首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Symbiotic phosphate transport in arbuscular mycorrhizas   总被引:9,自引:0,他引:9  
Arbuscular mycorrhizal fungi colonize the root systems of most land plants and modulate plant growth by enhancing the availability of nutrients, mainly phosphorus, for plant nutrition. Recently identified genes encoding mycorrhiza-specific plant phosphate transporters have enabled fundamental problems in arbuscular mycorrhizal symbiosis research to be addressed. Because phosphate transport is a key feature of this symbiosis, the study of phosphate transport mechanisms and their gene regulation will further our understanding of the intimate interaction between the two symbiotic partners.  相似文献   

2.
基于转录组测序,获得了茶树新梢叶片被茶丽纹象甲为害前后的差异基因表达谱,并从信号监测与转导、转录因子、次生代谢物生成等方面分析了相关基因的表达变化情况,为进一步研究茶丽纹象甲为害诱导的茶树防御机制奠定基础。结果表明:(1)茶丽纹象甲为害茶树新梢叶片后共检测到显著上调表达基因309个,显著下调表达基因297个,这些显著差异表达基因共分成23类。(2)检测到信号监测与转导过程中合计17个单基因上调表达2.0~2.8倍,包括富含亮氨酸重复序列的类受体蛋白激酶基因、促分裂原活化蛋白激酶级联信号系统蛋白激酶基因、茉莉酸信号通路基因、钙离子信号基因、水杨酸代谢通路基因;检测到21个转录因子单基因上调表达1.8~2.8倍,包括bHLH、WRKY、bZIP、MYB、UAF等转录因子;检测到苯丙类、类黄酮及萜类物质代谢过程中合计8个单基因上调表达2.1~2.5倍,包括苯丙酮酸互变异构酶基因、肉桂酰辅酶A还原酶基因、二氢黄酮醇还原酶基因、花色素还原酶基因、法尼基二磷酸合成酶基因、法尼醇脱氢酶基因。研究认为,茶丽纹象甲为害诱导信号转导、转录因子及次生代谢过程中的基因增量表达以机械损伤作用为主,昆虫口腔分泌物对这些基因的诱导表达具有协同促进作用。  相似文献   

3.
高等植物对土壤中营养元素的吸收是其一切生命活动过程的基础,尤其在营养元素缺乏的状态下,更与其抗营养饥饿等特性息息相关。兼于土壤中N、P、K元素缺乏的严重性与普遍性,以及N、P、K对高等植物生长和发育的重要性,有关高等植物吸收营养元素的膜转运蛋白编码基因的分子生物学研究已引起有关学者的高度重视。NO-3/NH+4、PO3-4与K+膜转运蛋白均有低亲和力和高亲和力系统(LowAfinityTransporter&HighAfinityTransporter)。对PO43-和K+而言,低亲和力系统是组成性表达的系统,在正常营养状态下对根系吸收营养起重要作用。而高亲和力系统是受营养缺乏而诱导表达的系统,对于植物的抗逆性、耐营养饥饿至关重要。迄今为止,与之有关的基因的全长cDNA或全基因已在几种植物中被克隆。此外,对基因的表达特性亦有广泛研究。本文简要概述这三大营养元素的膜转运蛋白编码基因的分子生物学研究现状。  相似文献   

4.
Summary The transport of solutes by bacteria has been studied for about thirty years. Early experiments on amino acid entry and galactoside accumulation provided concrete evidence that bacteria possessed specific transport systems and that these were subject to regulation. Since then a large number of transport systems have been discovered and studied extensively. Many of these use entirely different strategies for capturing or accumulating substrates. This diversity reflects variation in the availability of nutrients and ions in the different environments tolerated and inhabited by microorganisms. Examination of a few bacterial transport systems provides an opportunity to gain insight into a wide range of topics in the area of membrane transport. These include: the identification of carrier proteins and their arrangement in the membrane, the regulation of transport protein synthesis by environmental factors, and the localization of transport proteins to their extracytoplasmic destinations.It has been possible to construct a number of bacterial strains in which the gene (lacZ) which codes for the cytoplasmic enzyme -galactosidase is fused to genes which code for transport proteins. The following article is intended to illustrate how these gene fusions have been used to study the regulation and structure of transport proteins inEscherichia coli.  相似文献   

