首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anion transport protein of the human erythrocyte membrane, band 3, was incorporated into unilamellar sphingomyelin vesicles. The vesicles showed a rapid sulfate efflux which could be inhibited by specific inhibitors of the erythrocyte anion transport system. All band 3 molecules contributing to the inhibitor-sensitive flux component were arranged 'right-side-out'. The turnover number of the transport protein for sulfate transport was virtually identical to that in phosphatidylcholine bilayers and around 6 times larger than in human erythrocyte membranes. Thus, in contrast to other claims, sphingomyelin does not inhibit the erythrocyte anion transport system.  相似文献   

2.
Reconstitution studies of the human erythrocyte nucleoside transporter   总被引:3,自引:0,他引:3  
The human erythrocyte nucleoside transporter has been identified as a band 4.5 polypeptide (Mr 45,000-66,000) on the basis of reversible binding and photoaffinity labeling experiments with the nucleoside transport inhibitor, nitrobenzylthioinosine (NBMPR). In the present study, the NBMPR-binding protein was extracted from protein-depleted human erythrocyte "ghosts" with Triton X-100 and reconstituted into soybean phospholipid vesicles by a freeze-thaw-sonication procedure. The reconstituted proteoliposomes exhibited nitrobenzylthioguanosine (NBTGR)-sensitive [14C]uridine transport. A partially purified preparation of the NBMPR-binding protein, consisting largely of band 4.5 polypeptides, was also shown to have nucleoside transport activity. This band 4.5 preparation exhibited a 10-fold increase in uridine transport activity and a 7-fold increase in NBMPR-binding activity relative to the crude membrane extract. Uridine transport by the reconstituted band 4.5 preparation was saturable (apparent Km = 0.21 mM; Vmax = 9 nmol/mg of protein/5 s) and was inhibited by dipyridamole, dilazep, adenosine, and inosine. The vesicles reconstituted with the band 4.5 preparation also exhibited stereospecific glucose transport which was inhibited by cytochalasin B, but unaffected by NBTGR. In contrast, cytochalasin B was a poor inhibitor of NBTGR-sensitive uridine transport. These experiments implicate band 4.5 polypeptides in both nucleoside and sugar permeation.  相似文献   

3.
Summary The anion transport protein of the human erythrocyte membrane, band 3, was solubilized and purified in solutions of the non-ionic detergent Triton X-100. It was incorporated into spherical lipid bilayers by the following procedure: (1) Dry phosphatidylcholine was suspended in the protein solution. Octylglucopyranoside was added until the milky suspension became clear. (2) The sample was dialyzed overnight against detergentfree buffer. (3) Residual Triton X-100 was removed from the opalescent vesicle suspension by sucrose density gradient centrifugation and subsequent dialysis. Sulfate efflux from the vesicles was studied, under exchange conditions, using a filtration method. Three vesicle subpopulations could be distinguished by analyzing the time course of the efflux. One was nearly impermeable to sulfate, and efflux from another was due to leaks. The largest subpopulation, however, showed transport characteristics very similar to those of the anion transport system of the intact erythrocyte membrane: transport numbers (at 30°C) close to 20 sulfate molecules per band 3 and min, an activation energy of approx. 140 kJ/mol, a pH maximum at pH 6.2, saturation of the sulfate flux at sulfate concentrations around 100mm, inhibition of the flux by H2DIDS and flufenamate (approx.K l-values at 30°C: 0.1 and 0.7 m, respectively), and right-side-out orientation of the transport protein (as judged from the inhibition of sulfate efflux by up to 98% by externally added H2DIDS). Thus, the system represents, for the first time, a reconstitution of all the major properties of the sulfate transport across the erythrocyte membrane.  相似文献   

4.
The cytochalasin B binding component of the human erythrocyte monosaccharide transport system has been purified. The preparation appears to contain one major protein with an apparent polypeptide chain molecular weight of 55,000 and about 0.4 binding sites per chain. Cytochalasin B binds to the reconstituted preparation with a dissociation constant of 1.3.10(-7) M, a value which is similar to that reported for the transport system in the intact erythrocyte.  相似文献   

