首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid method was developed for quantification of nimesulide (methanesulfonamide, N-[4-nitro-2-phenoxyphenil]) in rabbit aqueous humor. The analyses were performed by high-performance liquid chromatography using a C(18) reversed-phase column (Ultracarb ODS) with UV detection at 300 nm. The mobile phase consisted of acetonitrile-water containing 1% triethylamine (TEA) adjusted to pH 3.2 with orthophosphoric acid. The retention time was 4.5 min. A simple pre-treatment with acetonitrile was used to deproteinize aqueous humor samples. The limit of quantitation was 50 ng/ml. The recovery was over 90%. The relationship between peak areas and concentration was linear over the range between 0.05 and 2.5 microg/ml, with r(2) values over 0.99. The assay provided good reproducibility and accuracy and proved to be suitable for pharmacokinetic studies of nimesulide.  相似文献   

2.
A simple, sensitive and reliable HPLC ion-pairing method with fluorescence detection, was developed for penciclovir determination in plasma and aqueous humor, with a Zorbax SB-aq C18 (100 mmx2.1 mm) column. Plasma samples were treated by solid-phase extraction with Oasis MCX (30 mg) cartridges. Ganciclovir, an antiviral drug structurally related to penciclovir, was used as internal standard (I.S.). Aqueous humor samples were directly injected into the chromatographic system. Separation was performed by a gradient elution with a mobile phase consisting of a mixture of acetonitrile and phosphate buffer 50mM containing 5mM of sodium octanesulfonate, pH 2.0, at a flow rate of 0.3 ml/min. The method was validated and showed good performances in terms of linearity, sensitivity, precision and trueness. Quantification limit was obtained at 0.05 microg/ml for aqueous humor and at 0.1 microg/ml for plasma. Finally, the proposed analytical method was used to measure penciclovir in clinical samples for a pharmacokinetic study, after oral administration of famciclovir.  相似文献   

3.
Information on comparing the penetration of ofloxacin and moxifloxacin in the human eye is unavailable, although these two antibiotics are commonly used in ophthalmic surgery. There is a need for a rapid, reliable, and sensitive methodology for their determination in ocular fluids. We developed a robust HPLC procedure with fluorescence detection for simultaneous analysis of ofloxacin and moxifloxacin in human and rabbit aqueous and vitreous samples. The linearity of the method ranged from 10 ng/ml to 100 microg/ml with r(2) > 0.996. Most inter- and intrabatch imprecision was about 5% (range 1.6-7.6%), recoveries between 95 and 104%, and accuracies between 93 and 104% at 0.1 and 1 microg/ml. The detection limits of both compounds were 10 ng/ml (0.028 nmol/ml for ofloxacin and 0.023 nmol/ml for moxifloxacin). No sample treatment was necessary for aqueous humor and only acetonitrile precipitation was required for vitreous humor. The chromatographic time was short, 22 min. We applied this method to study penetrations of ofloxacin and moxifloxacin in aqueous and vitreous humors of human and rabbits. There was no significant difference of penetration between the two antibiotics into aqueous and vitreous but ofloxacin was found at significantly higher concentrations in aqueous than in vitreous. We also detected contralateral transfer of the antibiotics in rabbit eyes.  相似文献   

4.
A simple, sensitive and selective liquid chromatographic-tandem mass spectrometric (LC-MS/MS) method was developed for the determination of tacrolimus (FK506) in rabbit aqueous humor. After a simple protein-precipitation by methanol, the post-treatment samples were separated on a reversed-phase, Thermo-Hypersil-BDS-C18 column with a mobile phase of a mixture of 0.1% formic acid in water, methanol and acetonitrile (5:85:10, v/v/v). Tacrolimus and ritonavir (internal standard, IS) were all detected by the selected reaction-monitoring (SRM) mode. The method developed was validated in rabbit aqueous humor with a daily working range of 0.5-100 ng/ml with correlation coefficient, r>0.99 and a sensitivity of 0.5 ng/ml as lower limit of quantification, respectively. This method was fully validated for the accuracy, precision, possible matrix effect and stability. The method proved to be accurate and specific, and was applied to the pharmacokinetic study of tacrolimus in rabbit aqueous humor.  相似文献   

