首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The inhibitory mechanism of tea catechins for allergy remains undefined. We studied the effect of catechins, mainly EGCG, on the activation of mast cell line canine cutaneous mastocytoma cells (CM-MC). Compound 48/80 induced the degranulation in CM-MC dose dependently, whereas its release of beta-hexosaminidase was inhibited by EGCG and O-methylated EGCG (EGCG-Me). Both catechins were found to inhibit intracellular ROS generation dose dependently together with DPI. Intracellular ROS generation in human polymorphonuclear leukocytes was also inhibited by EGCG. Neither L-NAME, ebeselen nor NAC inhibited ROS generation. From the Western blot analysis of the subunits components of NADPH oxidase, we detected cytosolic subunits; p47(phox), p67(phox), p40(phox), rac2 and membrane subunits; gp91(phox), p22(phox) in CM-MC. Cytosolic subunits were translocated from cytosol to membrane time dependently after stimulation with compound 48/80. EGCG and DPI inhibited cytosolic subunits from translocating into membrane. These data suggest that EGCG inhibits the activation of NADPH oxidase in CM-MC.  相似文献   

2.
Angiotensin II (Ang II) has been found to exert preconditioning-like effect on mammalian hearts. Diverse mechanisms are known to exist to explain the cardioprotective abilities of Ang II preconditioning. The present study hypothesized, based on the recent report that Ang II generates reactive oxygen species (ROS) through NADPH oxidase, that Ang II preconditioning occurs through redox cycling. To test this hypothesis, a group of rat hearts was treated with Ang II in the absence or presence of an NADPH oxidase inhibitor, apocynin; or a cell-permeable ROS scavenger, N-acetyl cysteine (NAC). Ang II pretreatment improved postischemic ventricular recovery; reduced myocardial infarction; and decreased the number of cardiomyocyte apoptosis, indicating its ability to precondition the heart against ischemic injury. Both apocynin and NAC almost abolished the preconditioning ability of Ang II. Ang II resulted in increase in ROS activity in the heart, which was reduced by either NAC or apocynin. Ang II also increased both the NADPH oxidase subunits gp91 phox and p22phox mRNA expression, which was abolished with apocynin and NAC. Our results thus demonstrate that the Ang II preconditioning was associated with enhanced ROS activities and increased NADPH oxidase subunits p22phox and gp91phox expression. Both NAC and apocynin reduced ROS activities simultaneously abolishing preconditioning ability of Ang II, suggesting that Ang II preconditioning occurs through redox cycling. That both NAC and apocynin reduced ROS activities and abolished Ang II-mediated increase in p22phox and gp91phox activity further suggest that such redox cycling occurs via both NADPH oxidase-dependent and -independent pathways.  相似文献   

3.
Hyperoxia increases reactive oxygen species (ROS) production in vascular endothelium; however, the mechanisms involved in ROS generation are not well characterized. We determined the role and regulation of NAD(P)H oxidase in hyperoxia-induced ROS formation in human pulmonary artery endothelial cells (HPAECs). Exposure of HPAECs to hyperoxia for 1, 3, and 12 h increased the generation of superoxide anion, which was blocked by diphenyleneiodonium but not by rotenone or oxypurinol. Furthermore, hyperoxia enhanced NADPH- and NADH-dependent and superoxide dismutase- or diphenyleneiodonium-inhibitable ROS production in HPAECs. Immunohistocytochemistry and Western blotting revealed the presence of gp91, p67 phox, p22 phox, and p47 phox subcomponents of NADPH oxidase in HPAECs. Transfection of HPAECs with p22 phox antisense plasmid inhibited hyperoxia-induced ROS production. Exposure of HPAECs to hyperoxia activated p38 MAPK and ERK, and inhibition of p38 MAPK and MEK1/2 attenuated the hyperoxia-induced ROS generation. These results suggest a role for MAPK in regulating hyperoxia-induced NAD(P)H oxidase activation in HPAECs.  相似文献   