5.
Methanosarcina mazei is a nonhalophilic methanogen that can adapt to 800 mM NaCl. Microarray studies have been used to examine the effect of elevated salinities on the regulation of gene expression in M. mazei. Eighty-four genes of different functional categories, such as solute transport and biosynthesis, Na(+) export, stress response, ion, protein and phosphate transport, metabolic enzymes, regulatory proteins, DNA-modification systems, and cell-surface modulators, were found to be stronger expressed at high salinities. Moreover, 10 genes encoding different metabolic functions including potassium uptake and ATP synthesis were reduced in expression under high salt. The overall expression profiles suggest that M. mazei is able to adapt to high salinities by multiple upregulation of many different cellular functions including protective pathways such as solute transport and biosynthesis, import of phosphate, export of Na(+), and upregulation of pathways for modification of DNA and cell surface architecture.  相似文献   

6.
Root ion transport systems are regulated by light and/or sugars, but the signaling mechanisms are unknown. We showed previously that induction of the NRT2.1 NO(3)(-) transporter gene by sugars was dependent on carbon metabolism downstream hexokinase (HXK) in glycolysis. To gain further insights on this signaling pathway and to explore more systematically the mechanisms coordinating root nutrient uptake with photosynthesis, we studied the regulation of 19 light-/sugar-induced ion transporter genes. A combination of sugar, sugar analogs, light, and CO(2) treatments provided evidence that these genes are not regulated by a common mechanism and unraveled at least four different signaling pathways involved: regulation by light per se, by HXK-dependent sugar sensing, and by sugar sensing upstream or downstream HXK, respectively. More specific investigation of sugar-sensing downstream HXK, using NRT2.1 and NRT1.1 NO(3)(-) transporter genes as models, highlighted a correlation between expression of these genes and the concentration of glucose-6-P in the roots. Furthermore, the phosphogluconate dehydrogenase inhibitor 6-aminonicotinamide almost completely prevented induction of NRT2.1 and NRT1.1 by sucrose, indicating that glucose-6-P metabolization within the oxidative pentose phosphate pathway is required for generating the sugar signal. Out of the 19 genes investigated, most of those belonging to the NO(3)(-), NH(4)(+), and SO(4)(2-) transporter families were regulated like NRT2.1 and NRT1.1. These data suggest that a yet-unidentified oxidative pentose phosphate pathway-dependent sugar-sensing pathway governs the regulation of root nitrogen and sulfur acquisition by the carbon status of the plant to coordinate the availability of these three elements for amino acid synthesis.  相似文献   

7.
Nicotianamine (NA) is a non‐protein amino acid involved in fundamental aspects of metal uptake, transport and homeostasis in all plants and constitutes the biosynthetic precursor of mugineic acid family phytosiderophores (MAs) in graminaceous plant species. Nicotianamine synthase (NAS) genes, which encode enzymes that synthesize NA from S‐adenosyl‐L‐methionine (SAM), are differentially regulated by iron (Fe) status in most plant species and plant genomes have been found to contain anywhere from 1 to 9 NAS genes. This study describes the identification of 21 NAS genes in the hexaploid bread wheat (Triticum aestivum L.) genome and their phylogenetic classification into two distinct clades. The TaNAS genes are highly expressed during germination, seedling growth and reproductive development. Fourteen of the clade I NAS genes were up‐regulated in root tissues under conditions of Fe deficiency. Protein sequence analyses revealed the presence of endocytosis motifs in all of the wheat NAS proteins as well as chloroplast, mitochondrial and secretory transit peptide signals in four proteins. These results greatly expand our knowledge of NAS gene families in graminaceous plant species as well as the genetics underlying Fe nutrition in bread wheat.  相似文献   