5.
A novel HPLC-UV method was developed for the simultaneous determination of timolol (TM), rosuvastatin (RST), and diclofenac sodium (DS) in pharmaceuticals, human plasma and aqueous humor using naproxen sodium as internal standard (IS). The target compounds were analyzed on Hypersil BDS C(18) column (250 mm × 4.6 mm, 5 μm), applying 0.2% triethylamine (TEA) and acetonitrile (ACN) (40:60, v/v), in isocratic mode as mobile phase, pH 2.75 adjusted with 85% phosphoric acid at a flow rate of 1 ml/min. The column oven temperature was kept at 45°C and the peak response was monitored at 284 nm after injecting a 50 μl sample into HPLC system. The direct liquid-liquid extraction procedure was applied to human plasma and bovine aqueous humor samples using mobile phase as an extraction solvent after deproteination with methanol. The different HPLC experimental parameters were optimized and the method was validated according to standard guidelines. The recoveries of the suggested method in human plasma were 98.72, 96.04, and 95.14%, for TM, RST, and DS, while in aqueous humor were 94.99, and 98.23%, for TM, and DS, respectively. The LOD values were found to be 0.800, 0.500, and 0.250 ng/ml, for TM, RST, and DS, respectively, while their respective LOQ values were 2.00, 1.50, and 1.00 ng/ml. The co-efficient of variation (CV) were in the range of 0.1492-1.1729% and 1.0516-4.0104%, for intra-day and inter-day studies, respectively. The method was found accurate in human plasma and bovine aqueous humor and will be applied for the quantification of these compounds in plasma, and aqueous humor samples using animal models and in pharmaceuticals.  相似文献   

6.
A sensitive and specific high-performance liquid chromatography (HPLC)-electrospray ionization tandem mass spectrometry (MS-MS) was developed for the determination of bulleyaconitine A (BLA) in human plasma. BLA and internal standard (I.S.) ketoconazole were extracted from the plasma by a liquid-liquid extraction. The supernatant was evaporated to complete dryness and reconstituted with acetonitrile containing 0.1% acetic acid before injecting into an ODS MS column. The gradient mobile phase was composed of a mixture of acetonitrile (containing 0.1% acetic acid, v/v) and 0.1% acetic acid aqueous solution eluted at 0.3 ml/min. BLA and I.S. were determined by multiple reaction monitoring using precursor-->product ion combinations at m/z 644.6-->584.3 and 531.2-->81.6, respectively. Linearity was established for the concentration range of 0.12-6 ng/ml. The recoveries of BLA ranged from 96.93 to 113.9% and the R.S.D. was within 20%. The method is rapid and applicable to the pharmacokinetic studies of BLA in human.  相似文献   

7.
A simple, accurate and selective LC-MS/MS method was developed and validated for simultaneous quantification of ten antiarrhythic drugs (diltiazem, amiodarone, mexiletine, propranolol, sotalol, verapamil, bisoprolol, metoprolol, atenolol, carvedilol) and a metabolite (norverapamil) in human plasma. Plasma samples were simply pretreated with acetonitrile for deproteinization. Chromatographic separation was performed on a Capcell C(18) column (50mmx2.0mm, 5microm) using a gradient mixture of acetonitrile and water (both containing 0.02% formic acid) as a mobile phase at flow rate of 0.3ml/min. The analytes were protonated in the positive electrospray ionization (ESI) interface and detected in multiple reaction monitoring (MRM) mode. Calibration curves were linear over wide ranges from sub- to over-therapeutic concentration in plasma for all analytes. Intra- and inter-batch precision of analysis was <12.0%, accuracy ranged from 90% to 110%, average recovery from 85.0% to 99.7%. The validated method was successfully applied to therapeutic drug monitoring (TDM) of antiarrhythic drugs in routine clinical practice.  相似文献   

8.
Simultaneous determination of mycophenolic acid (MPA) and mycophenolic acid glucuronide (MPAG) in plasma was accomplished by isocratic HPLC with UV detection. After protein precipitation and phase separation with saturated sodium dihydrogenphosphate, chromatographic separation was achieved on a monolithic column "Chromolith Performance RP-18e", with acetonitrile/0.01 M phosphate buffer, pH 3, (25:75, v/v), as the mobile phase; flow rate 3.3 ml/min and measurement at 214 nm. Linearity was verified up to 40 mg/l for MPA and up to 400 mg/l for MPAG. Detection limits based on the analysis of 50 microl plasma were 0.05 and 0.5 mg/l for MPA and MPAG, respectively. Accuracy was 99.6-104% for MPA and 95.6-105% for MPAG and total imprecision (CV) was <7% for both compounds. Analytical recovery was >95% for MPA and MPAG. The method is simple, rapid, accurate and suitable for routine determination of MPA and MPAG in plasma.  相似文献   