4.
Advanced Glycation End Products (AGEs) has been implicated in the progression of diabetic keratopathy. However, details regarding their function are not well understood. In the present study, we investigated the effects of intracellular reactive oxygen species (ROS) and JNK, p38 MAPK on AGE-modified bovine serum albumin (BSA) induced Human telomerase-immortalized corneal epithelial cells (HUCLs) apoptosis. We found that AGE-BSA induced HUCLs apoptosis and increased Bax protein expression, decreased Bcl-2 protein expression. AGE-BSA also induced the expression of receptor for advanced glycation end product (RAGE). AGE-BSA-RAGE interaction induced intracellular ROS generation through activated NADPH oxidase and increased the phosphorylation of p47phox. AGE-BSA induced HUCLs apoptosis was inhibited by pretreatment with NADPH oxidase inhibitors, ROS quencher N-acetylcysteine (NAC) or neutralizing anti-RAGE antibodies. We also found that AGE-BSA induced JNK and p38 MAPK phosphorylation. JNK and p38 MAPK inhibitor effectively blocked AGE-BSA-induced HUCLs apoptosis. In addition, NAC completely blocked phosphorylation of JNK and p38 MAPK induced by AGE-BSA. Our results indicate that AGE-BSA induced HUCLs apoptosis through generation of intracellular ROS and activation of JNK and p38 MAPK pathways.  相似文献   

5.
Hyperglycemia-induced generation of reactive oxygen species (ROS) can lead to cardiomyocyte apoptosis and cardiac dysfunction. However, the mechanism by which high glucose causes cardiomyocyte apoptosis is not clear. In this study, we investigated the signaling pathways involved in NADPH oxidase-derived ROS-induced apoptosis in cardiomyocytes under hyperglycemic conditions. H9c2 cells were treated with 5.5 or 33 mM glucose for 36 h. We found that 33 mM glucose resulted in a time-dependent increase in ROS generation as well as a time-dependent increase in protein expression of p22(phox), p47(phox), gp91(phox), phosphorylated IκB, c-Jun N-terminal kinase (JNK) and p38, as well as the nuclear translocation of NF-kB. Treatment with apocynin or diphenylene iodonium (DPI), NADPH oxidase inhibitors, resulted in reduced expression of p22(phox), p47(phox), gp91(phox), phosphorylated IκB, c-Jun N-terminal kinase (JNK) and p38. In addition, treatment with JNK and NF-kB siRNAs blocked the activity of caspase-3. Furthermore, treatment with JNK, but not p38, siRNA inhibited the glucose-induced activation of NF-κB. Similar results were obtained in neonatal cardiomyocytes exposed to high glucose concentrations. Therefore, we propose that NADPH oxidase-derived ROS-induced apoptosis is mediated via the JNK-dependent activation of NF-κB in cardiomyocytes exposed to high glucose.  相似文献   

6.
Reactive oxygen species (ROS) derived from vascular NADPH oxidase are important in normal and pathological regulation of vessel growth and function. Cell-specific differences in expression and function of the catalytic subunit of NADPH oxidase may contribute to differences in vascular cell response to NADPH oxidase activation. We examined the functional expression of gp91phox on NADPH oxidase activity in vascular smooth muscle cells (SMC) and fibroblasts (FB). As measured by dihydroethidium fluorescence in situ, superoxide (O2-*) levels were greater in adventitial cells compared with medial SMC in wild-type aorta. In contrast, there was no difference in O2-* levels between adventitial cells and medial SMC in aorta from gp91phox-deficient (gp91phox KO) mice. Adventitial-derived FB and medial SMC were isolated from the aorta of wild-type and gp91phox KO mice and grown in culture. Consistent with the observations in situ, basal and stimulated ROS levels were reduced in FB isolated from aorta of gp91phox KO compared with FB from wild-type aorta, whereas ROS levels were similar in SMC derived from gp91phox KO and wild-type aorta. There were no differences in expression of superoxide dismutase between gp91phox KO and wild-type FB to account for these observations. Because gp91phox is associated with membranes, we examined NADPH-stimulated O2-. production in membrane-enriched fractions of cell lysate. As measured by chemiluminescence, NADPH oxidase activity was markedly greater in wild-type FB compared with gp91phox KO FB but did not differ among the SMCs. Confirming functional expression of gp91phox in FB, antisense to gp91phox decreased ROS levels in wild-type FB. Finally, deficiency of gp91phox did not alter expression of the gp91phox homolog NOX4 in isolated FB. We conclude that the neutrophil subunit gp91phox contributes to NADPH oxidase function in vascular FB, but not SMC.  相似文献   

