首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of a cytochalasin D-resistant mutant of the human parasite Entamoeba histolytica capable of growing at 10 μM cytochalasin is described. The mutant cells also show resistance to 5 mM colchicine and 100 μM cytochalasin B, drugs proved deleterious for wild type trophozoites. The mutants show increased osmotic fragility and electric mobility but reduced phagocytic activity, and agglutination by Concanavalin A. On the other hand pinocytic activity remains unaltered when compared with the wild type cells. Polymerized actin, seen by staining with phalloidin, often appears polarized to one end of the trophozoites and forms few of the endocytic invaginations found in wild type amebas. An altered distribution of part of the actin could explain the differences in surface properties and motility observed in the mutant amebas.  相似文献   

2.
Q. -Y. Wang  P. Nick 《Protoplasma》1998,204(1-2):22-33
Summary The rice mutantYin-Yang has been selected during a screen for resistance to cytoskeletal drugs and is characterized by alterations in epidermal cell length and a precocious onset of gravitropism. The elongation response of coleoptile segments to auxin does not reveal changes of auxin sensitivity inYin-Yang. However, in contrast to the wild type, cell elongation inYin-Yang is highly sensitive to the actin-polymerisation blocker cytochalasin D. This increased sensitivity to cytochalasin D requires optimal concentrations of auxin to become manifest. The auxin response of actin microfilaments in epidermal cells differs between wild type and mutant. In the wild type, the longitudinal microfilament bundles become loosened in response to auxin. In the mutant, these bundles disintegrate partially and are replaced by a network of short filaments surrounding the nucleus. Several aspects of the mutant phenotype can be mimicked in the wild type by treatment with cytochalasin D. The mutant phenotype is discussed in terms of signal-dependent changes of actin dynamics and the putative role of actin during cell elongation.Abbreviations CD cytochalasin D - EPC ethyl-N-phenylcarbamate  相似文献   

3.
The Dictyostelium essential light chain is required for myosin function.   总被引:14,自引:0,他引:14  
A Dictyostelium mutant (7-11) that expresses less than 0.5% of wild-type levels of the myosin essential light chain (EMLC) has been created by overexpression of antisense RNA. Cells from 7-11 contain wild-type levels of the myosin heavy chain (MHC) and regulatory light chain (RMLC). Myosin isolated from 7-11 cells consists of the MHC with the RMLC associated in reduced stoichiometry, and binds to purified actin in an ATP-sensitive fashion. Purified 7-11 myosin displays calcium-activated ATPase activity with a Vmax about 15%-25% of that of wild type, and a Km for ATP of 27 +/- 5 microM versus 83 +/- 30 microM for wild type. At actin concentrations as high as 17 microM, 7-11 myosin displays greatly reduced actin-activated ATPase activity. Phenotypically, 7-11 cells resemble MHC mutants, growing poorly in suspension and becoming large and multinucleate. When starved for multicellular development, 7-11 cells take several hours longer than wild-type cells to aggregate. Although multicellular aggregates eventually form, they fail to develop further. The cells are also unable to cap receptors in response to Con A treatment. Since cells expressing the EMLC are phenotypically similar to MHC null mutants, the EMLC appears necessary for myosin function, at least in part because it is required for normal actin-activated ATPase activity.  相似文献   

