sustainable crop production and food safety. Thus, we conducted field experiments in a typical cereal crop production area of the North China Plain to investigate the effects of compost manure application rates on wheat yield, as well as on the macro-/micro-nutrients and heavy metals contents of soil and wheat. We found that compost application increased the soil total N and the available K, Fe, Zn, and Mn concentrations, whereas the available P in soil was not affected, and the available Cu decreased. In general, compost application had no significant effects on the grain yield, biomass, and harvest index of winter wheat. However, during 2012 and 2013, the N concentration decreased by 9% and 18% in straw, and by 16% and 12% in grain, respectively. With compost application, the straw P concentration only increased in 2012 but the grain P generally increased, while the straw K concentration tended to decrease and the grain K concentration increased in 2013. Compost application generally increased the Fe and Zn concentrations in straw and grain, whereas the Cu and Mn concentrations decreased significantly compared with the control. The heavy metal concentrations increased at some compost application rates, but they were still within the safe range. The balances of the macro-and micro-nutrients indicated that the removal of nutrients by wheat was compensated for by the addition of compost, whereas the level of N decreased without the application of compost. The daily intake levels of micronutrients via the consumption of wheat grain were still lower than the recommended levels when sheep manure compost was applied, except for that of Mn.  相似文献   

13.
石山稀有濒危植物在迁地保护后的性状变异   总被引:8,自引:0,他引:8  
本文对比研究了7种石山稀有濒危植物在石灰岩土壤以及迁移到酸性土壤后的外形特征,生长发育习性及化学元素含量,结果表明,7种石山稀有濒危植物迁移到酸性土壤后发生了以下变化:1)外形变化主要表现为叶片变大变薄,有的植物种子或叶形有变化;2)迁移后开花,结实,落叶期晚1周以上,在气候条件相同的地区,营养生长期没有变化;3)植物体内的化学元素N,Zn,B,Al的含量增加20%以上,而Ca含量减少10%;4)Al的含量虽增加很多,但仍远低于酸性土壤中的植物;Ca的含量虽然减少,但仍高于酸性土壤植物;5)元素K,B的生物吸收系数在石灰岩土壤高于酸性土壤,其他元素N,P,Ca,Mg,Fe,Al,Mn,Zn的生物吸收系数则是酸性土壤高于石灰岩土壤。  相似文献   

14.
Summary twenty seven field experiments were conducted to determine if there were differences between five barley cultivars in their ability to utilize soil nutrients. There were significant differences among cultivars in yield of grain and in concentration of all macro and micro nutrients examined in both the whole plant and grain.Gateway ranked the highest for the concentration of Na, Mn, and Cu in the whole plant and was among the cultivars with highest concentration of Ca, Fe, and Zn. Centennial had generally the lowest concentration of all the nutrients determined in the whole plant. For the concentrations of Na, Mg, and Cu in grain Gateway ranked highest, but ranked third for the concentrations of K, Ca, Fe, Mn, and Zn in grain. Galt had the highest K and Mg concentration and lowest Mn, Cu and Zn concentration in grain. Except for K concentration in grain, Centennial had the lowest concentrations of all other cationic nutrients in grain.Yield of grain rather than nutrient concentration was the most important criteria in determining the ranking of nutrient yields per hectare. Because of its high grain yield, Bonanza produced the largest yield of micronutrient cations and was second to Galt in production of macronutrient cations, although it was lowest in macronutrient cation concentration. Similarly, Bonanza and Galt had the lowest protein concentration, but produced the highest yield of protein per hectare.The implications for animal nutrition of different levels of nutrients between cultivars are discussed.  相似文献   

15.
不同施肥方案对芒果果实品质与土壤肥力的影响   总被引:5,自引:0,他引:5  
以海南贵妃芒Mangifera indica ‘Guifei’为试材,在化肥、有机肥施用量上设置3个不同处理,研究不同施肥方案对芒果果实品质及土壤肥力的影响。结果表明,与单施化肥比较,T1和T2处理使果实可溶性固形物含量提高12.0%~22.1%,维生素C含量提高8.5%~28.5%,可滴定酸含量下降41.2%~42.4%,固酸比提高94.4%~107.5%;与对照相比,本研究中提供的施肥处理显著提高土壤有机质、全氮、有效磷、速效钾、交换性钙、交换性镁、电导率及pH值,提升土壤肥力。综合而言,T2处理(有机肥5 kg·株-1 + 尿素385 g·株-1 + 过磷酸钙350 g·株-1 + 高钾复合肥700 g·株-1)对改善果实品质和改良土壤肥力性状效果最佳。  相似文献   

16.
川东红池坝地区红三叶(Trifoliumpratense)和鸭茅(Dactylisglomerata)人工草地土壤和植物营养元素的含量特征如下:(1)土壤中的元素含量以铁、钾和镁较高,钠、钙、氮、锰和磷较低,硫、锌、硼、铜和钼微少;(2)从元素的富集特征来看,该区土壤中的钙、硫为重度淋溶元素,钾、磷、镁、锌、钠为中度淋溶元素,铁、铜属轻度淋溶元素,锰属富集元素;(3)根据元素的生物吸收系列,红三叶属氮-钙型植物,鸭茅属氮-钾-磷型植物。(4)两种牧草的生物吸收系数,均以钙、硫、磷较高,钠、铁较低,其余7种元素介于二者之间。  相似文献   