9.
A simple and sensitive high-performance liquid chromatographic method was developed for the determination of sildenafil transdermal permeation of nude mouse skin. A reversed-phase column with UV detection at 224 nm was used for chromatographic separation. The mobile phase consisted of 32% acetonitrile with 0.2% phosphoric acid in water at pH 5.3 adjusted with 10 M NaOH with the flow-rate set at 1.0 ml/min. The limit of quantitation achieved was 5 ng/ml, and the calibration curve showed good linearity over the concentration range of 5–500 ng/ml. The relative standard deviations of within- and between-day analyses were all within 15%. Sildenafil was found to be stable between pH 3 and 12 during 24-h incubation with skin. After transdermal administration of 15.8 μg/ml of sildenafil to nude mouse skin, it was detected as early as 15 min. The transport amount of sildenafil could be quantitated and, at pH 8–11, had the highest permeation rate in nude mouse skin.  相似文献   

10.
A simple and sensitive method was developed for determination of irbesartan by liquid chromatography with fluorescence detection. Irbesartan and losartan (I.S.) in human plasma were extracted using diethyl ether:dichloromethane (7:3, v/v) followed by back extraction with 0.05 M sodium hydroxide. Neutralized samples were analyzed using 0.01 M potassium dihydrogen phosphate buffer (containing 0.07% triethylamine as peak modifier, pH was adjusted with orthophosphoric acid to pH 3.0) and acetonitrile (66:34, v/v). Chromatographic separation was achieved on an ODS-C-18 column (100 mm x 4.6 mm i.d., particle size 5 microm) using isocratic elution (at flow rate 1.25 ml/min). The peak was detected using a fluorescence detector set at Ex 259 nm and Em 385 nm, and the total time for a chromatographic separation was approximately 13 min. The validated quantitation ranges of this method were 15-4000 ng/ml with coefficients of variation between 0.75 and 12.53%. Mean recoveries were 73.3-77.1% with coefficients of variation of 3.7-6.3%. The between- and within-batch precision were 0.4-2.2% and 0.9-6.2%, respectively. The between- and within-batch relative errors (bias) were (-5.5) to 0.9% and (-0.6) to 6.9%, respectively. Stability of irbesartan in plasma was >89%, with no evidence of degradation during sample processing and 60 days storage in a deep freezer at -70 degrees C. This validated method is sensitive and simple with between-batch precision of <3% and can be used for pharmacokinetic studies.  相似文献   

11.
A micro method for determination of indomethacin in plasma was developed. Following deproteinization of plasma with acetonitrile containing internal standard (mefenamic acid), the separation of indomethacin and internal standard was achieved by high-performance liquid chromatography using a 7 μm LiChrosorb-RP18 column (250×4 mm I.D.) at 50°C. The mobile phase was 6 mM phosphoric acid–acetonitrile (50:50). The flow-rate was kept at 2.0 ml/min and the column effluent was monitored at 205 nm. The coefficients of variation of the method estimated at 0.2 and 1.0 μg/ml were 4.2 and 2.3%, and the detection limit of the drug was about 0.05 μg/ml (S/N=5). The method requires minimum pretreatment of the plasma with a small sample volume (25 μl), and is very suitable for therapeutic drug monitoring of indomethacin in premature infants with symptomatic patent ductus arteriosus.  相似文献   

12.
For the first time, a liquid chromatographic method with tandem mass spectrometric detection (LC-MS/MS) for the simultaneous determination of ribavirin and rabavirin base was developed and validated over the concentration range of 10-5,000 ng/ml, respectively, using a 0.025 ml monkey plasma sample. Ribavirin, ribavirin base, and the internal standards were extracted from monkey plasma via protein precipitation. After evaporation of the supernatant, the extract was reconstituted with 5% methanol (containing 0.1% formic acid) and injected onto the LC-MS/MS system. Optimum chromatographic separation was achieved on a Waters Atlantis dc18 (150 mm x 2.1mm, 5 microm) column with mobile phase run in gradient with 100% water containing 0.5% formic acid (A) and 90% acetonitrile (containing 0.5% formic acid (B). The flow rate was 0.4-0.6 ml/min with total cycle time of approximately 7.0 min. Post-column addition of acetonitrile (containing 0.1% formic acid) at 0.3 ml/min was used to increase the ionization efficiency in the MS source. The method was validated for sensitivity, linearity, reproducibility, stability and recovery. Lack of adverse matrix effect and carry-over was also demonstrated. The intra-day and inter-day precision and accuracy of the quality control (QC) samples were <9.0% relative standard deviation (R.S.D.) and 10.8% bias for ribavirin, and 10.3% R.S.D. and 11.3% bias for ribavirin base. The current specific, accurate and precise assay is useful in support of the toxicokinetic and pharmacokinetic studies of these compounds.  相似文献   