4.
5.
Invasion of human tissues by the parasitic protozoan Entamoeba histolytica is a multistep process involving, as a first step, the recognition of surface molecules on target tissues by the amebas or trophozoites. This initial contact is followed by the release of proteolytic and other activities that lyse target cells and degrade the extracellular matrix. In other parasitic diseases, as well as in certain cancers, the interaction of invasive organisms or cells with fibronectin (FN) through specific receptors has been shown to be the initial step in target cell recognition. Interaction with FN triggers the release of proteolytic activities necessary for the effector cell migration and invasion. Here, we describe the specific interaction of Entamoeba histolytica trophozoites with FN, and identify a 37-kD membrane peptide as the putative receptor for FN. The interaction between the parasite and FN leads to a response reaction that includes the secretion of proteases that degrade the bound FN and the rearrangement of amebic actin into "adhesion plates" at sites of contact with FN-coated surfaces. The kinetics of the interaction was determined by measuring the binding of soluble 125I-FN to the trophozoites and visualization of the bound protein using specific antibodies. Degradation of FN was measured by gel electrophoresis and the release of radioactivity into the incubation medium. Focal degradation of FN was visualized as black spots under the trophozoites at contact sites with fluorescent FN. We conclude that the interaction of E. histolytica with FN occurs through a specific surface receptor. The interaction promotes amebic cytoskeleton changes and release of proteases from the parasite. The binding and degradation of extracellular matrix components may facilitate the migration and penetration of amebas into tissues, causing the lesions seen in human hosts.  相似文献   

6.
7.
The binding of cytochalasin D to monomeric actin   总被引:5,自引:0,他引:5  
The binding of cytochalasin D to monomeric actin has been measured directly. In the presence of 200 microM Ca2+, actin binds cytochalasin D in a 1:1 molar ratio with a KD of 18 microM. After incubation with 250 microM Mg2+ for 10 minutes, actin binds cytochalasin D with a KD of 2.6 microM but with one mole of cytochalasin D per 2 moles of actin. This suggests that cytochalasin D induces dimerization of Mg2+-induced actin monomers.  相似文献   

8.
Clostridium perfringens iota toxin belongs to a novel family of actin-ADP-ribosylating toxins. The effects of ADP-ribosylation of skeletal muscle actin by Clostridium perfringens iota toxin on cytochalasin D-stimulated actin ATPase activity was studied. Cytochalasin D stimulated actin-catalysed ATP hydrolysis maximally by about 30-fold. ADP-ribosylation of actin completely inhibited cytochalasin D-stimulated ATP hydrolysis. Inhibition of ATPase activity occurred at actin concentrations below the critical concentration (0.1 microM), at low concentrations of Mg2+ (50 microM) and even in the actin-DNAase I complex, indicating that ADP-ribosylation of actin blocks the ATPase activity of monomeric actin and that the inhibitory effect is not due to inhibition of the polymerization of actin.  相似文献   

9.
Localization of actin in Dictyostelium amebas by immunofluorescence   总被引:9,自引:9,他引:0  
Antibody prepared against avian smooth muscle actin has been used to localize actin in the slime mold, Dictyostelium discoideum. The distribution of actin in migrating cells is different from that in feeding cells. Migrating amebas display fluorescence primarily in advancing regions whereas feeding amebas show uniform fluorescence throughout. The reaction is specific for actin since the fluorescence observed is blocked when the antibody is absorbed by actin purified from avian skeletal muscle, human platelets, and Dictyostelium. These results, in addition to describing the distribution of actin in D. discoideum, demonstrate that actins from these diverse sources share at least one common antigenic determinant.  相似文献   

10.
The surface morphology of Entamoeba histolytica trophozoites of HM 1:IMSS (axenic and monoxenic) and HK9 (axenic) strains cultured on plastic and MDCK cell substrates was examined using scanning electron microscopy (SEM). The conditions for processing trophozoites were determined by comparing the SEM observations with the morphology of living amebas examined by light microscopy. The most frequent surface differentiations in all the amebas observed with SEM were lobopodia. Round cytoplasmic projections were found in approximately half of the axenic amebas. Endocytic stomas and filopodia were more common in monoxenic cultures while the uroid was found in only 2-8% of all examined amebas. The basal surfaces of the trophozoites, involved in both attachment and cytolysis, showed no unusual features, except for the presence of a small number of short filopodia at the outer edge. No differences were found in the morphology of amebas grown on artificial and natural substrates. These observations demonstrate that there are significant quantitative differences in the surface morphology of cultured trophozoites of different strains of E. histolytica and that association with bacteria produces an increase in the relative number of surface specializations of the parasite.  相似文献   

