首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polyacrylamide gel electrophoresis of DNA fragments obtained by the polymerase chain reaction using Taq polymerase revealed the presence of multiple fragments shorter than the expected product. These abortive extension products were observed even when analysis by agarose gel electrophoresis showed only a single band. The production of prematurely terminated fragments can be exploited for the sequencing of PCR products if phosphorothioate groups are incorporated base specifically during the reaction in the presence of two oligonucleotide primers, one of which is 5'-32P-labeled. The addition of snake venom phosphodiesterase to the reaction mixture after completion of the amplification cycles digests each fragment from the 3'-end to a phosphorothioate group so that the sequence can be read by polyacrylamide gel electrophoresis.  相似文献   

2.
The 3' to 5' exonuclease activity of bacteriophage T7 DNA polymerase (gene 5 protein) can be inactivated selectively by reactive oxygen species. Differences in the enzymatic properties between the two forms are exploited to show by a chemical screen that modification of a histidine residue reduces selectively the exonuclease activity. In vitro mutagenesis of the histidine at residue 123, and of the neighboring residues, results in varying reduction of the exonuclease activity, including mutant enzymes that have no detectable exonuclease activity; as a consequence their polymerase activity is increased up to 9-fold. T7 phage containing the mutant genes have a greatly reduced burst size and demonstrate up to a 14-fold increase in the spontaneous mutation rate.  相似文献   

3.
4.
Structural gene mutants were cloned and exploited to identify the major catalytic domains of Bacillus subtilis DNA polymerase III (BsPolIII), a 162.4-kDa [1437 amino acids (aa)] polymerase: 3'-5' exonuclease (Exo) required for replicative DNA synthesis. Analysis of the sequence, mutagenicity, and catalytic behavior of natural and site-directed point mutants of BsPolIII unequivocally located the domain involved in exonuclease catalysis within a 155-aa residue segment displaying homology with the Exo domain of Escherichia coli DNA polymerase I. Sequence analysis of four structural gene mutations which specifically alter then enzyme's reactivity to the inhibitory dGTP analog, 6-(p-hydroxyphenylhydrazino)uracil, and the inhibitory arabinonucleotide, araCTP, defined a domain (Pol) involved in dNTP binding. The Pol domain was in the C-terminal fourth of the enzyme within a 98-aa segment spanning aa 1175-1273. The primary structure of the domain was unique, displaying no obvious conservation in any other DNA polymerase, including the distantly related PolIIIs of the Gram- organisms, E. coli and Salmonella typhimurium.  相似文献   

5.
We have introduced a mutD5 mutation (which results in defective 3'-5'-exonuclease activity of the epsilon proofreading subunit of DNA polymerase III holoenzyme) into excision-defective Escherichia coli strains with varying SOS responses to UV light. MutD5 increased the spontaneous mutation frequency in all strains tested, including recA430, umuC122::Tn5, and umuC36 derivatives. It had no effect on UV mutability or immutability in any strain or on misincorporation revealed by delayed photoreversal in UV-irradiated umuC36, umuC122::Tn5, or recA430 bacteria. It is concluded that the epsilon proofreading subunit of DNA polymerase III holoenzyme is excluded, inhibited, or inoperative during misincorporation and mutagenesis after UV.  相似文献   

6.
A method has been developed for the preparation of large single-stranded DNA sequencing templates from primary cloning plasmids or cosmids. The method utilizes the separate action of T7 Gene 6 exonuclease and exonuclease III to generate large quantities of single-stranded template for each strand of a large-cloned fragment. Since the procedure is intended for use on primary clones, it avoids the time-consuming subcloning steps associated with most sequencing programs. The procedure also has the advantage of avoiding clone instability problems associated with subcloning in M13.  相似文献   