5.
Reconstitution of the glucose transporter from bovine heart   总被引:1,自引:0,他引:1  
Reconstitution of the glucose transporter from heart should be useful as an assay in its purification and in the study of its regulation. We have prepared plasma membranes from bovine heart which display D-glucose reversible binding of cytochalasin B (33 pmol sites/mg protein; Kd = 0.2 muM). The membrane proteins were reconstituted into liposomes by the freeze-thaw procedure. Reconstituted liposomes showed D-glucose transport activity which was stereospecific, saturable and inhibited by cytochalasin B, phloretin, and mercuric chloride. Compared to membrane proteins reconstituted directly, proteins obtained by dispersal of the membranes with low concentrations of cholate or by cholate solubilization showed 1.2- or 2.3-fold higher specific activities for reconstituted transport, respectively. SDS-polyacrylamide gel electrophoresis followed by electrophoretic protein transfer and labeling with antisera prepared against the human erythrocyte transporter identified a single band of about 45 kDa in membranes from both dog and bovine hearts, a size similar to that reported for a number of other glucose transporters in various animals and tissues.  相似文献   

6.
We have recently shown that RLIP76, a ral-binding GTPase activating protein, mediates ATP-dependent transport of glutathione-conjugates (GS-E) and doxorubicin (DOX) (S. Awasthi et al., Biochemistry 39,9327,2000). Transport function of RLIP76 was found to be intact despite considerable proteolytic fragmentation in preparations used for those studies, suggesting either that the residual intact RLIP76 was responsible for transport activity, or that the transport activity could be reconstituted by fragments of RLIP76. If the former were true, intact RLIP76 would have a much higher specific activity for ATP-hydrolysis than the fragmented protein. We have addressed this question by comparing transport properties of recombinant RLIP76 and human erythrocyte membrane RLIP76 purified in buffers treated with either 100 or 500 microM serine protease inhibitor, PMSF. The purity and identity of recombinant and human erythrocyte RLIP76 was established by SDS/PAGE and Western-blot analysis. These studies confirmed the origin of the 38 kDa protein, previously referred to as DNP-SG ATPase, from RLIP76. Higher PMSF concentration resulted in lower yield of the 38 kDa band and higher yield of intact RLIP76 from both human and recombinant source. In contrast, the substrate-stimulated ATPase activity in presence of DNP-SG, doxorubicin, daunorubicin, or colchicine were unaffected by increased PMSF; similarly, ATP-dependent transport of doxorubicin in proteoliposomes reconstituted with RLIP76 was unaffected by higher PMSF. These results indicated that limited proteolysis by serine proteases does not abrogate the transport function of RLIP76. Comparison of transport kinetics for daunorubicin between recombinant vs human erythrocyte RLIP76 revealed higher specific activity of transport for tissue purified RLIP76, indicating that additional factors present in tissue purified RLIP76 can modulate its transport activity.  相似文献   

7.
The cytochalasin B binding component of the human erythrocyte monosaccharide transport system has been purified. The preparation appears to contain one major protein with an apparent polypeptide chain molecular weight of 55 000 and about 0.4 binding sites per chain. Cytochalasin B binds to the reconstituted preparation with a dissociation constant of 1.3·10?7 M, a value which is similar to that reported for the transport system in the intact erythrocyte.  相似文献   

8.
Amino acid transport systems for alanine and leucine have been reconstituted into artificial lipid vesicles. Purified plasma membrane vesicles from Ehrlich ascites cells were dissolved in 2% sodium cholate, 1 mM dithiothreitol, 0.5 mM EDTA, a mixture which solubilized approximately 50% of the membrane protein. This solubilized protein fraction was further purified by a combination of ammonium sulfate precipitations, gel filtration, and DEAE-cellulose chromatography. A fraction containing approximately 15 Coomassie blue staining bands on sodium dodecyl sulfate gels was obtained. This material was reconstituted into liposomes, and preliminary results demonstrated transport of alanine and leucine dependent on a sodium gradient. In addition, an electrogenic gradient mediated by valinomycin-induced potassium diffusion seemed to stimulate alanine uptake further.  相似文献   

9.
《Molecular membrane biology》2013,30(3-4):269-278
Amino acid transport systems for alanine and leucine were reconstituted into artificial lipid vesicles. Purified plasma membrane vesicles from Ehrlich ascites cells were dissolved in 2% sodium cholate, 1mM dithiothreitol, and 0.5 mM EDTA a mixture that solubilized approximately 50% of the membrane protein. This solubilized protein fraction was further purified by a combination of ammonium sulfate precipitations, gel filtration, and DEAE-cellulose chromatography. A fraction containing approximately 15 Coomassie blue-staining bands on sodium dodecyl sulfate gels was obtained. This material was reconstituted into liposomes, and preliminary results demonstrated transport of alanine and leucine dependent on a sodium gradient. In addition, an electrogenic gradient mediated by valino-mycin-induced potassium diffusion seemed to stimulate alanine uptake further.  相似文献   

