首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two dimensional crystals of maltoporin (or phage lambda receptor) were obtained by reconstitution of purified maltoporin trimers and Escherichia coli phospholipids by detergent dialysis. Two different trimer packing forms were observed. One was hexagonal (a = 7.8 nm) and one rectangular (a = 7.8 nm, b = 13.6 nm). In this paper we describe the three-dimensional structure of maltoporin, deduced from the study of the rectangular form by electron microscopy and image processing. At a resolution of approximately 2.5 nm, maltoporin trimers form aqueous channel triplets which appear to merge into a single outlet at the periplasmic surface of the outer membrane. The pore defined by maltoporin has a similar structure to that outlined by the matrix protein. From the results of functional studies by conductance measurement, it is concluded that the three channels defined by maltoporin act, contrary to those formed by the porin (OmpF protein), as a single conducting unit. A tentative outline of the maltoporin promoter is given. Maltoporin appears to be constituted by three different domains: a major rod-like domain spanning the membrane, a minor domain located near the periplasmic surface of the membrane and finally a central domain responsible for the splitting of the channel.  相似文献   

2.
The mitochondrial outer membrane contains a protein, called VDAC, that forms large aqueous pores. In Neurospora crassa outer membranes, VDAC forms two-dimensional crystalline arrays whose size and frequency can be greatly augmented by lipase treatment of these membranes (C. Mannella, Science 224, 165, 1984). Fourier filtration and surface reconstruction of freeze-dried/shadowed (45 degrees) arrays produced detailed images of two populations of crystals, whose lattices are mirror images of each other. Most likely, this technique has revealed both surfaces of the same two-dimensional crystal with lattice parameters: a = 12.3 +/- 0.1 nm, b = 11.2 +/- 0.1 nm, and theta = 109 +/- 1 degree. Three-dimensional reconstructions of the surface reliefs on both sides of the crystal show them to be very similar. The majority of the protein forming the channel appears to be at or below the level of the membrane. To address the issue of the number of 30-kDa polypeptides that form a VDAC channel, measurements of mass per unit area were carried out by analyzing scanning transmission electron micrographs of unstained, freeze-dried arrays. The crystal form used for mass analysis contained the same motif of six stain-accumulating centers per unit cell, with p2 symmetry as in the oblique configuration, but it had a different orientation relative to the lattice lines. These data yielded a surface density of 1.9 +/- 0.2 kDa/nm2, indicating that there is a one-to-one ratio between VDAC polypeptides and the channels visualized in filtered electron micrographs, and that VDAC membrane crystals contain 68% protein and 32% lipid by mass.  相似文献   

3.
The outer membrane of Comamonas acidovorans, formerly Pseudomonas acidovorans, contains a regularly arrayed surface protein. The tetragonal lattice (p4 symmetry, unit cell dimensions a = B = 10.5 nm is composed of a single type of polypeptide. It forms dimeric morphological complexes as revealed by means of electron microscopy in conjunction with image processing, STEM mass determination, and IR analysis. The surface protein has tightly associated carbohydrates and behaves like a glycoprotein in electrophoresis and IR spectroscopy. The outer membrane proteins Omp21 and Omp32 are not regularly arrayed. Omp32 has the characteristic attributes of an intrinsic outer membrane protein, such as moderate hydrophobicity, a high β-structure content, and a typical solubilization behavior. It forms channels in black lipid membranes and it, therefore, represents the major porin of C. acidovorans.  相似文献   

4.
The nuclear envelope and associated structures from Xenopus laevis oocytes (stage VI) have been examined with the high resolution scanning electron microscope (SEM). The features of the inner and outer surfaces of the nuclear surface complex were revealed by manual isolation , whereas the membranes facing the perinuclear space (the space between the inner and outer nuclear membranes) were observed by fracturing the nuclear envelope in this plane and splaying the corresponding regions apart. Pore complexes were observed on all four membrane surfaces of this double-membraned structure. The densely packed pore complexes (55/micron2) are often clustered into triplets with shared walls (outer diameter = 90 nm; inner diameter = 25 nm; wall thickness = aproximately 30 nm), and project aproximately 20 nm above each membrane except where they are flush with the innermost surface. The pore complex appears to be an aggregate of four 30-nm subunits. The nuclear cortex, a fibrous layer (300 nm thickness) associated with the inner surface of the nuclear envelope, has been revealed by rapid fixation. This cortical layer is interrupted by funnel-shaped intranuclear channels (120-640 nm diam) which narrow towards the pore complexes. Chains of particles, arranged in spirals, are inserted into these intranuclear channels. The fibers associated with the innermost face of the nuclear envelope can be extraced with 0.6 MKI to reveal the pore complexes. A model of the nuclear surface complex, compiled from the visualization of all the membrane faces and the nuclear cortex, demonstrates relations between the intranuclear channels (3.2/micron2) and the numerous pore complexes, and the possibility of their role in nucleocytoplasmic interactions.  相似文献   