7.
L H Guo  R Wu 《Nucleic acids research》1982,10(6):2065-2084
We describe improve enzymatic methods for sequencing method for sequencing DNA. They are based on partial digestion of duplex DNA with exonuclease III to produce DNA molecules with 3' ends shortened to varying lengths, followed by repair synthesis to extend and label the 3' ends. After asymmetrical cleavage of the DNA with a restriction enzyme, the labeled products are separated by gel electrophoresis and the sequence read from the autoradiogram. The entire procedures, beginning with unrestricted DNA and followed through gel electrophoresis, takes only one day for sequencing both strands of the DNA molecule. These methods are especially suitable for sequencing DNA cloned in plasmid vectors, and they greatly extend the usefulness of the dideoxynucleotide chain termination method of Sanger et al. (Proc. Natl. Acad. Sci. USA 74, 5463, 1977). Using these methods we have determined the sequence of a 410 base pair fragment which includes the yeast SUP3 tyrosine tRNA gene.  相似文献   

8.
F W Perrino  L A Loeb 《Biochemistry》1990,29(22):5226-5231
Purified DNA polymerase alpha, the major replicating enzyme found in mammalian cells, lacks an associated 3'----5' proofreading exonuclease that, in bacteria, contributes significantly to the accuracy of DNA replication. Calf thymus DNA polymerase alpha cannot remove mispaired 3'-termini, nor can it extend them efficiently. We designed a biochemical assay to search in cell extracts for a putative proofreading exonuclease that might function in concert with DNA polymerase alpha in vivo but dissociates from it during purification. Using this assay, we purified a 3'----5' exonuclease from calf thymus that preferentially hydrolyzes mispaired 3'-termini, permitting subsequent extension of the correctly paired 3'-terminus by DNA polymerase alpha. This exonuclease copurifies with a DNA polymerase activity that is biochemically distinct from DNA polymerase alpha and exhibits characteristics described for a second replicative DNA polymerase, DNA polymerase delta. In related studies, we showed that the 3'----5' exonuclease of authentic DNA polymerase delta, like the purified exonuclease, removes terminal mispairs, allowing extension by DNA polymerase alpha. These data suggest that a single proofreading exonuclease could be shared by DNA polymerases alpha and delta, functioning at the site of DNA replication in mammalian cells.  相似文献   

9.
We have introduced a mutD5 mutation (which results in defective 3′–5′-exonuclease activity of the ϵ proofreading subunit of DNA polymerase III holoenzyme) into excision-defective Escherichia coli strains with varying SOS responses to UV light. MutD5 increased the spontaneous mutation frequency in all strains tested, including recA430, umuC122::Tn5, and umuC36 derivatives. It had no effect of UV mutability or immutability in any strain or on misincorporation revealed by delayed photoreversal in UV-irradiated umuC36, umuC122::Tn5, or recA430 bacteria. It is concluded that the ϵ proofreading subunit of DNA polymerase III holoenzyme is excluded, inhibited, or inoperative during misincorporation and mutagenesis after UV.  相似文献   

10.
DNA polymerase III holoenzyme (holoenzyme) processively and rapidly replicates a primed single-stranded DNA circle to produce a duplex with an interruption in the synthetic strand. The precise nature of this discontinuity in the replicative form (RF II) and the influence of the 5' termini of the DNA and RNA primers were analyzed in this study. Virtually all (90%) of the RF II products primed by DNA were nicked structures sealable by Escherichia coli DNA ligase; in 10% of the products, replication proceeded one nucleotide beyond the 5' DNA terminus displacing (but not removing) the 5' terminal nucleotide. With RNA primers, replication generally went beyond the available single-stranded template. The 5' RNA terminus was displaced by 1-5 nucleotides in 85% of the products; a minority of products was nicked (9%) or had short gaps (6%). Termination of synthesis on a linear DNA template was usually (85%) one base shy of completion. Thus, replication by holoenzyme utilizes all, or nearly all, of the available template and shows no significant 5'----3' exonuclease action as observed in primer removal by the "nick-translation" activity of DNA polymerase I.  相似文献   

