首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C3bi receptors (CR3) on human polymorphonuclear leukocytes (PMN) bind ligand-coated particles and promote their ingestion. The binding activity of CR3 is not constitutive but is transiently enabled by phorbol esters (Wright, S. D., and B. D. Meyer, 1986, J. Immunol. 136:1759-1764). Our observations indicate that the capacity of CR3 to bind ligand is tightly correlated with the degree of ligand-independent aggregation of the receptor in the plane of the membrane. Fixed PMN were labeled with anti-CR3 monoclonal antibodies and streptavidin colloidal gold before viewing in the electron microscope either en face or in thin section. On unstimulated PMN, gold particles marking CR3 were dispersed randomly. Stimulation of PMN for 25 min with phorbol myristate acetate (PMA) dramatically enhances binding of C3bi-coated particles, and the CR3 on such stimulated cells was observed in clusters containing more than six gold particles. CR3 was not aggregated over coated pits. After 50 min in PMA, the binding activity of CR3 falls, and the distribution of CR3 was again observed to be disperse. If a hydrophilic phorbol ester was washed away after a 20-min stimulation, binding activity remains elevated for at least 50 min, and CR3 remained aggregated. Thus, clustering of CR3 was temporally correlated with its ability to bind ligand and initiate phagocytosis. Unlike CR3, Fc receptors and HLA did not exhibit changes in their aggregation state in response to PMA. Treating PMN with formyl-methionyl-leucyl-phenylalanine, which enhances expression of CR3 but not its function, did not lead to aggregation of CR3. These observations suggest that a clustered configuration is a precondition necessary for binding ligand and signaling phagocytosis.  相似文献   

2.
We examined phagocytosis of sheep erythrocytes passively sensitized with pneumococcal C-polysaccharide (E-PnC) and of E-PnC coated with C-reactive protein (E-PnC-CRP) by human polymorphonuclear leukocytes (PMN). PMN isolated from blood of normal individuals failed to ingest either E-PnC or E-PnC-CRP; however, after stimulation with 12-O-tetradecanoylphorbol-13-acetate (PMA; 2 ng/ml), PMN ingested E-PnC-CRP efficiently with a mean phagocytic index (PI) of 99.5 +/- 4.8 (mean +/- SD, n = 11), and E-PnC to a lesser extent with a mean PI of 33.2 +/- 11.7 (mean +/- SD, n = 11). PMN that had adhered to PnC-coated glass and that were stimulated with PMA attached but did not ingest E-PnC-CRP. In contrast, PMN plated on E-PnC-CRP-coated glass and stimulated with PMA did not attach or ingest E-PnC-CRP. These data indicate that PMN can be induced to phagocytize PnC-CRP and that both PnC and CRP are required for ingestion. They also suggest that specific receptors for these ligands are expressed by stimulated PMN. Neither attachment nor phagocytosis of E coated with rabbit anti-E IgG (E-IgG) was affected by plating PMN on PnC or PnC-CRP. On the other hand, both phagocytosis and ingestion of E-PnC-CRP as well as E-IgG was blocked by plating PMA-stimulated PMN on immune complexes containing rabbit IgG. Inhibition experiments with the use of 3G8, a monoclonal antibody to the Fc gamma receptor of PMN, and human monomeric IgG1 demonstrated that attachment of E-PnC-CRP is mediated by receptors other than the Fc gamma receptors. These combined results indicated a nonreciprocal association between the putative CRP receptors and the Fc gamma receptors of stimulated PMN, resulting in the clearance of both types of receptors from the apical surface of PMN by antigen-immobilized rabbit IgG.  相似文献   