8.
9.
Growth of soil bacteria is often limited by the availability of essential nutrients such as carbon, nitrogen and phosphate. The reaction to a specific nutrient starvation triggers interconnected responses to equilibrate the metabolism. It is known that PhoP (response regulator involved in phosphate control) specifically binds to several promoters of genes involved in nitrogen metabolism which are also regulated by GlnR (regulator involved in nitrogen control). In this article we report a novel cross-talk between GlnR and the SARP-like regulator, AfsR. AfsR binds to some PhoP-regulated promoters including those of afsS (a small regulatory protein of secondary metabolism), pstS (a component of the phosphate transport system) and phoRP (encoding the two component system itself). We have characterized the regulation exerted upon the nitrogen regulator glnR gene by AfsR, using EMSA and DNase I footprinting assays as well as in vivo expression studies with ΔphoP, ΔafsR and ΔafsR-ΔphoP mutants. Both PhoP and AfsR proteins are able to bind to overlapping regions within the glnR promoter producing different effects. This work demonstrates a cross-talk of three different regulators of both primary and secondary metabolism.  相似文献   

10.
Reduction of Fe(III) to Fe(II) by Fe(III) chelate reductase is thought to be an obligatory step in iron uptake as well as the primary factor in making iron available for absorption by all plants except grasses. Fe(III) chelate reductase has also been suggested to play a more general role in the regulation of cation absorption. In order to experimentally address the importance of Fe(III) chelate reductase activity in the mineral nutrition of plants, three Arabidopsis thaliana mutants (frd1-1, frd1-2 and frd1-3), that do not show induction of Fe(III) chelate reductase activity under iron-deficient growth conditions, have been isolated and characterized. These mutants are still capable of acidifying the rhizosphere under iron-deficiency and accumulate more Zn and Mn in their shoots relative to wild-type plants regardless of iron status. frd1 mutants do not translocate radiolabeled iron to the shoots when roots are presented with a tightly chelated form of Fe(III). These results: (1) confirm that iron must be reduced before it can be transported, (2) show that Fe(III) reduction can be uncoupled from proton release, the other major iron-deficiency response, and (3) demonstrate that Fe(III) chelate reductase activity per se is not necessarily responsible for accumulation of cations previously observed in pea and tomato mutants with constitutively high levels of Fe(III) chelate reductase activity.  相似文献   

11.
Molecular mechanisms of phosphate and sulphate transport in plants   总被引:14,自引:0,他引:14  
  相似文献   

12.
Ribonucleotide reductase is a highly regulated activity responsible for reducing ribonucleotides to deoxyribonucleotides, which are required for DNA synthesis and DNA repair. We have tested the hypothesis that malignant cell populations contain alterations in signal pathways important in controlling the expression of the two genes that code for ribonucleotide reductase, R1 and R2. A series of radiation and H-ras transformed mouse 10T1/2 cell lines with increasing malignant potential were exposed to stimulators of cAMP synthesis (forskolin and cholera toxin), an inhibitor of cAMP degradation (3-isobutyl-1-methylxanthine) and a biologically stable analogue of cAMP (8-bromo-cAMP). Dramatic elevations in the expression of the R1 and R2 genes at the message and protein levels were observed in malignant metastatic populations, which were not detected in the normal parental cell line or in cells capable of benign tumor formation. These changes in ribonucleotide reductase gene expression occurred without any detectable modifications in the rates of DNA synthesis, showing that they were regulated by a novel mechanism independent of the S phase of the cell cycle. Furthermore, studies with forskolin (a stimulator of the protein kinase A signal pathway) and the tumor promoter 12–0-tetradecanoylphorbol-13-acetate (a stimulator of the protein kinase C signal pathway), alone or in combination, indicated that their effects on R1 and R2 gene expression in a highly malignant cell line were greater than when they were tested individually, suggesting that the two pathways modulating R1 and R2 gene expression can cooperate to regulate ribonucleotide reduction, and interestingly this can occur in a synergistic fashion. Also, a direct relationship between H-ras expression and ribonucleotide reductase gene expression was observed; analysis of forskolin mediated elevations in R1 and R2 message levels closely correlated with the levels of H-ras expression in the various cell lines. In total, these studies demonstrate that ribonucleotide reductase expression is controlled by a complex process, and malignant ras transformed cells contain alterations in the regulation of signal transduction pathways that lead to novel modifications in ribonucleotide reductase gene expression. This signal mechanism, which is aberrantly regulated in malignant cells, may be related to regulatory pathways involved in determining ribonucleotide reductase expression in a S phase independent manner during periods of DNA repair. © 1994 Wiley-Liss, Inc.  相似文献   