10.
Amino acid transport systems for alanine and leucine have been reconstituted into artificial lipid vesicles. Purified plasma membrane vesicles from Ehrlich ascites cells were dissolved in 2% sodium cholate, 1 mM dithiothreitol, 0.5 mM EDTA, a mixture which solubilized approximately 50% of the membrane protein. This solubilized protein fraction was further purified by a combination of ammonium sulfate precipitations, gel filtration, and DEAE-cellulose chromatography. A fraction containing approximately 15 Coomassie blue staining bands on sodium dodecyl sulfate gels was obtained. This material was reconstituted into liposomes, and preliminary results demonstrated transport of alanine and leucine dependent on a sodium gradient. In addition, an electrogenic gradient mediated by valinomycin-induced potassium diffusion seemed to stimulate alanine uptake further.  相似文献   

11.
Digitonin-solubilized cardiac muscarinic receptors were reconstituted by dialysis into human erythrocyte acceptor membranes which lack high-affinity muscarinic receptors. The number of receptors reconstituted was proportional to the quantity of soluble receptors added to the reconstitution system. Specific [3H](-)-quinuclidinyl benzilate binding to the reconstituted receptor was found to be saturable with a Kd (dissociation constant) equal to 48 +/- 4 pM and a Bmax (maximal density of binding sites) equal to 50 +/- 5 fmol/mg of protein. Competitive binding studies indicated that the reconstituted receptors showed stereoselectivity and drug specificity consistent with a high-affinity muscarinic receptor. Agonist binding to the reconstituted receptor was decreased by the addition of guanyl-5'-yl imidodiphosphate. Sixty per cent of the reconstituted receptors were found to be integral membrane proteins. The molecular weight of the reconstituted receptor as determined by sodium dodecyl sulfate-gel electrophoresis was 76,000 +/- 2,000 and was identical to the molecular weight of the muscarinic receptor in the original cardiac membranes. The data indicate that a partially functional, intact muscarinic receptor was reconstituted into human erythrocyte acceptor membranes and that membrane constituents may be required to stabilize the receptor in a high-affinity state for antagonists.  相似文献   

12.
Band 3 protein extracted from human erythrocyte membranes by Triton X-100 was recombined with the major classes of phospholipid occurring in the erythrocyte membrane. The resulting vesicle systems were characterized with respect to recoveries, phospholipid composition, protein content and vesicle size as well as capacity and activation energy of sulfate transport. Transport was classified into band-3-specific fluxes and unspecific permeability by inhibitors. Transport numbers (sulfate ions per band 3 per minute) served as a measure of functional recovery after reconstitution. The transport properties of band 3 proved to be insensitive to replacement of phosphatidylcholine by phosphatidylethanolamine, while sphingomyelin and phosphatidylserine gradually inactivated band-3-specific anion transport when present at mole fractions exceeding 30 mol%. The activation energy of transport remained unaltered in spite of the decrease in transport numbers. The results, which are discussed in terms of requirements of band 3 protein function with respect to the fluidity and surface charge of its lipid environment, provide a new piece of evidence that the transport function of band 3 protein depends on the properties of its lipid environment just as the catalytic properties of some other membrane enzymes. The well-established species differences in anion transport (Gruber, W. and Deuticke, B. (1973) J. Membrane Biol. 13, 19–36) may to some extent reflect this lipid dependence.  相似文献   

13.
Band 3, the erythrocyte membrane protein thought to be responsible for anion transport, was purified to near homogeneity using a Concanavalin A affinity column. Band 3 was then combined with egg lecithin, erythrocyte lipid, cholesterol, and glycophorin, the major erythrocyte sialoglycoprotein, to form vesicles capable of rapid sulfate transport. The transport activity was sensitive to prior treatment of the erythrocytes with pyridoxal phosphate-NaBH4, a potent inhibitor of anion transport in these cells.  相似文献   