17.
The effects of mineral fertilizer (NPK) and organic manure on phospholipid fatty acid profiles and microbial functional diversity were investigated in a long-term (21-year) fertilizer experiment. The experiment included nine treatments: organic manure (OM), organic manure plus fertilizer NPK (OM + NPK), fertilizer NPK (NPK), fertilizer NP (NP), fertilizer NK (NK), fertilizer N (N), fertilizer P (P), fertilizer K (K), and the control (CK, without fertilization). The original soil was extremely eroded, characterized by low pH and deficiencies of nutrients, particularly N and P. The application of OM and OM + NPK greatly increased crop yields, soil pH, organic C, total N, P and K, available N, P and K content. Crop yields, soil pH, organic C, total N and available N were also clearly increased by the application of mineral NPK fertilizer. The amounts of total PLFAs, bacterial, Gram-negative and actinobacterial PLFAs were highest in the OM + NPK treatment, followed by the OM treatment, whilst least in the N treatment. The amounts of Gram-positive and anaerobic PLFAs were highest in the OM treatment whilst least in the P treatment and the control, respectively. The amounts of aerobic and fungal PLFAs were highest in the NPK treatment whilst least in the N and P treatment, respectively. The average well color development (AWCD) was significantly increased by the application of OM and OM + NPK, and the functional diversity indices including Shannon index (H ), Simpson index (D) and McIntosh index (U) were also significantly increased by the application of OM and OM + NPK. Principal component analysis (PCA) of PLFA profiles and C source utilization patterns were used to describe changes in microbial biomass and metabolic fingerprints from nine fertilizer treatments. The PLFA profiles from OM, OM + NPK, NP and NPK were significantly different from that of CK, N, P, K and NK, and C source utilization patterns from OM and OM + NPK were clearly different from organic manure deficient treatments (CK, N, P, K, NP, NK 6 and NPK). Stepwise multiple regression analysis showed that total N, available P and soil pH significantly affected PLFA profiles and microbial functional diversity. Our results could provide a better understanding of the importance of organic manure plus balanced fertilization with N, P and K in promoting the soil microbial biomass, activity and diversity and thus enhancing crop growth and production.  相似文献   

18.
C. Kaya  D. Higgs  H. Kirnak  I. Tas 《Plant and Soil》2003,253(2):287-292
The effect of arbuscular mycorrhizal (AM) colonisation by Glomus clarum on fruit yield and water use efficiency (WUE) was evaluated in watermelon (Citrullus lanatus) cv. Crimson Sweet F1 under field conditions. Treatments were: (1) well-watered plants without mycorrhizae (WW-M), (2) well-watered plants with mycorrhizae (WW+M), (3) water- stressed plants without mycorrhizae (WS-M) and (4) water-stressed plants with mycorrhizae (WS+M). When soil water tension readings reached –20 and –50 kPa for well-watered (WW) and water-stressed (WS) treatments, respectively, irrigation was initiated to restore the top soil to near field capacity. Water stress reduced watermelon shoot and root dry matter, fruit yield, water use efficiency but not total soluble solids (TSS) in the fruit, compared with the non-stressed treatments. Mycorrhizal plants had significantly higher biomass and fruit yield compared to nonmycorrhizal plants, whether plants were water stressed or not. AM colonisation increased WUE in both WW and WS plants. Macro- (N, P, K, Ca and Mg) and micro- (Zn, Fe and Mn) nutrient concentrations in the leaves were significantly reduced by water stress. Mycorrhizal colonisation of WS plants restored leaf nutrient concentrations to levels in WW plants in most cases. This is the first report of the mitigation of the adverse effect of water stress on yield and quality of a fruit crop.  相似文献   

19.
Fertilization of 1 × 4m plots of old-field vegetation in Minnesota, USA, with various compounds resulted in increased plant tissue concentrations of N, P, K, Ca, Mg, Na, and Mn. Microtrus pennsylvanicus showed significantly greater activity, estimated by scat counts, on plots fertilized with sodium sulphate. Data also suggested that increased Microtus activity in response to elevated plant tissue sodium concentration resulted in greater soil nitrogen availability and higher levels of nitrogen in plant tissues.  相似文献   

20.
丛枝菌根真菌群落对白三叶草生长的影响   总被引:11,自引:0,他引:11  
不同施肥处理影响AMF(Arbuscular mycorrhizal fungi)群体结构,然而不同AMF群体结构对植物的生长以及养分吸收的影响尚未见报道,试验利用盆栽实验研究了7种不同来源的丛枝菌根真菌(AMF)群落对白三叶草生长和N、P、K以及微量元素Cu、Zn、Mn的吸收的影响。7种AMF群落分离自长期定位施肥试验地,分别为NPK、OM、CK、1/2OM、NP、NK和PK。每年施肥量是300kg N/hm2,135kg P2O5/hm2,300kg K2O/hm2。有机肥处理的N、P、K养分量与试验地NPK处理含量相同,原料以粉碎的麦秆为主,加上适量的大豆饼和棉仁饼,有机肥经堆制发酵后施用。试验土壤采用封丘试验地土壤,经灭菌处理。试验结果表明,接种不同AMF群落均能促进三叶草的生长,对养分吸收则表现不同。分离自CK试验地的AMF群落对三叶草侵染率显著低于其它6种AMF群落。分离自1/2OM和OM试验地的AMF群落较分离自NPK、CK、NP和NK的AMF群落显著促进了三叶草对P的吸收;各种AMF群落都促进了对N和K的吸收;分离自OM、CK、1/2OM、NP、NK试验地的降低了三叶草植株N含量;分离自NPK试验地的AMF群落提高了三叶草植物K含量;对于Cu、Zn、Mn元素的吸收,不同处理存在较大的差异。AMF群落对三叶草生长以及养分吸收贡献不同,这与不同施肥管理下不同AMF群落的优势种属的侵染率、养分转化以及菌丝发育及分布有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号