13.
A simple, accurate and sensitive high-performance liquid chromatographic method with UV detection was carried out to measure simultaneously plasma and urine concentrations of both p-aminohippuric acid and inulin. Following a simplified acid hydrolysis of the sample, the separation was carried out in 4 min using a C18 reversed-phase column with a flow-rate of 1 ml/min, and monitoring the absorbance at 280 nm. Within the investigated concentration ranges of inulin (0.1–3.2 mg/ml) and p-aminohippuric acid (0.0097–0.3 mg/ml), good linearity (r>0.99) was obtained. Within-run RSD ranged from 2.9 to 6.1% and between-run RSD ranged from 6.4 to 10%. Analytical recoveries were 101–112%, with little differences between plasma and urine samples. The detection limit was 1 μg/ml for all the analytes studied. This method might be ideal for renal function studies where a rapid and reproducible assessment of both renal glomerular filtration rate and blood flow-rate is required.  相似文献   

14.
A simple method for the measurement of the active leflunomide metabolite A77 1726 in human plasma by HPLC is presented. The sample workup was simple, using acetonitrile for protein precipitation. Chromatographic separation of A77 1726 and the internal standard, alpha-phenylcinnamic acid, was achieved using a C(18) column with UV detection at 305 nm. The assay displayed reproducible linearity for A77 1726 with determination coefficients (r2) > 0.997 over the concentration range 0.5-60.0 microg/ml. The reproducibility (%CV) for intra- and inter-day assays of spiked controls was <5%. The limit of quantification was 0.8 microg/ml. The average absolute recovery was approximately 100%. This assay is suitable for the determination of A77 1726 in plasma of patients taking leflunomide, and is simpler to use than other HPLC methods reported previously.  相似文献   

15.
A simple and rapid capillary zone electrophoresis determination method with UV detection of grepafloxacin and clinafloxacin has been developed. The separation was performed in 35 mM borate-35 mM phosphate buffer solution (pH 8.6), containing 6% (v/v) of acetonitrile. Analyses were realised using fused-silica capillaries (57 cm length x 75 microm I.D.) and the operating conditions were: 15 kV applied voltage, 30 degrees C and detection at 279 nm. Piromidic acid was used as an internal standard. The linear concentration range of application was 1.0-120.0 microg ml(-1) for both compounds, with a detection limit of 0.2 microg ml(-1) for grepafloxacin and 0.3 microg ml(-1) for clinafloxacin. The analysis yielded good reproducibility (RSD between 3.37 and 1.74%). It was applied to the determination of grepafloxacin and clinafloxacin in human and rat urine samples. The method was validated using HPLC as a reference method. Recovery levels were between 94.5 and 103%.  相似文献   

16.
A novel method based on liquid chromatography-mass spectrometry with electrospray ionization (LC-MS) has been developed for analysis of voriconazole in aqueous humor. The separation was achieved on a reversed-phase C(18) column eluted by 70% acetonitrile-30% water-0.01% TFA. The correlation between the concentration of voriconazole to peak area was linear (r(2)=0.9990) between 0.04 and 60 ng, with a coefficient of variance of less than 3%. Limit of quantitation (LOQ) was estimated to be 5 ng/ml voriconazole with an injection volume of 2 microl of aqueous humor. Both intra-day and inter-day imprecision were less than 3% over the whole analytical range. Parallel analyses of voriconazole samples by LC-MS and by high-performance liquid chromatography (HPLC)-UV showed that the two methods were highly correlated (r(2)=0.9985). LC-MS was used to the determine voriconazole levels achieved in the aqueous humor of the rabbit eye, following topical application of 5 or 10 microg voriconazole in the form of eyedrops for 11 days b.i.d. The lower dosage produced an aqueous humor concentration of 7.29+/-5.84 microg/ml, while the higher dosage produced a concentration of 14.56+/-12.90 microg/ml.  相似文献   