3.
A major problem in the cryopreservation of human polymorphonuclear leukocytes (PMN) is the loss of phagocytic function in cryopreserved cells. This is not a problem with cryopreserved monocytes. To study the reasons for this difference in detail, PMN and monocytes were either osmotically stressed in hypertonic media or were frozen to various temperatures. Cells were then returned to conditions of physiologic osmolarity and temperature. All cells remained viable. However, the ability of PMN to phagocytize bacteria and to bind sheep erythrocytes (E) opsonized with IgG, C3b, or C3bi decreased sharply after exposure to media of 600 mOsM or greater and after freezing to -1.5 degrees C. In contrast, monocytes were unaffected until a concentration of 1500 mOsM or a freezing temperature of -5 degrees C was exceeded. To determine whether the functional losses of surface receptor activity in PMN resulted from a loss of receptors from the membranes or from inactivation or internalization of receptors, opsonized E were incubated in the supernatants from stressed PMN. On subsequent incubation with healthy PMN, these E made fewer rosettes than control opsonized E. The inhibitory effect of the supernatants on rosetting of IgG-sensitized E could be removed by preincubation with IgG bound to Sepharose 4B. Immunoprecipitation of C3b and C3bi receptors from surface-iodinated, osmotically stressed, and control PMN suggested that about 50% of cell surface complement receptors were lost from the cell surface during osmotic stress. These experiments suggest that receptors for IgG and C3 are extruded from PMN cell membranes as a result of hyperosmotic stress, which is associated with the freeze-thaw cycle. This may be an early event in the functional damage done to PMN during attempts at cryopreservation.  相似文献   

4.
Human leukocytes express a receptor that mediates the binding of cells and particles coated with C3bi, a fragment of the third component of complement. Previous data indicate that the capacity of this receptor to mediate binding is regulated by changes in its aggregation state. Randomly distributed receptors bind ligand very inefficiently, but stimulation of polymorphonuclear leukocytes with phorbol esters causes a ligand-independent clustering of the receptors in the membrane, and the clustered receptors avidly bind C3bi-coated cells (1). We examined whether the aggregation state of surface-bound ligands also affects the efficiency of binding between receptors and ligands. We found that erythrocytes bearing C3bi in clusters were bound by both macrophages and polymorphonuclear leukocytes far more avidly than erythrocytes bearing the same number of ligands in random array. We made similar observations with erythrocytes coated with C3b, a ligand that is recognized by a separate receptor. Our observations show that the ability of a receptor-bearing cell to bind particles coated with the corresponding ligands is dramatically affected by the distribution of ligand on the surface of the particle. Cell-cell interactions may thus be regulated by alterations in the two-dimensional distribution of receptors and ligands on opposing cell surfaces.  相似文献   

5.
Human neutrophil Fc receptor-mediated phagocytosis can be markedly enhanced by a low m.w. (less than 10,000) heat-labile cytokine(s) derived from specifically stimulated human mononuclear cells and from a human T cell line, MO(t). PMN incubated with supernatant from control mononuclear leukocyte (MNL) culture bound EIgG (percentage of rosettes = 73.7% +/- 7.1) but did not ingest the attached targets (phagocytic index, PI = 40.7 +/- 9.5) as efficiently as PMN incubated with supernatant from adherent MNL, which had ingested EIgG and were then cocultured with nonadherent MNL (PI = 264.3 +/- 46.3). Cytokine-containing supernatants were fractionated on YM-10 Centricon microconcentrators, and the effluent (YM-10E) was found to contain the phagocytosis-enhancing activity. Optimal Fc receptor-mediated ingestion by YM-10E-stimulated PMN required a critical level of target-bound IgG; stimulation was dose dependent and detectable after 5 min at 37 degrees C with a maximal response by 15 min. Monoclonal antibody 3G8 (anti-PMN Fc receptor) inhibited in a dose-dependent fashion both Fc receptor-mediated rosette formation and ingestion by nonstimulated and YM-10E-stimulated PMN. Solid-phase 3G8 Fab had the same effect. A previously undescribed monoclonal antibody, 1C2, exhibited a different pattern of inhibition. It had no effect on rosetting or ingestion of EIgG by nonstimulated PMN; however, it inhibited EIgG phagocytosis by YM-10E-stimulated PMN down to the level of nonstimulated ingestion without affecting rosette formation. Solid-phase 1C2 had the same effect. These data indicate that phagocytosis mediated by 3G8-positive Fc receptors may be enhanced by cytokine(s) stimulation in a manner requiring the molecule recognized by 1C2. Monoclonal antibodies to the alpha-chain of CR3 had only minimal effects on YM-10E-stimulated ingestion. Fluorescence flow cytometry of YM-10E-stimulated PMN, indirectly stained with 3G8 or 1C2, indicated that cytokine enhancement of EIgG ingestion occurred without an increase in either 3G8 or 1C2 binding sites. These data show that the low avidity Fc receptor, which binds immune complexes, may be functionally modulated at sites of inflammation where PMN and macrophages mediate clearance and destruction of immune complexes and opsonized particles.  相似文献   