14.
In this study, we describe the effects of altered bilayer cholesterol content on reconstituted, protein-mediated sugar transport. The system used was the human erythrocyte sugar transporter (band 4.5) reconstituted into the bilayers of large unilamellar vesicles. Vesicle preparations were formed from synthetic lecithins whose bilayer cholesterol content ranged from 0 to 50 mol %. Transport was measured by microturbidimetric analysis over the temperature range of 0-65 degrees C while bilayer physical state was characterized by differential scanning calorimetry. Reconstituted transport activity was irreversibly lost between 62 and 65 degrees C. The Km for reconstituted transport was found to increase only slightly with increasing temperature and was not systematically affected by bilayer cholesterol content. The most striking observation of this study is that over certain critical cholesterol concentrations, as little as a 2.5% change in bilayer cholesterol can result in as much as a 100-fold change in Vmax per reconstituted protein. Our findings run counter to the view that increasing bilayer cholesterol content monotonically transforms a membrane into a state of "intermediate fluidity". Abrupt, cholesterol-induced bilayer reorganizations occurring at 15-20 and 30 mol % bilayer cholesterol are markedly reflected in altered sugar transport rates. Increasing the cholesterol content of crystalline distearoyllecithin bilayers inhibits the activity of the reconstituted transporter. It is apparent from these studies that bilayer "fluidity" is neither the sole nor a major determinant of the Indeed, we find the effect of cholesterol on transport activity is independent of its ability to fluidize membranes.  相似文献   

15.
The degradation of human erythrocyte membrane proteins in relation to the identification of the monosaccharide transporter has been investigated in whole membrane preparations and membrane protein extracts by polyacrylamide gel electrophoresis in sodium n-dodecyl sulphate and iodine-125 labelling. Evidence is presented for the degradation of band 3 polypeptide to lower molecular weight material some of which appears in region 4.5 of the polyacrylamide gel electrophoresis profile. It is found that the degradation process is inhibited by phenylmethylsulphonyl fluoride and is only significant in membrane extracts in the absence of detergent (Triton X-100) and on prolonged incubation at 37 degrees C, conditions which do not prevail during the isolation of membrane protein extracts for reconstitution studies. Extracts of band 3 and band 4.5 have been prepared and reconstituted in bilayer lipid membranes. The permeabilities of the reconstituted systems to D-glucose have been investigated and it is found that only bilayers incorporating band 4.5 exhibited enhanced monosaccharide transport. A linear relationship between D-glucose transport and the concentration of protein in the aqueous phase bathing the bilayers suggests a partitioning of the protein into the bilayer. Reconstitution is stereospecific and inhibited by cytochalasin B.  相似文献   

16.
A study was conducted to determine the effects of freezing on the major membrane proteins of isolated human erythrocyte membranes. Membranes in low or normal ionic strength medium were frozen at slow or fast freezing rates. The membrane protein composition and elution of proteins from the membranes were studied utilizing polyacrylamide-gel electrophoresis in a sodium dodecyl sulfate or an acetic acid-urea-phenol solvent system. Neither a change in the composition of the membrane proteins nor any elution of membrane protein during freezing and thawing was observed. The data indicate that any human erythrocyte membrane damage during freezing and thawing was not related to a change in major membrane protein composition. Human red cell membranes were stable at ?80 or ?196 °C in the absence of a cryoprotective agent.  相似文献   

17.
An N-ethylmaleimide-sensitive phosphate transport protein has been isolated from rat liver mitochondria, substantially purified, and reconstituted into phospholipid vesicles. Purified inner mitochondrial membrane vesicles depleted of F1-ATPase by urea treatment proved to be the most satisfactory starting material. Treatment of these membrane vesicles with Triton X-100 resulted in solubilization of the phosphate transport protein. Further purification was achieved using hydroxylapatite powder. Polyacrylamide gel electrophoresis of the purified fraction in sodium dodecyl sulfate indicated the presence of two Coomassie blue-staining bands with apparent Mr's of 30,000 and 35,000. Labeling of the 35,000 Mr band by the Pi transport inhibitor diazobenzene sulfonate was reduced markedly by prior treatment of the mitochondria with the inhibitor N-ethylmaleimide. The purified fraction containing both proteins could be reconstituted into liposomes prepared from purified asolectin. Phosphate efflux from these vesicles was inhibited by N-ethylmaleimide, by the impermeant mercurial agent, p-chloromercuribenzoate, and by diazobenzene sulfonate. Treatment of the purified fraction with N-ethylmaleimide prior to incorporation into liposomes resulted in a reconstituted system incapable of catalyzing Pi efflux. These studies summarize the first detailed attempt to purify the Pi/H+ transport system from rat liver mitochondria and emphasize the need to commence the purification with purified inner membrane vesicles depleted of F1-ATPase. In addition, these studies show that the final fraction contains a reconstitutively active transport system which when incorporated into phospholipid vesicles has its essential sulfhydryl groups oriented outward. Finally, it is shown that the purified fraction also contains a 30,000 Mr component.  相似文献   