7.
Several essential components of NADPH oxidase, including p22phox, gp91phox (nox2) and its homologs nox1 and nox4, p47phox, p67phox, and rac1, are present in the vasculature. We previously reported that p67phox is essential for adventitial fibroblast NADPH oxidase O2- production. Thus we postulated that inhibition of adventitial p67phox activity would attenuate angioplasty-induced hyperplasia. To test this hypothesis, we treated the adventitia of carotid arteries with a control adenovirus (Ad-control), a virus expressing dominant-negative p67phox (Ad-p67dn), or a virus expressing a competitive peptide (gp91ds) targeting the p47phox-gp91phox interaction (Ad-gp91ds). Common carotid arteries (CCAs) from male Sprague-Dawley rats were transfected with Ad-control, Ad-p67dn, or Ad-gp91ds in pluronic gel. After 2 days, a 2-F (Fogarty) catheter was used to injure CCAs in vivo. After 14 days, CCAs were perfusion-fixed and analyzed. In 13 experiments, digital morphometry suggested a reduction of neointimal hyperplasia with Ad-p67dn compared with Ad-control; however, the reduction did not reach statistical significance (P = 0.058). In contrast, a significant reduction was achieved with Ad-gp91ds (P = 0.006). No changes in medial area or remodeling were observed with either treatment. Moreover, adventitial fibroblast proliferation in vitro was inhibited by Ad-gp91ds but not by Ad-p67dn, despite confirmation that Ad-p67dn inhibits NADPH oxidase in fibroblasts. These data appear to suggest that a multicomponent vascular NADPH oxidase plays a role in neointimal hyperplasia. However, inhibition of p47phox may be more effective than inhibition of p67phox at attenuating neointimal growth.  相似文献   

8.
Unc119 is an adaptor protein that is involved in the development of the vertebrate nervous system. We have shown that Unc119 stimulates the induction of alpha-smooth muscle actin (alpha-SMA) and myofibroblast differentiation by TGF-beta in human lung fibroblasts. Unc119 increases the kinase activity of Fyn and associates with it in coprecipitation and colocalization studies. Phosphorylation and activation of Fyn in response to TGF-beta and platelet-derived growth factor is delayed in Unc119-deficient cells. This delay translates into suppressed cell proliferation. In Src family kinase-deficient (SYF) cells, Unc119 knockdown does not affect cell proliferation. The result suggests that Unc119 interacts with Fyn in the early stages of signal generation and its presence is essential for conducive signal transduction. Unc119 overexpression does not stimulate alpha-SMA in SYF cells and this defect is restored upon reconstitution with Fyn indicating that Unc119 stimulation of alpha-SMA requires at least Fyn. Unc119 overexpression stimulated p38, but not JNK, phosphorylation. Blocking p38 MAPK resulted in reduced alpha-SMA expression by Unc119 suggesting that the p38 pathway regulates Unc119-induced myofibroblast differentiation. Unc119 stimulates the production of TGF-beta and IL-6, known inducers of myofibroblast differentiation. Thus, Unc119 regulates receptor-mediated signal transduction and myofibroblast differentiation by activating Fyn and the p38 MAPK pathway. Using primary lung fibroblasts from patients with fibrotic lung diseases and control subjects, we show that the expression of alpha-smooth muscle actin is highly correlated with that of Unc119. Taken together, our results suggest that Unc119 plays an important role in fibrotic processes through myofibroblast differentiation.  相似文献   

9.
10.
Angiotensin II (Ang II) plays a profound regulatory effect on NADPH oxidase and the functional features of vascular adventitial fibroblasts, but its role in antioxidant enzyme defense remains unclear. This study investigated the effect of Ang II on expressions and activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in adventitial fibroblasts and the possible mechanism involved. Ang II decreased the expression and activity of CAT in a dose- and time-dependent manner, but not that of SOD and GPx. The effects were abolished by the angiotensin II type 1 receptor (AT1R) blocker losartan and AT1R small-interfering RNA (siRNA). Incubation with polyethylene glycol-CAT prevented the Ang II-induced effects on reactive oxygen species (ROS) generation and myofibroblast differentiation. Moreover, Ang II rapidly induced phosphorylation of ERK1/2, which was reversed by losartan and AT1R siRNA. Pharmacological blockade of ERK1/2 improved Ang II-induced decrease in CAT protein expression. These in vitro results indicate that Ang II induces ERK1/2 activation, contributing to the downregulation of CAT as well as promoting oxidative stress and adventitial fibroblast phenotypic differentiation in an AT1R-mediated manner.  相似文献   