6.
Activated human polymorphonuclear leukocytes (PMN) isolated from peripheral blood specifically bind 125I-laminin after stimulation with phorbol 12-myristate 13-acetate (PMA) or f-Met-Leu-Phe (FMLP) at 37 degrees C. Changes in laminin receptor expression are stimulus dose dependent at both chemotactic (10(-10) M to 10(-6) M) concentrations of FMLP, and secretory (greater than 5 ng/ml) levels of PMA. In the presence of cytochalasin B (5 micrograms/ml), 10(-7) M FMLP activation stimulates specific laminin binding, with an apparent Kd = 3.9 X 10(-9) M and 6.47 X 10(5) binding sites/cell, reaching equilibrium within 10 min at 4 degrees C. This observed activation-dependent change in laminin receptor expression is not due to interference by endogenous laminin, because no fluorescein-visualized anti-laminin antibody bound to cells without added glycoprotein, regardless of the level of activation. Levels of neutrophil lysozyme release, which show a PMA dose dependence similar to that of receptor binding activity, suggest that granule-plasma membrane fusion may be significant during increases in receptor expression. A lack of receptor stimulation by PMA from a granule-deficient patient or in granule-depleted cytoplasts from normal donors additionally supports this hypothesis. Electroblot transfer and autoradiography of subcellular fractions from unstimulated PMN reveals the presence of a 68,000 dalton laminin-binding component in the secondary/tertiary granule (beta) fraction, which may represent an intracellular laminin receptor pool.  相似文献   

7.
Normal human peripheral blood PMN were exposed to varying concentrations of partially purified chemotactic complement fragments (C5fr) and a chemotactic peptide N-formyl methionylleucylphenylalanine (f-Met-Leu-Phe). This exposure resulted in a decreased chemotactic response termed deactivation of chemotaxis. Deactivation was found to be nonpreferential for the deactivating stimulus when high concentrations of either f-Met-Leu-Phe (10(-6) M) or C5fr (20 micrograms/ml) were used. When PMN were incubated with lower concentrations of C5fr (10 micrograms/ml), there was preferential deactivation towards C5fr. Similarly, preferential deactivation of chemotaxis was observed when PMN were incubated with 10(-6) M f-Met-Leu-Phe, but this was transient and cells were nonpreferentially deactivated 60 min after the initial exposure to f-Met-Leu-Phe. The availability of receptors for tritiated f-Met-Leu-Phe was examined by Scatchard analyses and measurement of reversible f-Met-Leu-[3H]Phe binding to C5fr and f-Met-Leu-Phe-deactivated PMN. When PMN f-Met-Leu-Phe receptors were studied immediately after exposure to concentrations of C5fr causing either preferential or nonpreferential deactivation, there was increased receptor availability compared with control PMN. In contrast, PMN deactivated with high concentrations of f-Met-Leu-Phe 10(-6) M) had a transient decrease in the number of receptors followed 1 hr later by an increase in the number of receptors. This was similar to the functional correlate of preferential deactivation of chemotaxis immediately after incubation with f-Met-Leu-Phe followed by nonpreferential deactivation in these same PMN. The data indicate that preferential deactivation of chemotaxis may be associated with a preferential decrease (down-regulation) of chemoattractant receptors and that nonpreferential deactivation is associated with an increase in chemoattractant receptors.  相似文献   