18.
Sensitivity of the adipocyte D-glucose transport system in intact plasma membranes or following solubilization and reconstitution into phospholipid vesicles to several protein-modifying reagents was investigated. When intact plasma membranes were incubated with N-ethylmaleimide (20 mM) or fluorodinitrobenzene (4 mM), D-glucose transport activity was virtually abolished. However, washing the membranes free of unreacted reagents restored transport activity, indicating that covalent interaction with the membranes did not mediate the transport inhibition. Reaction of [3H] N-ethylmaleimide with plasma membranes under similar conditions resulted in extensive labeling of all protein fractions resolved on dodecyl sulfate gels. Similarly, addition of N-ethyl-maleimide to cholate-solubilized membrane protein had no effect on transport activity in artifical phospholipid vesicles reconstituted under conditions where the membrane protein was free of unreacted N-ethylmaleimide. Transport activity in plasma membranes was also inhibited by both reduced and oxidized dithiothreitol or glutathione (15 mM) in a readily reversible manner, consistent with a noncovalent mode of inhibition. Thus, the insulin-responsive adipocyte D-glucose transport system differs from the red cell hexose transport system in its remarkable insensitivity to modulation by covalent blockade of sulfhydryal or amino groups by the reagents studied.  相似文献   

19.
Three compounds which inhibit glucose transport in rat adipocytes have been proposed to act directly on the glucose transporter protein. We tested these proposals by examining the effects of the compounds on the stereospecific glucose uptake catalyzed by adipocyte membrane proteins after reconstitution into liposomes. Effects on the transport activity reconstituted from human erythrocyte membranes were also examined. Glucose 6-phosphate, which was suggested to inhibit the transporter noncompetitively (Foley, J.E. and Huecksteadt, T.P. (1984) Biochim. Biophys. Acta 805, 313-316), had no effect on either type of reconstituted transporter, even when present at 5 mM on both sides of the liposomal membranes. Thus, it is unlikely to act directly on the transporter. The metalloendoproteinase substrate dipeptide Cbz-Gly-Phe-NH2, which inhibited insulin-stimulated but not basal glucose uptake in adipocytes (Aiello, L.P., Wessling-Resnick, M. and Pilch, P.F. (1986) Biochemistry 25, 3944-3950), inhibited the reconstituted erythrocyte transporter noncompetitively with a Ki of 1.5-2 mM. The inhibition of the erythrocyte transporter was identical in liposomes of soybean and egg lipid. Transport reconstituted using adipocyte membrane fractions was also inhibited by the dipeptide, with the activity from basal microsomes more sensitive than that from insulin-stimulated plasma membranes. These results indicate that the dipeptide interacts directly with the transporter, and may be a potentially useful probe for changes in transporter structure accompanying insulin action. Phenylarsine oxide, which was suggested to act directly on the adipocyte transporter (Douen, A.G., and Jones, M.N. (1988) Biochim. Biophys. Acta 968, 109-118), produced only slight (about 10%) inhibition of the reconstituted adipocyte and erythrocyte transporters, even when present at 100-200 microM and after 30 min of pretreatment. These results suggest that the major actions of phenylarsine oxide observed in adipocytes are not direct effects on the transporter, but rather effects on the pathways by which insulin regulates glucose transport activity (Frost, S.C. and Lane, M.D. (1985) J. Biol. Chem. 260, 2646-2652).  相似文献   

20.
The human erythrocyte glucose transporter is a fully integrated membrane glycoprotein having only one N-linked carbohydrate chain on the extracellular part of the molecule. Several authors have suggested the involvement of the carbohydrate moiety in glucose transport, but not definitive results have been published to date. Using transport glycoproteins reconstituted in proteoliposomes, kinetic studies of zero-trans influx were performed before and after N-glycanase treatment of the proteoliposomes: this enzymatic treatment results in a 50% decrease of the Vmax. The orientation of transport glycoproteins in the lipid bilayer of liposomes was investigated and it appears that about half of the reconstituted transporter molecules are oriented properly. Finally, it could be concluded that the release of the carbohydrate moiety from the transport glycoproteins leads to the loss of their transport activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号