11.
Angiotensin II (Ang II) regulates vascular smooth muscle cell (VSMC) function by activating signaling cascades that promote vasoconstriction, growth, and inflammation. Subcellular mechanisms coordinating these processes are unclear. In the present study, we questioned the role of the actin cytoskeleton in Ang II mediated signaling through mitogen-activated protein (MAP) kinases and reactive oxygen species (ROS) in VSMCs. Human VSMCs were studied. Cells were exposed to Ang II (10-7 mol/L) in the absence and presence of cytochalasin B (10-6 mol/L, 60 min), which disrupts the actin cytoskeleton. Phosphorylation of p38MAP kinase, JNK, and ERK1/2 was assessed by immuno blotting. ROS generation was measured using the fluoroprobe chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (4 micromol/L). Interaction between the cytoskeleton and NADPH oxidase was determined by evaluating the presence of p47phox in the Triton X-100 insoluble membrane fraction. Ang II significantly increased phosphorylation of p38MAP kinase, JNK, and ERK1/2 (two- to threefold above control, p < 0.05). Cytochalasin B pretreatment attenuated p38MAP kinase and JNK effects (p < 0.05) without altering ERK1/2 phosphorylation. ROS formation, which was increased in Ang II stimulated cells, was significantly reduced by cytochalasin B (p < 0.01). p47phox, critically involved in NADPH oxidase activation, colocalized with the actin cytoskeleton in Ang II stimulated cells. Our data demonstrate that Ang II mediated ROS formation and activation of p38MAP kinase and JNK, but not ERK1/2, involves the actin cytoskeleton in VSMCs. In addition, Ang II promotes interaction between actin and p47phox. These data indicate that the cytoskeleton is involved in differential MAP kinase signaling and ROS generation by Ang II in VSMCs. Together, these studies suggest that the cytoskeleton may be a central point of crosstalk in growth- and redox-signaling pathways by Ang II, which may be important in the regulation of VSMC function.  相似文献   

12.
Transforming growth factor beta(1) (TGFbeta(1)) activation leads to tissue fibrosis. Here, we report on the role of LOX-1, a lectin-like 52-kDa receptor for oxidized low density lipoprotein, in TGFbeta(1)-mediated collagen expression and underlying signaling in mouse cardiac fibroblasts. TGFbeta(1) was overexpressed in wild-type (WT) and LOX-1 knock-out mouse cardiac fibroblasts by transfection with adeno-associated virus type 2 vector carrying the active TGFbeta(1) moiety (AAV/TGFbeta (ACT)(1)). Transfection of WT mouse cardiac fibroblasts with AAV/TGFbeta (ACT)(1) markedly enhanced the expression of NADPH oxidases (p22(phox), p47(phox), and gp91(phox) subunits) and LOX-1, formation of reactive oxygen species, and collagen synthesis, concomitant with an increase in the activation of p38 and p44/42 mitogen-activated protein kinases (MAPK). The TGFbeta(1)-mediated increase in collagen synthesis was markedly attenuated in the LOX-1 knock-out mouse cardiac fibroblasts as well as in WT mouse cardiac fibroblasts treated with a specific anti-LOX-1 antibody. Treatment with anti-LOX-1 antibody also reduced NADPH oxidase expression and MAPK activation. The NADPH oxidase inhibitors and gp91phox small interfering RNA reduced LOX-1 expression, MAPK activation, and collagen formation. The p38 MAPK inhibitors as well as the p44/42 MAPK inhibitors reduced collagen formation without affecting LOX-1 expression in cardiac fibroblasts. These observations suggest that collagen synthesis in cardiac fibroblasts involves a facilitative interaction between TGFbeta(1)-NADPH oxidase and LOX-1. Further, the activation of MAPK pathway appears to be downstream of TGFbeta(1)-reactive oxygen species-LOX-1 cascade.  相似文献   