13.
The Lyme disease agent Borrelia burgdorferi, which is transmitted via a tick vector, is dependent on its tick and mammalian hosts for a number of essential nutrients. Like other bacterial diderms, it must transport these biochemicals from the extracellular milieu across two membranes, ultimately to the B. burgdorferi cytoplasm. In the current study, we established that a gene cluster comprising genes bb0215 through bb0218 is cotranscribed and is therefore an operon. Sequence analysis of these proteins suggested that they are the components of an ABC‐type transporter responsible for translocating phosphate anions from the B. burgdorferi periplasm to the cytoplasm. Biophysical experiments established that the putative ligand‐binding protein of this system, BbPstS (BB0215), binds to phosphate in solution. We determined the high‐resolution (1.3 Å) crystal structure of the protein in the absence of phosphate, revealing that the protein's fold is similar to other phosphate‐binding proteins, and residues that are implicated in phosphate binding in other such proteins are conserved in BbPstS. Taken together, the gene products of bb0215‐0218 function as a phosphate transporter for B. burgdorferi.  相似文献   

14.
15.
PHO2(编码一个泛素结合酶E2)作为磷高亲和转运体PHT1的负调控子,在维持植物体内磷的动态平衡中发挥重要作用。该研究以拟南芥和水稻中的PHO2为基础,从玉米自交系B73基因组中鉴定出9个ZmPHO2基因家族成员,在系统进化关系上将其分为3类。在玉米自交系178中克隆了上述9个基因的CDS全长序列,保守结构域分析发现,ZmPHO2蛋白质序列中均有1个由约130个氨基酸组成的泛素结合酶E2催化结构域(UBCc),其中包含1个重要的保守氨基酸(半胱氨酸)。实时荧光定量结果表明,低磷胁迫处理后,所有ZmPHO2基因均有表达,并呈现不同的表达模式,主要表现为叶与根之间的组织差异和玉米自交系178与9782之间的基因型差异,而在同一组织多数基因间的表达差异不明显。其中,ZmPHO2;H2在自交系9782的根中持续下调表达,但在叶中持续上调表达,表明ZmPHO2;H2可能参与调控磷素在叶与根之间的运输,以维持地上部分和地下部分磷的平衡。  相似文献   

16.
Summary The pstS gene belongs to the phosphate regulon whose expression is induced by phosphate starvation and regulated positively by the PhoB protein. The phosphate (pho) box is a consensus sequence shared by the regulatory regions of the genes in the pho regulon. We constructed two series of deletion mutations in a plasmid in vitro, with upstream and downstream deletions in the promoter region of pstS, which contains two pho boxes in tandem, and studied their promoter activity by connecting them with a promoterless gene for chloramphenicol acetyltransferase. Deletions extending into the upstream pho box but retaining the downstream pho box greatly reduced promoter activity, but the remaining activity was still regulated by phosphate levels in the medium and by the PhoB protein, indicating that each pho box is functional. No activity was observed in deletion mutants which lacked the remaining pho box or the-10 region. Therefore, the pstS promoter was defined to include the two pho boxes and the-10 region. The PhoB protein binding region in the pstS regulatory region was studied with the deletion plasmids by a gelmobility retardation assay. The results suggest the protein binds to each pho box on the pstS promoter. A phoB deletion mutant was constructed, and we demonstrated that expression of pstS was strictly dependent on the function of the PhoB protein.  相似文献   