11.
Phospholipase D (PLD) and ADP-ribosylation factor 6 (ARF6) have been implicated in vesicular trafficking and rearrangement of the actin cytoskeleton. We have explored the co-localization of rat PLD1b and rat PLD2 with wild type and mutant forms of ARF6 in HeLa cells and studied their activation by ARF6 and the role of the actin cytoskeleton. GFP-tagged PLD1 had a similar pattern to multivesicular and late endosomes and the trans-Golgi apparatus, but not to other organelles. When wild type or dominant negative ARF6 and PLD1 or PLD2 were co-expressed, they had a similar localization in cytosolic particles and at the cell periphery. In contrast, dominant active ARF6 caused cell shrinkage and had a similar localization with PLD1 and PLD2 in dense structures, containing the trans-Golgi apparatus and actin. Disruption of the actin cytoskeleton with cytochalasin D did not induce the formation of these structures. To determine, if ARF6 selectively activated PLD1 or PLD2, wild type and mutant forms of the ARF isoform were transfected together with PLD1 or PLD2. Wild type ARF6 did not affect either PLD isozyme, but dominant active ARF6 selectively activated PLD2 and dominant negative ARF6 selectively inhibited PLD2. In contrast, dominant active ARF1 or Rac1 stimulated both PLD isozymes but the ARF1 effect on PLD2 was very small. Cytochalasin D did not affect the activation of PLD by phorbol ester. The localizations of PLD and ARF6 were also analyzed by fractionation after methyl-beta-cyclodextrin extraction to deplete cholesterol. The results showed that all PLD isoforms and ARF6 mutants existed in the membrane fraction, but only wild type ARF6 was dependent on the presence of cholesterol. These experiments showed that wild type ARF6 had a similar location with PLD isoforms on cell staining, but it did not colocalize with PLD isoforms in fractionation experiments. It is proposed that activated ARF6 translocates to the cholesterol independent microdomain and then activates PLD2 there. It is further concluded that PLD2 is selectively activated by ARF6 in vivo and that disruption of the actin cytoskeleton does not affect this activation.  相似文献   

12.
ABSTRACT. Parasitic amebas propagate among hosts through cysts, the resistant forms in their life cycle. In spite of their key role in infection, little is known about the encystation process and the mechanisms involved in reaching this stage. Two features drastically affected by encystation are motility and cell shape, both of which are determined by the cytoskeleton, composed mainly of actin in these organisms. Therefore, we studied the occurrence and relative levels of actin and actin synthesis during encystation of Entamoeba invadens. Using a cDNA actin probe obtained from a library of E. histolytica and a monoclonal antibody against actin, we found that, while the total actin levels sharply decrease as encystation proceeds, the levels of actin mRNA are reduced only in mature cysts. Moreover, actin synthesis does not take place in precysts and the later stages of cyst formation. In contrast, the levels of other proteins remain stable in trophozoites, precysts and cysts, and stage specific peptides are actively synthesized in precysts. The results indicate that encystation is accompanied by a preferential down-regulation of actin synthesis and a decrease in actin levels. The reorganization of the cytoskeleton occurring as trophozoites transform into round, quiescent cells, could be a regulatory factor in the observed changes.  相似文献   