5.
The method of membrane electroporation (ME) has been used as an analytical tool to quantify the effect of membrane curvature on transient electric pore for-mation, and on the adsorption of the protein annexin V (Mr = 35,800) to the outer surface of unilamellar lipid vesicles (of radii 25 ≤ a/nm ≤ 200). Relaxation kinetic studies using optical membrane probes of the diphenylhexatriene type suggest that electric pore formation is induced by ionic interfacial polarization causing entrance of the (more polarizable) water into the lipid bilayer membrane yielding (hydrophobic and hydrophilic) pore states with a mean stationary pore radius rp=0.35 (±0.05) nm. Extent and rate of ME, compared at the same induced transmembrane voltage, were found to decrease both with increasing vesicle radius and with increasing protein concentration. This `inhibitory' effect of annexin V is apparently allosteric and saturates at about [ANT]sat = 4 μm annexin V for vesicles of a = 100 nm at 1 mm total lipid concentration, 0.13 mm total Ca2+ concentration and at T = 293 K. Data analysis in terms of Gibbs area-difference-elasticity energy suggests that the bound annexin V reduces the gradient of the lateral pressure across the membrane. At [ANT]sat, about 20% of the vesicle surface is covered by the bound protein, but it is only 0.01% of the surface of the outer lipid leaflet in which a part of the protein, perhaps the aromatic residue of the tryptophan (W 187), is inserted. Insertion leads to a denser packing of the lipid molecules in the outer membrane leaflet. As a consequence, the radius of the electropores in the remaining membrane part, not covered by annexin V decreases (rp/nm = 0.37, 0.36 and 0.27) with increasing adsorption of the protein ([ANT] = 0, 2 and 4 μm, respectively). Received: 9 January 1997 / Accepted: 21 April 1997  相似文献   

6.
Structure of the Azotobacter vinelandii surface layer.   总被引:7,自引:6,他引:1       下载免费PDF全文
Electron microscopy of the Azotobacter vinelandii tetragonal surface array, negatively stained with ammonium molybdate in the presence of 1 mM calcium chloride, showed an apparent repeat frequency of 12 to 13 nm. Image processing showed dominant tetrad units alternating with low-contrast cruciform structures formed at the junction of slender linkers extending from corner macromolecules of four adjoining dominant units. The actual unit cell showed p4 symmetry, and a = b = 18.4 nm. Distilled water extraction of the surface array released a multimeric form of the single 60,000 molecular-weight protein (S protein) which constitutes the surface layer. The molecular weight of the multimer was estimated at 255,000 by gel filtration, indicating a tetrameric structure of four identical subunits and suggesting that this multimer was the morphological subunit of the S layer. Tetrameric S protein exhibited low intrinsic stability once released from the outer membrane, dissociating into monomers when incubated in a variety of buffers including those which served as the base for defined media used to cultivate A. vinelandii. The tetramer could not be stabilized in these buffers at any temperature between 4 and 30 degrees C, but the addition of 2 to 5 mM Ca2+ or Mg2+ completely prevented its dissociation into monomers. Circular dichroism measurements indicated that the secondary structure of the tetramer was dominated by aperiodic and beta-sheet conformations, and the addition of Ca2+ did not produce any gross changes in this structure. Only the tetrameric form of S protein was able to reassemble in vitro in the presence of divalent cations onto the surface of cells stripped of their native S layer.  相似文献   