8.
Each of the three major components isolated from a commercial plasmin-treated human immunoglobulin preparation, namely, the plasmin-resistant 7S IgG fraction (PRG), Fab fragment and Fc fragment, was tested before and after heat treatment for binding C1q and fixing C3bi. In unheated state, only PRG was found to bind C1q, whereas none bound C3bi. The binding of C1q by PRG was enhanced by heat treatment which also conferred the activity of binding C3bi to PRG and to Fc fractions, From these results, anticomplementary activity of unheated PRG fraction seems to be due mainly to the complement activation via the classical pathway, whereas the activation by the heat-treated Fc fragment might be via an alternative pathway.  相似文献   

9.
The fluoresceinated chemotactic factors, C5a, formyl-methionyl-leucyl-phenylalanyl-lysine (FMLPL), and casein were used in conjunction with flow cytometry to examine chemotactic factor receptor expression on polymorphonuclear leukocytes (PMN) activated with phorbol myristate acetate (PMA), C5a, or formyl-methionyl-leucyl-phenylalanine. Activation with PMA resulted in a dose-dependent increase in binding of fluorescein-labeled (FL)-casein and (FL-FMLPL) over the range of PMA concentrations from 0.5 to 50 ng/ml. In contrast, activation of PMN with PMA resulted in a dose-dependent decrease in FL-C5a binding, and activation with concentrations above 5 ng/ml resulted in a complete loss of binding. This loss of binding was not caused by inactivation of the ligand or prevented by the addition of superoxide dismutase and catalase or protease inhibitors. Furthermore, incubation of PMN with supernatants from PMN stimulated to degranulate did not reduce the availability of C5a receptors. This pattern of increased FMLPL and casein binding with decreased C5a binding was also observed with cytochalasin B-pretreated PMN that were stimulated with chemotactic factors. Parallel studies of superoxide anion generation demonstrated that PMA-treated PMN were still responsive to formyl-methionyl-leucyl-phenylalanine, but not to C5a. These data demonstrate that the activation of PMN up-regulates formyl peptide and casein receptors whereas C5a receptors are down-regulated under similar conditions.  相似文献   

10.
Several structural homologues of the chemotactic peptide neutrophil-activating peptide 1/IL-8 (NAP-1/IL-8) were tested for their ability to influence the expression and function of adhesion-promoting receptors on human polymorphonuclear leukocytes (PMN). NAP-2, melanoma growth stimulatory activity, and two forms of NAP-1/IL-8 (ser-NAP-1/IL-8 and ala-NAP-1/IL-8, consisting of 72 and 77 amino acids, respectively), each caused an increase in the expression of CD11b/CD18 (CR3) and CR1, which was accompanied by a decrease in the expression of leukocyte adhesion molecule-1 (LAM-1, LECAM-1). The binding activity of CD11b/CD18 was also enhanced 3- to 10-fold by these peptides, but enhanced function was transient: binding of erythrocytes coated with C3bi reached a maximum by 30 min and declined thereafter. Ser-NAP-1/IL-8, ala-NAP-1/IL-8, NAP-2, and melanoma growth stimulatory activity also caused a two- to threefold enhancement of the phagocytosis of IgG-coated erythrocytes (EIgG) by PMN without causing a large increase in the expression of Fc gamma receptors. Enhanced phagocytosis of EIgG appeared to be mediated through CD11b/CD18, because F(ab')2 fragments of an antibody directed against CD18 inhibited NAP-1/IL-8-stimulated ingestion of EIgG. The four active peptides caused a rapid, transient increase in the amount of F-actin within PMN, indicating that they are capable of influencing the structure of the microfilamentous cytoskeleton, which participates in phagocytosis. Two other NAP-1/IL-8-related peptides, platelet factor 4 and connective tissue-activating peptide III, were without effect on expression of CD11b/CD18, CR1, and LAM-1, binding activity of CD11b/CD18, or Fc-mediated phagocytosis, and increased actin polymerization only slightly. Our observations indicate that several members of the NAP-1/IL-8 family of peptides were capable of promoting integrin-mediated adhesion and Fc-mediated phagocytosis, processes important in the recruitment of PMN to sites of inflammation and antimicrobial responses of PMN.  相似文献   