13.
In the present study, we examined signal transduction mechanism of reactive oxygen species (ROS) production and the role of ROS in angiotensin II-induced activation of mitogen-activated protein kinases (MAPKs) in rat neonatal cardiomyocytes. Among three MAPKs, c-Jun NH(2)-terminal kinase (JNK) and p38 MAPK required ROS production for activation, as an NADPH oxidase inhibitor, diphenyleneiodonium, inhibited the activation. The angiotensin II-induced activation of JNK and p38 MAPK was also inhibited by the expression of the Galpha(12/13)-specific regulator of G protein signaling (RGS) domain, a specific inhibitor of Galpha(12/13), but not by an RGS domain specific for Galpha(q). Constitutively active Galpha(12)- or Galpha(13)-induced activation of JNK and p38 MAPK, but not extracellular signal-regulated kinase (ERK), was inhibited by diphenyleneiodonium. Angiotensin II receptor stimulation rapidly activated Galpha(13), which was completely inhibited by the Galpha(12/13)-specific RGS domain. Furthermore, the Galpha(12/13)-specific but not the Galpha(q)-specific RGS domain inhibited angiotensin II-induced ROS production. Dominant negative Rac inhibited angiotensin II-stimulated ROS production, JNK activation, and p38 MAPK activation but did not affect ERK activation. Rac activation was mediated by Rho and Rho kinase, because Rac activation was inhibited by C3 toxin and a Rho kinase inhibitor, Y27632. Furthermore, angiotensin II-induced Rho activation was inhibited by Galpha(12/13)-specific RGS domain but not dominant negative Rac. An inhibitor of epidermal growth factor receptor kinase AG1478 did not affect angiotensin II-induced JNK activation cascade. These results suggest that Galpha(12/13)-mediated ROS production through Rho and Rac is essential for JNK and p38 MAPK activation.  相似文献   

14.
Transforming growth factor (TGF)-beta1 induces fibroblast transdifferentiation to myofibroblasts, a process that requires the involvement of integrin-mediated signaling and focal adhesion kinase (FAK). FAK-related non-kinase (FRNK) is known for its role in inhibiting integrin-mediated cell migration; however, its role in myofibroblast differentiation has not been defined. Here, we report that FRNK abrogates TGF-beta1-induced myofibroblast differentiation in vitro and in vivo. TGF-beta1 can induce alpha-smooth muscle actin (alpha-SMA) expression in the presence or absence of FAK; however, TGF-beta1-induced alpha-SMA expression is reduced (approximately 73%) in FAK-deficient fibroblasts. Although both ERK and p38 MAPK activation is required for maximal TGF-beta1-induced alpha-SMA expression, ERK is the major signaling intermediate in cells that express FAK. In contrast, p38 MAPK is the dominant mediator of TGF-beta1-induced alpha-SMA expression in FAK-deficient cells. FRNK overexpression blocks TGF-beta1-induced ERK or p38 MAPK activation in the presence, and surprisingly, in the absence of FAK. The loss of FRNK was tested in vivo during experimentally induced pulmonary fibrosis in mice. FRNK knock-out mice have a greater increase in alpha-SMA-expressing cells in response to a pulmonary fibrotic stimulus in vivo, as compared with congenic wild type mice. This is the first time that FRNK loss has been shown to modify the pathobiology in any animal disease model. Together, the data demonstrate that FRNK negatively regulates myofibroblast differentiation in vitro and in vivo. These data further suggest that modulation FRNK expression may be a novel avenue for therapeutic intervention in tissue fibrosis.  相似文献   

15.
16.
Cytosolic phospholipase A(2) (cPLA(2)) plays a pivotal role in mediating agonist-induced arachidonic acid (AA) release for prostaglandin (PG) synthesis during inflammation triggered by tumor necrosis factor-α (TNF-α). However, the mechanisms underlying TNF-α-induced cPLA(2) expression and PGE(2) synthesis in human tracheal smooth muscle cells (HTSMCs) remain unknown. Here, we report that TNF-α-induced cPLA(2) protein and mRNA expression, PGE(2) production, and phosphorylation of p42/p44 MAPK, p38 MAPK, and JNK1/2, which were attenuated by pretreatment with a ROS scavenger [N-acetyl-L-cysteine, (NAC)] and the inhibitors of NADPH oxidase [apocynin (APO) and diphenyleneiodonium chloride (DPI)], MEK1/2 (U0126), p38 MAPK (SB202190), and JNK1/2 (SP600125) or transfection with siRNA of Nox2, p47(phox) , MEK1, p42, p38, or JNK2. TNF-α-induced cPLA(2) expression was also inhibited by pretreatment with a selective NF-κB inhibitor [helenalin (HLN)] or transfection with dominant negative mutants of NF-κB inducing kinase (NIK) or IκB kinase (IKK)α/β. TNF-α-induced NF-κB translocation was blocked by pretreatment with NAC, DPI, APO, or HLN, but not by U0126, SB202190, or SP600125. In addition, pretreatment with curcumin (a p300 inhibitor) or transfection with p300 siRNA blocked cPLA(2) expression and PGE(2) synthesis induced by TNF-α. We further confirmed that p300 was associated with the cPLA(2) promoter which was dynamically linked to histone H4 acetylation stimulated by TNF-α, determined by chromatin immunoprecipitation assay. Association of p300 and histone H4 to cPLA(2) promoter was inhibited by U0126, SB202190, and SP600125. These results suggested that in HTSMCs, activation of p47(phox) , MAPKs, NF-κB, and p300 is essential for TNF-α-induced cPLA(2) expression and PGE(2) release.  相似文献   