17.
A new method for the determination of tranexamic acid (TA) in human plasma using high performance liquid chromatography with tandem mass spectrometric detection was described. TA and the internal standard, methyldopa, was extracted from a 200 l plasma sample by a one-step deproteination using perchloric acid. Chromatographic separation was performed on an Xtrra MS C18 Column (2.1 mm x 100 mm, 3.5 microm) with the mobile phase consisting of 10% acetonitrile in 2 mM ammonium acetate buffer (pH 3.5) at a flow rate of 0.15 ml/min. The total run time was 5 min for each sample. Detection and quantitation was performed by the mass spectrometer using the multiple reaction monitoring of the precursor-product ion pair m/z 158 --> 95 for TA and m/z 212 --> 166 for methyldopa, respectively. The method was linear over the concentration range of 0.02-10.00 g/ml with lower limit of quantification of 0.02 microg/ml for TA. The intra- and inter-day precision was less than 11% and accuracy ranged -10.88 to 11.35% at the TA concentrations tested. The present method provides a relatively simple and sensitive assay with short turn-around time. The method has been successfully applied to a clinical pharmacokinetic study of TA in 12 healthy subjects.  相似文献   

18.
Simultaneous separation and quantification of ezetimibe (EZM) and its phase-I metabolite i.e., ezetimibe ketone (EZM-K) and phase-II metabolite i.e., ezetimibe glucuronide (EZM-G) in various matrices was accomplished by gradient HPLC with UV detection. The assay procedure involved deproteinization of 500 microL of either incubation or bile sample containing analytes and internal standard (IS, theophylline) with 75 microL acetonitrile containing 25% perchloric acid. An aliquot of 100 microL supernatant was injected onto a C18 column. The chromatographic separation was achieved by gradient elution consisting of 0.05 M formic acid:acetonitrile:methanol:water at a flow rate of 1.0 mL/min. The detection of analyte peaks were achieved by monitoring the eluate using an UV detector set at 250 nm. Nominal retention times of IS, EZM-G, ezetimibe ketone glucuronide (EZM-KG), EZM and EZM-K were 9.39, 24.23, 27.82, 29.04 and 30.56 min, respectively. Average extraction efficiencies of EZM, EZM-G and IS was >75-80% and for EZM-K was >50% from all the matrices tested. Limit of quantitation (LOQ) for EZM, EZM-K and EZM-G was 0.02 microg/mL. Due to the lack of availability of reference standard of EZM-KG, the recovery and LOQ aspects for this metabolite were not assessed. Overall, the method is suitable for simultaneous measurement of EZM, and its phase-I and phase-II metabolite (EZM-G) in in vitro and in vivo studies.  相似文献   

19.
A simple and fast method intended for large-scale bioequivalence studies for the determination of glibenclamide in plasma samples is presented. The chromatographic separation was achieved on a monolithic octadecyl chemically modified silicagel column and a mobile phase containing 42% aqueous 0.1% HCOOH solution (v/v) and 58% acetonitrile, at a flow rate of 1 mL/min, in isocratic conditions. Preparation of plasma samples was based on protein precipitation with acetonitrile. Gliquidone was used as internal standard. The target analytes were transferred into an ion trap mass analyzer via an atmospheric pressure chemical ionization interface. The precursor ions with mass 494 a.m.u. for glibenclamide and 528 a.m.u. for gliquidone were isolated, while in the second MS stage product ions 369 a.m.u. and 403 a.m.u., respectively, were monitored. The analytical process was characterized by a low limit of quantitation of 1.5 ng/mL. The mean recovery for glibenclamide was 98.1+/-2.8% over a concentration interval ranging from 1 to 500 ng/mL. Intra-day and inter-day precision calculated over 2-400 ng/mL concentration interval ranged from 15.4% to 3.4%. Inter-sequence accuracy expressed as % bias from theoretical concentration values over the concentration interval of 10-400 ng/mL fall within -13.9% and +14.6%. The method was applied for evaluation of the bioequivalence between two formulations containing 3.5mg glibenclamide per dose.  相似文献   

20.
A simple method for the separation of the major components of commercial gentamicin sulfate (C-1, C-1a, C-2, C-2a) by high-performance liquid chromatography (HPLC) on an analytical and a semipreparative scale was developed. The method utilized ion-pair reversed-phase chromatography, isocratic elution with an aqueous solution containing 9% trifluoroacetic acid and 2.5% acetonitrile as the mobile phase at a flow rate of 2 and 9 mL/min for analytical and semipreparative columns, respectively. Detection was carried out at 213 nm without derivatization. The protonation pattern of the separated gentamicins was determined by potentiometry and 15N and 1H NMR. The full proton NMR assignment for gentamicin C-1 was obtained through the use of 1H 1D and 2D 1H-1H COSY measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号