11.
Three protein kinase C (PKC) activators (PMA, mezerein, and a diacylglycerol) had bidirectional effects on human polymorphonuclear neutrophil (PMN) degranulation responses to leukotriene (LT) B4. Lower concentrations of the three agents enhanced, whereas higher concentrations inhibited, release of lysozyme and beta-glucuronidase stimulated by the arachidonic acid metabolite. Contrastingly, the activators inhibited but never enhanced LTB4-induced Ca2+ transients. We examined the causes for these varying effects. Each PKC activator reduced PMN specific binding of [3H]LTB4. Scatchard analyses revealed that PMA (greater than or equal to 0.16 nM) decreased the number of high affinity LTB4 receptors. The receptor losses correlated closely with inhibition of Ca2+ transients. PMN pretreated with 0.5 nM PMA for 5 min retained approximately 50% of their high affinity LTB4 receptors. These cells responded to 10 nM LTB4 with reduced but still substantial rises in cytosolic Ca2+, enhanced PKC mobilization, and increased granule enzyme release. The latter two effects appeared calcium-dependent because sequential exposure to PMA and LTB4 did not synergistically stimulate PKC mobilization or degranulation in PMN that were: 1) Ca2(+)-depleted; 2) challenged with 5 nM PMA; or 3) treated with LTB4 for 5 min before PMA. Each of the latter treatments completely interfered with the extent or timing of LTB4-induced Ca2+ transients. Accordingly, we suggest that the response-specific, bidirectional effects of PKC activators on LTB4 result from two opposing mechanisms. First, PKC activators down-regulate LTB4 high affinity receptors and thereby reduce those PMN responses that are not elicited by activated PKC (i.e., Ca2+ transients). Second, LTB4, by elevating cytosolic Ca2+, increases the amount of PKC mobilized by PKC activators and thereby promotes PKC-dependent responses (e.g., degranulation). The two mechanisms may be pertinent to the bidirectional effects of PKC activators on various other agonists. Furthermore, PKC, by down-regulating receptors, may serve as a physiologic stop signal for terminating function and producing a poststimulatory state of desensitization.  相似文献   

12.
Our current understanding of phagocytosis is largely derived from studies of individual receptor-ligand interactions and their downstream signaling pathways. Because phagocytes are exposed to a variety of ligands on heterogeneous target particles in vivo, it is important to observe the engagement of multiple receptors simultaneously and the triggered involvement of downstream signaling pathways. Potential crosstalk between the two well-characterized opsonic receptors, FcγR and CR3, was briefly explored in the early 1970s, where macrophages were challenged with dual-opsonized targets. However, subsequent studies on receptor crosstalk were primarily restricted to using single opsonins on different targets, typically at saturating opsonin conditions. Beyond validating these initial explorations on receptor crosstalk, we identify the early signaling mechanisms that underlie the binding and phagocytosis during the simultaneous activation of both opsonic receptors, through the presence of a dual-opsonized target (immunoglobulin G [IgG] and C3bi), compared with single receptor activation. For this purpose, we used signaling protein inhibitor studies as well as live cell brightfield and fluorescent imaging to fully understand the role of tyrosine kinases, F-actin dynamics and internalization kinetics for FcγR and CR3. Importantly, opsonic receptors were studied together and in isolation, in the context of sparsely opsonized targets. We observed enhanced particle binding and a synergistic effect on particle internalization during the simultaneous activation of FcγR and CR3 engaged with sparsely opsonized targets. Inhibition of early signaling and cytoskeletal molecules revealed a differential involvement of Src kinase for FcγR- vs CR3- and dual receptor-mediated phagocytosis. Src activity recruits Syk kinase and we observed intermediate levels of Syk phosphorylation in dual-opsonized particles compared with those opsonized with IgG or C3bi alone. These results likely explain the intermediate levels of F-actin that is recruited to sites of dual-opsonized particle uptake and the notoriously delayed internalization of C3bi-opsonized targets by macrophages.  相似文献   