7.
Infectious bursal disease virus (IBDV), a member of the Birnaviridae group, is a commercially important pathogen of chickens. From electron micrographs of frozen, hydrated, unstained specimens, we have computed a three-dimensional map of IBDV at about 2 nm resolution. The map shows that the structure of the virus is based on a T=13 lattice and that the subunits are predominantly trimer clustered. The subunits close to the fivefold symmetry axes are at a larger radius than those close to the two- or threefold axes, giving the capsid a markedly nonspherical shape. The trimer units on the outer surface protrude from a continuous shell of density. On the inner surface, the trimers appear as Y-shaped units, but the set of units surrounding the fivefold axes appears to be missing. It is likely that the outer trimers correspond to the protein VP2, carrying the dominant neutralizing epitope, and the inner trimers correspond to protein VP3, which has a basic carboxy-terminal tail expected to interact with the packaged RNA.  相似文献   

8.
In this study, acetylcholine receptor-rich postsynaptic membranes from electric tissues of the electric rays Narcine brasiliensis and Torpedo californica are negatively contrasted for thin-section electron microscopy through the use of tannic acid. Both outer (extracellular) and inner (cytoplasmic) membrane surfaces are negatively contrasted, and can be studied together in transverse sections. The hydrophobic portion of the membrane appears as a thin (approximately 2 nm), strongly contrasted band. This band is the only image given by membrane regions which are devoid of acetylcholine receptor. In regions of high receptor density, however, both surfaces of the membrane are seen to bear or be associated with material which extends approximately 6.5 nm beyond the center of the bilayer. The material on the outer surface can be identified with the well-known extracellular portion of the receptor molecule. A major portion of the inner surface image is eliminated by extraction of the membranes at pH 11 to remove peripheral membrane proteins, principally the 43,000 Mr (43K) protein. The images thus suggest a cytoplasmic localization of the 43K protein, with its distribution being coextensive with that of the receptor. They also suggest that the 43K protein extends farther from the cytoplasmic surface than does the receptor.  相似文献   

9.
Aquaspirillum sinuosum cell walls bear two paracrystalline, proteinaceous surface layers (S layers). Each shows a different symmetry: the inner layer is closely apposed to the outer membrane and is a tetragonal array (90 degrees axes; 5-nm units; repeat frequency 8 nm); the outer layer is a hexagonal array on the external surface (14-nm units; repeat frequency 18 nm) and, although the units have a six-pointed stellate form, the linkage between units is not resolved. The outer layer consists of a major 130-kDa protein and a 180-kDa minor component; these co-extract, co-assemble, and are inseparable by hydroxylapatite chromatography or by recrystallization. The solubilizing effects of reagents suggest stabilization by hydrogen bonding and Ca2+. The two outer layer proteins are serologically related and show partial identity by peptide mapping. Periodic acid--Schiff staining of the 180-kDa band suggests that this may be a glycosylated form of the 130-kDa component. The inner layer components form a doublet of 75- and 80-kDa polypeptides with extreme resistance to extraction. Close apposition to the outer membrane, resistance to chaotropes, aqueous insolubility, and behaviour in charge-shift electrophoresis suggest hydrophobic interaction between subunits and an integral association with the outer membrane.  相似文献   

10.
11.
Matrix protein (36,500 daltons), one of the major polypeptides of the Escherichia coli cell envelope, is arranged in a periodic monolayer which covers the outer surface of the peptidoglycan. Although its association with the peptidoglycan layer is probably tight, the periodic structure of the peptidoglycan. Although its association with the peptidoglycan later is probably tight, the periodic structure is maintained in the absence of peptidoglycan, and is therefore based on strong protein-protein interactions. A detailed analysis of the ultrastructure of the matrix protein array by electron microscopy and image processing of specimens prepared by negative staining or by freeze-drying and shadowing shows that the molecules are arranged according to three fold symmetry on a hexagonal lattice whose repeat is 7.7 nm. The most pronounced feature of the unit cell, which probably contains three molecules of matrix protein, is a triplet of indentations, each approx. 2 nm in diameter, with a center-to-center spacing of 3nm. They are readily penetrated by stain and may represent channels which span the protein monolayer.  相似文献   