11.
Recent development of the long PCR technology has provided an invaluable tool in many areas of molecular biology. However, long PCR amplification fails whenever the DNA template is imperfectly preserved. We report that Escherichia coli exonuclease III, a major repair enzyme in bacteria, strikingly improves the long PCR amplification of damaged DNA templates. Escherichia coli exonuclease III permitted or improved long PCR amplification with DNA samples submitted to different in vitro treatments known to induce DNA strand breaks and/or apurinic/apyrimidinic (AP) sites, including high temperature (99°C), depurination at low pH and near-UV radiation. Exonuclease III also permitted or improved amplification with DNA samples that had been isolated several years ago by the phenol/chloroform method. Amelioration of long PCR amplification was achieved for PCR products ranging in size from 5 to 15.4 kb and with DNA target sequences located either within mitochondrial DNA or the nuclear genome. Exonuclease III increased the amplification of damaged templates using either rTth DNA polymerase alone or rTth plus Vent DNA polymerases or Taq plus Pwo DNA polymerases. However, exonuclease III could not improve PCR amplification from extensively damaged DNA samples. In conclusion, supplementation of long PCR mixes with E.coli exonuclease III may represent a major technical advance whenever DNA samples have been partly damaged during isolation or subsequent storage.  相似文献   

12.
O Niwa  R E Moses 《Biochemistry》1981,20(2):238-244
phi X174 RFI DNA treated with bleomycin (BLM) under conditions permitting nicking does not serve as a template-primer for Escherichia coli DNA polymerase I. Purified exonuclease III from E. coli and extracts from wild-type E. coli strains are able to convert the BLM-treated DNA to suitable template-primer, but extracts from exonuclease III deficient strains are not. Brief digestion by exonuclease III is enough to create the template-primer, suggesting that the exonuclease III is converting the BLM-treated DNA by a modification of 3' termini. The exonucleolytic rather than the phosphatase activity of exonuclease III appears to be involved in the conversion. Comparative studies with micrococcal nuclease indicate that BLM-created nicks do not have a simple 3'-P structure. Bacterial alkaline phosphatase does not convert BLM-treated DNA to template-primer. The endonuclease VI activity associated with exonuclease III does not incise DNA treated with BLM under conditions not allowing nicking, in contrast to DNA with apurinic sites made by acid treatment, arguing that conversion does not require the endonuclease VI action on uncleaved sites.  相似文献   

13.
We have developed a novel, isothermal DNA amplification strategy that employs phi29 DNA polymerase and rolling circle amplification to generate high-quality templates for DNA sequencing reactions. The TempliPhi DNA amplification kits take advantage of the fact that cloned DNA is typically obtained in circular vectors, which are readily replicated in vitro using phi29 DNA polymerase by a rolling circle mechanism. This single subunit, proofreading DNA polymerase has excellent processivity and strand displacement properties for generation of multiple, tandem double-stranded copies of the circular DNA, generating as much as 10(7)-fold amplification. Large amounts of product (1-3 microg) can be obtained in as little as 4 hours. Input DNA can be as little as 0.01 ng of purified plasmid DNA, a single bacterial colony, or a 1 microL of a saturated overnight culture. Additionally, the presence of an associated proof reading function within the phi29 DNA polymerase ensures high-fidelity amplification. Once completed, the product DNA can be used directly in sequencing reactions. Additionally, the properties of phi29 DNA polymerase and its use in applications such as amplification ofhuman genomic DNA for genotyping studies is discussed.  相似文献   

14.
Exonucleolytic editing is a major contributor to the fidelity of DNA replication by the multisubunit DNA polymerase (pol) III holoenzyme. To investigate the source of editing specificity, we have studied the isolated exonuclease subunit, epsilon, and the pol III core subassembly, which carries the epsilon, theta, and alpha (polymerase) subunits. Using oligonucleotides with specific terminal mismatches, we have found that both epsilon and pol III core preferentially excise a mispaired 3' terminus and therefore have intrinsic editing specificity. For both epsilon and pol III core, exonuclease activity is much more effective with single-strand DNA; with a double-strand DNA, the exonuclease is strongly temperature-dependent. We conclude that the epsilon subunit of pol III holoenzyme is itself a specific editing exonuclease and that the source of specificity is the greater melting capacity of a mispaired 3' terminus.  相似文献   