13.
Monocytes isolated from human blood by centrifugal elutriation exhibited little ability to ingest rabbit erythrocytes (ER), zymosan particles, or desialated sheep erythrocytes. In contrast, 85 to 95% of these cells rosetted with C3b- or C3bi-bearing sheep erythrocytes (ES) or ingested IgG-coated ES. Preincubation of the monocytes with human lymphocytes increased their ability to ingest ER. the ER phagocytosis-inducing activity was contained in the 105,000 X G supernatant of lymphocyte lysates. These supernatants increased the percentage of ingesting monocytes from 5 to 15% to 80% within 60 min. The soluble factor was found to be relatively heat stable, inactivated by trypsin, and distinct from IFN-gamma. Its m.w. is less than 13,000. It was present in B and T lymphocytes and also in U937 cells. These results suggest that the ability of human monocytes to ingest nonopsonized particulate activators of the alternative complement pathway is a cytokine-inducible property and that the effect of the cytokine on complement receptor- or Fc receptor-dependent adherence or ingestion of opsonized particles is minor.  相似文献   

14.
The lymphokine leukocyte inhibitory factor (LIF) has previously been documented to enhance several neutrophil (PMN) functions, including stimulated chemotaxis and superoxide generation, phagocytosis and adherence of opsonized targets, and antibody-dependent cellular cytotoxicity. The present studies were designed to investigate the effects of LIF on PMN function mediated by the complement components C3b and C3bi. LIF induced a dose-dependent increase in superoxide production generated by opsonized zymosan (up to 97.1 +/- 31.4% at 16 U LIF/ml; P less than 0.01). While neither control nor LIF-treated PMN were capable of inducing phagocytosis of either C3b- or C3bi-opsonized sheep erythrocytes (E) directly, exposure to LIF caused a significant (P less than 0.05) increase in their adherence to E (137.4 and 59.4%, respectively). Specificity for complement receptor function was confirmed by the ability of anti-CR1 antibody to block adherence of LIF-treated PMN to EAC3b (77.0% inhibition) and anti-CR3 antibody to block adherence to EAC3bi (70.2% inhibition). Increased C3b and C3bi function may have been due, at least in part, to increased expression of their respective surface membrane receptors. Thus, using indirect immunofluorescence, LIF induced a 38.2% increase in fluorescence of the anti-CR1 antibody and a 96.1% increase in anti-CR3 binding. These studies describe an additional mechanism through which LIF may have an important pro-inflammatory role in vivo.  相似文献   

15.
Murabutide, which belongs to the immunomodulator family of muramyl peptides, was applied directly to fresh human blood to evaluate changes in leukocyte properties. After blood incubation with murabutide, lymphocytes presented a higher responsiveness to T-mitogens, and monocytes and polymorphonuclear cells exhibited an increase in their capacity to produce hydrogen peroxide. In addition, murabutide treatment enhanced phagocytic activity of neutrophils, whereas monocytes presented a decrease in this activity. Some surface markers were also investigated in the distinct leukocyte populations. After incubation with murabutide, a larger number of lymphocytes expressed Ta1 antigen (CD W26) and transferrin receptor (CD 71). In contrast, expression of interleukin-2 receptor (CD 25) was slightly decreased. Monocytes from treated blood displayed a larger number of receptors for C3bi (CD 11b), whereas the surface marker CD 14 and the class I receptor for the Fc portion of IgG were down-regulated. Activation of polymorphonuclear cells by murabutide was confirmed by the up-regulation of the C3bi receptor, Fc receptor, and CD 14 surface antigen. The effects of murabutide on leukocytes described in this paper may contribute to understanding mechanisms of the modulating activity of muramyl peptides on specific and nonspecific immunity.  相似文献   