13.
Tamura M  Itoh K  Akita H  Takano K  Oku S 《FEBS letters》2006,580(1):261-267
Actin has been reported to enhance the superoxide-generating activity of neutrophil NADPH oxidase in a cell-free system and to interact with p47phox, a regulatory subunit of the oxidase. In the present study, we searched for an actin-binding site in p47phox by far-western blotting and blot-binding assays using truncated forms of p47phox. The amino-acid sequence 319-337 was identified as an actin-binding site, and a synthetic peptide of this sequence bound to actin. The sequence shows no homology to other known actin-binding motifs. It is located in the autoinhibitory region of p47phox and includes Ser-328, a phosphorylation site essential for unmasking. Although a phosphorylation-mimetic p47phox mutant bound to actin with a lower affinity than the wild type, the same mutant interacted with filamentous actin more efficiently than the wild type. A mutant peptide p47phox (319-337, Ser328Glu) bound to filamentous actin more tightly than to monomer actin. These results suggest that p47phox moves to cortical actin when it becomes unmasked in the cells.  相似文献   

14.
From a mutagenized population of wild type S49 T lymphoma cells, clones were generated that were resistant to the physiological effects of the potent inhibitor of nucleoside transport, 4-nitrobenzyl-6-thioinosine (NBMPR). These cells were selected for their ability to survive in semisolid medium containing 0.5 mM hypoxanthine, 0.4 microM methotrexate, 30 microM thymidine, 30 microM deoxycytidine, in the presence of 30 microM NBMPR. NBMPR protected wild type cells from the effects of a spectrum of cytotoxic nucleosides, whereas two mutant clones, KAB1 and KAB5, were still sensitive to nucleoside-mediated cytotoxicity in the presence of NBMPR. Comparisons of the abilities of wild type cells and mutant cells to incorporate exogenous nucleoside to the corresponding nucleoside triphosphate indicated that the KAB1 and KAB5 mutant cells were refractory to normal inhibition by NBMPR. Moreover, rapid transport studies indicated that mutant cells, unlike wild type parental cells, had acquired a substantial NBMPR-insensitive nucleoside transport component. Binding studies with [3H]NBMPR indicated that KAB5 cells were 70-75% deficient in the number of NBMPR binding sites, whereas KAB1 cells possessed a wild type complement of NBMPR binding sites. These data suggest that the NBMPR binding site in wild type S49 cells is genetically distinguishable from the nucleoside carrier site.  相似文献   

15.
16.
Pathogenic Yersinia enterocolitica produces two virulence plasmid-encoded cytotoxins, YopE and YopT, that are translocated into target cells where they disrupt the actin cytoskeleton. Here we show that infection of cells with wild type Y. enterocolitica and a yopE mutant, but not with a yopT mutant, induces an increase in the electrophoretic mobility of the small GTPase RhoA. As tested by isoelectric focusing, YopT-dependent modification resulted in an acidic shift of RhoA. Furthermore, RhoA modification induced by YopT was accompanied by redistribution of membrane-bound RhoA toward the cytosol. Finally, a yopE mutant of Y. enterocolitica expressing the cytotoxic activity of YopT specifically disrupted RhoA-controlled actin stress fibers. These findings provide evidence for inactivation of RhoA by the translocated Y. enterocolitica cytotoxin YopT and suggest a novel inhibitory modification of RhoA by a bacterial virulence factor.  相似文献   

17.
We tested the hypothesis that the equilibrium between F- and G-actin in endothelial cells modulates the integrity of the actin cytoskeleton and is important for the maintenance of endothelial barrier functions in vivo and in vitro. We used the actin-depolymerizing agent cytochalasin D and jasplakinolide, an actin filament (F-actin) stabilizing and promoting substance, to modulate the actin cytoskeleton. Low doses of jasplakinolide (0.1 microM), which we have previously shown to reduce the permeability-increasing effect of cytochalasin D, had no influence on resting permeability of single-perfused mesenteric microvessels in vivo as well as on monolayer integrity. The F-actin content of cultured endothelial cells remained unchanged. In contrast, higher doses (10 microM) of jasplakinolide increased permeability (hydraulic conductivity) to the same extent as cytochalasin D and induced formation of intercellular gaps in cultured myocardial endothelial (MyEnd) cell monolayers. This was accompanied by a 34% increase of F-actin and pronounced disorganization of the actin cytoskeleton in MyEnd cells. Furthermore, we tested whether an increase of cAMP by forskolin and rolipram would prevent the cytochalasin D-induced barrier breakdown. Conditions that increase intracellular cAMP failed to block the cytochalasin D-induced permeability increase in vivo and the reduction of vascular endothelial cadherin-mediated adhesion in vitro. Taken together, these data support the hypothesis that the state of polymerization of the actin cytoskeleton is critical for maintenance of endothelial barrier functions and that both depolymerization by cytochalasin D and hyperpolymerization of actin by jasplakinolide resulted in an increase of microvessel permeability in vivo. However, cAMP, which is known to support endothelial barrier functions, seems to work by mechanisms other than stabilizing F-actin.  相似文献   