17.
The RNA‐binding protein Musashi1 (MSI1) is a marker of progenitor cells in the nervous system functioning as a translational repressor. We detected MSI1 mRNA in several bladder carcinoma cell lines, but not in cultured normal uroepithelial cells, whereas the paralogous MSI2 gene was broadly expressed. Knockdown of MSI1 expression by siRNA induced apoptosis and a severe decline in cell numbers in 5637 bladder carcinoma cells. Microarray analysis of gene expression changes after MSI1 knockdown significantly up‐regulated 735 genes, but down‐regulated only 31. Up‐regulated mRNAs contained a highly significantly greater number and density of Musashi binding sites. Therefore, a much larger set of mRNAs may be regulated by Musashi1, which may affect not only their translation, but also their turnover. The study confirmed p21CIP1 and Numb proteins as targets of Musashi1, suggesting additionally p27KIP1 in cell‐cycle regulation and Jagged‐1 in Notch signalling. A significant number of up‐regulated genes encoded components of stress granules (SGs), an organelle involved in translational regulation and mRNA turnover, and impacting on apoptosis. Accordingly, heat shock induced SG formation was augmented by Musashi1 down‐regulation. Our data show that ectopic MSI1 expression may contribute to tumorigenesis in selected bladder cancers through multiple mechanisms and reveal a previously unrecognized function of Musashi1 in the regulation of SG formation.  相似文献   

18.
Two nucleoside transport systems have been verified and separated by mating and recombination experiments. The recipient strain was a mutant which is negative for transport of all nucleosides. The two systems differ in specificity and in regulation. One system transports pyrimidine and adenine in specificity and in regulation. One system transports pyrimidine and adenine nucleosides, but not guanine nucleosides. It is regulated by the cytR gene. The other system transports all nucleosides and is regulated by the cytR as well as by the deoR genes. Enzyme assays performed on whole cells of strains, able or unable to transport nucleosides, indicate that the nucleoside catabolizing enzymes are located inside the permeability barrier of the cell.  相似文献   

19.
Summary The lysine biosynthetic genes asd, dapA, and dapB, encoding aspartate semialdehyde dehydrogenase (ASADH), dihydrodipicolinate synthase (DHPS), and dihydrodipicolinate reductase (DHPR), respectively, have been cloned from Lactobacillus plantarum IAM 12477 by heterologous complementation to Escherichia coli mutants. The amino acid sequences of the cloned genes showed considerable similarities to the corresponding protein from other gram-positive bacteria. We identified the amino acids that correspond to key catalytic residues of ASADH, DHPS, and DHPR and found them to be conserved in the protein from L. plantarum. ASADH, DHPS, and DHPR activity was detected in the cell extracts of E. coli mutant harboring each gene, indicating that the cloned genes were functionally expressed in E. coli. The regulation of ASADH, DHPS, and DHPR were studied in the cell extracts of both the E.␣coli mutant harboring the gene and L. plantarum; however, those enzymes were found not to be regulated by the end products of the pathway. This paper represents a portion of the thesis submitted by M. N. Cahyanto to Osaka University as partial fulfillment of the requirements for the PhD degree.  相似文献   

20.
Iron and copper are essential trace metals, actively absorbed from the proximal gut in a regulated fashion. Depletion of either metal can lead to anemia. In the gut, copper deficiency can affect iron absorption through modulating the activity of hephaestin - a multi-copper oxidase required for optimal iron export from enterocytes. How systemic copper status regulates iron absorption is unknown. Mice were subjected to a nutritional copper deficiency-induced anemia regime from birth and injected with copper sulphate intraperitoneally to correct the anemia. Copper deficiency resulted in anemia, increased duodenal hypoxia and Hypoxia inducible factor 2α (HIF-2α) levels, a regulator of iron absorption. HIF-2α upregulation in copper deficiency appeared to be independent of duodenal iron or copper levels and correlated with the expression of iron transporters (Ferroportin - Fpn, Divalent Metal transporter – Dmt1) and ferric reductase – Dcytb. Alleviation of copper-dependent anemia with intraperitoneal copper injection resulted in down regulation of HIF-2α-regulated iron absorption genes in the gut. Our work identifies HIF-2α as an important regulator of iron transport machinery in copper deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号