16.
Herpes simplex virus type 1 (HSV-1) infection induces the appearance of viral analogues of human Fc IgG and C3 receptors on the surface of human cells. The virally induced C3 receptor(s) has been broadly defined as a C3b receptor, but its ligand binding characteristics have not been rigorously defined. In this study, human epidermal cells, A431 cells, and human umbilical vein endothelial cells infected with HSV-1 demonstrated rosetting with sheep erythrocytes (E) coated with IgG (E-IgG) or the complement components C3b (EAC3b) or iC3b (EAC3bi), but not with E-IgM, C4 (EAC14), C3d (EAC3d), or E alone. Rosetting was markedly enhanced by pretreatment of HSV-1-infected cells with neuraminidase. Unlike human C3 receptors, the HSV-1-induced C3 receptor was found to be trypsin resistant. To determine whether HSV-1 induced CR1-like receptors or CR3-like receptors, infected cells were pretreated with EDTA, which is known to inhibit native CR3 function. EDTA failed to prevent rosetting with EAC3bi. Furthermore, blocking studies using monoclonal antibodies against CR1 and CR3 revealed that the anti-CR1 antibody 5C11 consistently blocked EAC3b and EAC3bi rosetting with HSV-1-infected cells in a dose dependent manner, but monoclonal antibodies against CR3 did not. This study indicates that the HSV-1-induced C3 receptor is an analogue of CR1.  相似文献   

17.
Binding of chemoattractants to specific cell surface receptors on polymorphonuclear leukocytes (PMNs) initiates a series of biochemical responses leading to cellular activation. A critical early biochemical event in chemoattractant (CTX) receptor-mediated signal transduction is the phosphodiesteric cleavage of plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2), with concomitant production of the calcium mobilizing inositol-1,4,5-trisphosphate (IP3) isomer, and the protein kinase C activator, 1,2-diacylglycerol (DAG). The following lines of experimental evidence collectively suggest that CTX receptors are coupled to phospholipase C via a guanine nucleotide binding (G) protein. Receptor-mediated hydrolysis of PIP2 in PMN plasma membrane preparations requires both fMet-Leu-Phe and GTP, and incubation of intact PMNs with pertussis toxin (which ADP ribosylates and inactivates some G proteins) eliminates the ability of fMet-Leu-Phe plus GTP to promote PIP2 breakdown in isolated plasma membranes. Studies with both PMN particulate fractions and with partially purified fMet-Leu-Phe receptor preparations indicate that guanine nucleotides regulate CTX receptor affinity. Finally, fMet-Leu-Phe stimulates high-affinity binding of GTP gamma S to PMN membranes as well as GTPase activity. A G alpha subunit has been identified in phagocyte membranes which is different from other G alpha subunits on the basis of molecular weight and differential sensitivity to ribosylation by bacterial toxins. Thus, a novel G protein may be involved in coupling CTX receptors to phospholipase C. Studies in intact and sonicated PMNs demonstrate that metabolism of 1,4,5-IP3 proceeds via two distinct pathways: 1) sequential dephosphorylation to 1,4-IP2, 4-IP1 and inositol, or 2) ATP-dependent conversion to inositol 1,3,4,5-tetrakisphosphate (IP4) followed by sequential dephosphorylation to 1,3,4-IP3, 3,4-IP2, 3-IP1 and inositol. Receptor-mediated hydrolysis of PIP2 occurs at ambient intracellular Ca2+ levels; but metabolism of 1,4,5-IP3 via the IP4 pathway requires elevated cytosolic Ca2+ levels associated with cellular activation. Thus, the two pathways for 1,4,5-IP3 metabolism may serve different metabolic functions. Additionally, inositol phosphate production appears to be controlled by protein kinase C, as phorbol myristate acetate (PMA) abrogates PIP2 hydrolysis by interfering with the ability of the activated G protein to stimulate phospholipase C. This implies a physiologic mechanism for terminating biologic responses via protein kinase C mediated feedback inhibition of PIP2 hydrolysis.  相似文献   