18.
A mutation (pde1) was detected by suppressor activity on the CYR3 mutation which caused cAMP requirement for growth at 35 degrees C by the alteration of cAMP-dependent protein kinase. The pde1 mutant produced a significantly reduced level of cyclic nucleotide phosphodiesterase activity when assayed with 500 microM cAMP. Two cyclic nucleotide phosphodiesterases, I and II, were identified. Approximate molecular weights of these enzymes were 60,000 and 110,000, and the apparent Km values were 100 and 0.4 microM, respectively. The pde1 mutant was deficient in phosphodiesterase I activity. The cells carrying the pde1 mutation accumulated several times over the intracellular cAMP found in wild type cells. Phosphodiesterase I was not essential for growth of yeast cells, but controlled the intracellular cAMP levels in wild type and various mutant strains.  相似文献   

19.
The kinetics of cytochalasin D binding to monomeric actin   总被引:5,自引:0,他引:5  
It has been shown previously, using G-actin labeled with N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylene-diamine, that Mg2+ induces a conformational change in monomeric G-actin as a consequence of binding to a tight divalent cation binding site (Frieden, C. (1982) J. Biol. Chem. 257, 2882-2886). Using the same fluorescent probe, we show that, subsequent to the Mg2+-induced conformational change, cytochalasin D induces a fluorescence decrease. The data are consistent with a mechanism which proposes that, after Mg2+ binding, cytochalasin D binds and induces a second conformational change which results in overall tight binding of the cytochalasin. The initial binding of cytochalasin D to monomeric actin labeled with the fluorescent probe was found to be 200 microM, and the forward and reverse rate constants for the subsequent conformational change were 350 s-1 and 8 s-1, respectively, with an overall dissociation constant to the Mg2+-induced form of 4.6 microM. The conformational change does not occur in monomeric actin in the presence of Ca2+ rather than Mg2+, but Ca2+ competes with Mg2+ for the tight binding site on the G-actin molecule. Direct binding studies show that actin which has not been labeled with the fluorophore binds cytochalasin D more tightly. The conformational change induced by Mg2+ and cytochalasin D precedes the formation of an actin dimer.  相似文献   

20.
The surface morphology of Entamoeba histolytica trophozoites of HM 1:IMSS (axenic and monoxenic) and HK9 (axenic) strains cultured on plastic and MDCK cell substrates was examined using scanning electron microscopy (SEM). The conditions for processing trophozoites were determined by comparing the SEM observations with the morphology of living amebas examined by light microscopy. The most frequent surface differentiations in all the amebas observed with SEM were lobopodia. Round cytoplasmic projections were found in approximately half of the axenic amebas. Endocytic stomas and filopodia were more common in monoxenic cultures while the uroid was found in only 2–8% of all examined amebas. The basal surfaces of the trophozoites, involved in both attachment and cytolysis, showed no unusual features, except for the presence of a small number of short filopodia at the outer edge. No differences were found in the morphology of amebas grown on artificial and natural substrates. These observations demonstrate that there are significant quantitative differences in the surface morphology of cultured trophozoites of different strains of E. histolytica and that association with bacteria produces an increase in the relative number of surface specializations of the parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号