15.
16.
17.
Synchronous digestion of SV40 DNA by exonuclease III.   总被引:2,自引:0,他引:2  
R Wu  G Ruben  B Siegel  E Jay  P Spielman  C P Tu 《Biochemistry》1976,15(4):734-740
We have established an optimal condition for the synchronous digestion of SV40 DNA with Escherichia coli exonuclease III. Electron microscopy and polyacrylamide gel electrophoresis were used to obtain accurate measurements on the lengths of DNA before and after exonuclease III digestion. Based on this finding, a new method for determining the sequence of long duplex DNA can be realized. It involves (a) the synchronous digestion of the DNA from the 3' ends with exonuclease III, followed by (b) repair synthesis with labeled nucleotides and DNA polymerase, and (c) sequence analysis of the repaired DNA.  相似文献   

18.
Replication of UV-irradiated oligodeoxynucleotide-primed single-stranded phi X174 DNA with Escherichia coli DNA polymerase III holoenzyme in the presence of single-stranded DNA-binding protein was investigated. The extent of initiation of replication on the primed single-stranded DNA was not altered by the presence of UV-induced lesions in the DNA. The elongation step exhibited similar kinetics when either unirradiated or UV-irradiated templates were used. Inhibition of the 3'----5' proofreading exonucleolytic activity of the polymerase by dGMP or by a mutD mutation did not increase bypass of pyrimidine photodimers, and neither did purified RecA protein influence the extent of photodimer bypass as judged by the fraction of full length DNA synthesized. Single-stranded DNA-binding protein stimulated bypass since in its absence the fraction of full length DNA decreased 5-fold. Termination of replication at putative pyrimidine dimers involved dissociation of the polymerase from the DNA, which could then reinitiate replication at other available primer templates. Based on these observations a model for SOS-induced UV mutagenesis is proposed.  相似文献   

19.
Summary It has been proposed that the mutation fixation processes stimulated by SOS induction result from an induced infidelity of DNA replication (Radman 1974). The aim of this study was to determine if mutator mutations in the E. coli DNA polymerase III might affect UV-induced mutagenesis.Using a phage mutation assay which can discriminate between targeted and untargeted mutations, we show that the polC74 mutator mutation (Sevastopoulos and Glaser 1977) primarily affects untargeted mutagenesis, which occurs in a recA1 genetic background and is amplified in the recA + genetic background. The polC74 mutation also increases the UV-induced mutagenesis of the bacterial chromosome. These results suggest that DNA polymerase III is involved in the process of UV-induced mutagenesis in E. coli.  相似文献   

20.
We have explored the potential of the Tn 552 in vitro transposition reaction as a genetic tool. The reaction is simple (requiring a single protein component), robust and efficient, readily producing insertions into several percent of target DNA. Most importantly, Tn 552 insertions in vitro appear to be essentially random. Extensive analyses indicate that the transposon exhibits no significant regional or sequence specificity for target DNA and leaves no discernible 'cold' spots devoid of insertions. The utility of the in vitro reaction for DNA sequencing was demonstrated with a cosmid containing the Mycobacterium smegmatis recBCD gene cluster. The nucleotide sequence of the entire operon was determined using 71 independent Tn 552 insertions, which generated over 13.5 kb of unique sequence and simultaneously provided a comprehensive collection of insertion mutants. The relatively short ends of Tn 552 make construction of novel transposons a simple process and we describe several useful derivatives. The data presented suggest that Tn 552 transposition is a valuable addition to the arsenal of tools available for molecular biology and genomics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号