18.
The expression of receptors for the Fc portion of IgG immunoglobin molecules was studied on tumor cell lines with high and low metastatic capacity. Two tumor cell lines from DBA/2 mice that had high metastatic activity, ESb and MDAY-D2, contained a high percentage of Fc receptor positive cells, as detected in a rosette assay with IgG antibody-coated erythrocytes (EA). In contrast, the low metastatic parental line Eb, from which ESb was derived, contained only a low percentage of EA-rosette-forming cells. ESb ascites tumor cells adapted to tissue culture in the presence of 2-mercaptoethanol (2ME) had a high expression of Fc receptors, whereas a cell line adapted to tissue culture in the absence of 2ME had a low expression of Fc receptors. “Soluble” Fc receptors were detectable by their ability to bind to EA and to cause blocking of rosette formation. They were found to be present in fluids from tumor-bearing animals, such as serum and cell-free ascites. Even animals with an ascites tumor of the low-metastatic line Eb contained “soluble” Fc receptors. The results are discussed with regard to their possible significance for tumor metastasis.  相似文献   

19.
We investigated the effect of polymorphonuclear neutrophils (PMN) on anti-CD3 mAb (OKT3 and anti-Leu4)-mediated T cell activation. In the absence of monocytes, purified E-rosette-positive cells (further referred to as "T cells") require either solid-phase bound anti-CD3 or the combination of both a high concentration of soluble anti-CD3 and exogenous recombinant interleukin 2 (rIL-2) to proliferate. PMN cannot sustain T cell proliferation with soluble anti-CD3, but they markedly boost proliferation in the presence of soluble anti-CD3 and rIL-2. When PMN were added to T cell cultures stimulated with anti-CD3, this resulted in IL-2 receptor (IL-2R) expression and CD3 modulation. The mechanism of enhancement of anti-CD3-induced IL-2-responsiveness by PMN was further analyzed. A cellular T cell-PMN interaction was found to play a critical role and this was mediated through PMN Fc receptors (FcR). PMN bear two types of low-affinity FcR (FcRII and FcRIII). FcRII is known to bind mIgG1 (e.g., anti-Leu4) and FcRIII binds mIgG2a (e.g., OKT3). FcR involvement was demonstrated by two observations. Anti-FcRII mAb IV.3 inhibited the PMN signal for T cell activation with anti-Leu4. PMN bearing the second variant of FcRII which is unable to bind mIgG1 failed to promote anti-Leu4/IL-2-mediated T cell proliferation. Thus, PMN potentiate T cell responsiveness to IL-2 in the presence of anti-CD3 mAb and this potentiation by PMN requires interaction of anti-CD3 with PMN-FcR.  相似文献   

20.
By investigating the presence and distribution of GalNAc/Gal-specific receptors on liver cells in vitro and in vivo, we provided evidence that the hepatocyte is not the only liver cell expressing receptor activity but that receptors of similar specificity are found on liver macrophages and also on endothelial cells. The receptor distribution in the plasma membrane is strinkingly different between the three cell types, as judged from the binding pattern of colloidal gold particles coated with asialofetuin or lactosylated serum albumin. Binding to hepatocytes occurs as single particles statistically distributed, binding to liver macrophages in a clustered arrangement all over the cell membrane and binding to endothelial cells also in a clustered arrangement but restricted to coated pits only. The different receptor distribution results in different binding and uptake abilities. Whereas hepatocytes bind and take up molecules and small particles (5 nm) only, the clustered receptor arrangement of endothelial cells and macrophages enables them to effectively bind and ingest larger particles. Ligands larger than 35 nm can be taken up by the macrophages only. The different receptor arrangement results also in different capacities of cell contact formation. Although in vitro liver macrophages and hepatocytes can both bind desialylated cells the macrophage needs much less galactosyl groups exposed on erythrocytes to establish stable contacts than the hepatocyte. The contacts formed by hepatocytes stay reversible for 30 min at 37 degrees C, whereas the contacts formed by the liver macrophages become irreversible after 10 min at 37 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号