17.
Extracellular ATP, an autocrine or paracrine intercellular transmitter, is known to induce apoptosis in macrophages. However, the precise signaling mechanisms of ATP-induced apoptosis remain to be elucidated. Here we showed that activation of p38 mitogen-activated protein kinase (MAPK) plays a critical role in ATP-induced apoptosis. p38 activation and apoptosis in macrophages were induced by ATP. ATP-induced apoptosis was mediated in part by production of reactive oxygen species (ROS) derived from NOX2/gp91(phox), a component of the NADPH oxidase complex expressed in macrophages and neutrophils. Furthermore, ATP-induced ROS generation, p38 activation, and apoptosis were almost completely inhibited by selective P2X(7) receptor antagonists. We also found that ATP-induced apoptosis were diminished in ASK1-deficient macrophages accompanied by the lack of p38 activation. These results demonstrate that ROS-mediated activation of the ASK1-p38 MAPK pathway downstream of P2X(7) receptor is required for ATP-induced apoptosis in macrophages.  相似文献   

18.
Reactive oxygen species (ROS) are important signal transduction molecules in ligand-induced signaling, regulation of cell growth, differentiation, apoptosis and motility. Recently NADPH oxidases (Nox) homologous to Nox2 (gp91phox) of phagocyte cytochrome b558 have been identified, which are an enzymatic source for ROS generation in epithelial cells. This study was undertaken to delineate the requirements for ROS generation by Nox4. Nox4, in contrast to other Nox proteins, produces large amounts of hydrogen peroxide constitutively. Known cytosolic oxidase proteins or the GTPase Rac are not required for this activity. Nox4 associates with the protein p22phox on internal membranes, where ROS generation occurs. Knockdown and gene transfection studies confirmed that Nox4 requires p22phox for ROS generation. Mutational analysis revealed structural requirements affecting expression of the p22phox protein and Nox activity. Mechanistic insight into ROS regulation is significant for understanding fundamental cell biology and pathophysiological conditions.  相似文献   

19.
Myeloperoxidase (MPO) is an important enzyme involved in the genesis and development of atherosclerosis. Vascular peroxidase 1 (VPO1) is a newly discovered member of the peroxidase family that is mainly expressed in vascular endothelial cells and smooth muscle cells and has structural characteristics and biological activity similar to those of MPO. Our specific aims were to explore the effects of VPO1 on endothelial cell apoptosis induced by oxidized low-density lipoprotein (ox-LDL) and the underlying mechanisms. The results showed that ox-LDL induced endothelial cell apoptosis and the expression of VPO1 in endothelial cells in a concentration- and time-dependent manner concomitant with increased intracellular reactive oxygen species (ROS) and hypochlorous acid (HOCl) generation, and up-regulated protein expression of the NADPH oxidase gp91phox subunit and phosphorylation of p38 MAPK. All these effects of ox-LDL were inhibited by VPO1 gene silencing and NADPH oxidase gp91phox subunit gene silencing or by pretreatment with the NADPH oxidase inhibitor apocynin or diphenyliodonium. The p38 MAPK inhibitor SB203580 or the caspase-3 inhibitor DEVD-CHO significantly inhibited ox-LDL-induced endothelial cell apoptosis, but had no effect on intracellular ROS and HOCl generation or the expression of NADPH oxidase gp91phox subunit or VPO1. Collectively, these findings suggest for the first time that VPO1 plays a critical role in ox-LDL-induced endothelial cell apoptosis and that there is a positive feedback loop between VPO1/HOCl and the now-accepted dogma that the NADPH oxidase/ROS/p38 MAPK/caspase-3 pathway is involved in ox-LDL-induced endothelial cell apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号