12.
13.
Regular surface layer of Azotobacter vinelandii.   总被引:9,自引:7,他引:2       下载免费PDF全文
Washing Azotobacter vinelandii UW1 with Burk buffer or heating cells at 42 degrees C exposed a regular surface layer which was effectively visualized by freeze-etch electron microscopy. This layer was composed of tetragonally arranged subunits separated by a center-to-center spacing of approximately 10 nm. Cells washed with distilled water to remove an acidic major outer membrane protein with a molecular weight of 65,000 did not possess the regular surface layer. This protein, designated the S protein, specifically reattached to the surface of distilled-water-washed cells in the presence of the divalent calcium, magnesium, strontium, or beryllium cations. All of these cations except beryllium supported reassembly of the S protein into a regular tetragonal array. Although the surface localization of the S protein has been demonstrated, radioiodination of exposed envelope proteins in whole cells did not confirm this. The labeling behavior of the S protein could be explained on the basis of varying accessibilities of different tyrosine residues to iodination.  相似文献   

14.
The late steps in assembly of capsular polysaccharides (CPS) and their translocation to the bacterial cell surface are not well understood. The Wza protein was shown previously to be required for the formation of the prototype group 1 capsule structure on the surface of Escherichia coli serotype K30 (Drummelsmith, J., and Whitfield, C. (2000) EMBO J. 19, 57-66). Wza is a conserved outer membrane lipoprotein that forms multimers adopting a ringlike structure, and collective evidence suggests a role for these structures in the export of capsular polymer across the outer membrane. Wza was purified in the native form and with a C-terminal hexahistidine tag. WzaHis6 was acylated and functional in capsule assembly, although its efficiency was slightly reduced in comparison to the native Wza protein. Ordered two-dimensional crystals of WzaHis6 were obtained after reconstitution of purified multimers into lipids. Electron microscopy of negatively stained crystals and Fourier filtering revealed ringlike multimers with an average outer diameter of 8.84 nm and an average central cavity diameter of 2.28 nm. Single particle analysis yielded projection structures at an estimated resolution of 3 nm, favoring a structure for the WzaHis6 containing eight identical subunits. A derivative of Wza (Wza*) in which the original signal sequence was replaced with that from OmpF showed that the native acylated N terminus of Wza is critical for formation of normal multimeric structures and for their competence for CPS assembly, but not for targeting Wza to the outer membrane. In the presence of Wza*, CPS accumulated in the periplasm but was not detected on the cell surface. Chemical cross-linking of intact cells suggested formation of a transmembrane complex minimally containing Wza and the inner membrane tyrosine autokinase Wzc.  相似文献   

15.
One of the major proteins of the outer membrane of Escherichia coli, the matrix protein (porin), has been isolated by detergent solubilisation. When the protein is added in concentrations of the order 10 ng/cm3 to the outer phases of a planar lipid bilayer membrane, the membrane conductance increases by many orders of magnitude. At lower protein concentrations the conductance increases in a stepwise fashion, the single conductance increment being about 2 nS (1 nS = 10(-9) siemens = 10(-9) omega -1) in 1 MKCl. The conductance pathway has an ohmic current vs. voltage character and a poor selectivity for chloride and the alkali ions. These findings are consistent with the assumption that the protein forms large aqueous channels in the membrane. From the average value of the single-channel conductance a channel diameter of about 0.9 nm is estimated. This channel size is consistent with the sugar permeability which has been reported for lipid vesicles reconstituted in the presence of the protein.  相似文献   

16.
G protein-coupled inward rectifier K(+) channels (GIRK channels) are activated directly by the G protein betagamma subunit. The crystal structure of the G protein betagamma subunits reveals that the beta subunit consists of an N-terminal alpha helix followed by a symmetrical seven-bladed propeller structure. Each blade is made up of four antiparallel beta strands. The top surface of the propeller structure interacts with the Galpha subunit. The outer surface of the betagamma torus is largely made from outer beta strands of the propeller. We analyzed the interaction between the beta subunit and brain GIRK channels by mutating the outer surface of the betagamma torus. Mutants of the outer surface of the beta(1) subunit were generated by replacing the sequences at the outer beta strands of each blade with corresponding sequences of the yeast beta subunit, STE4. The mutant beta(1)gamma(2) subunits were expressed in and purified from Sf9 cells. They were applied to inside-out patches of cultured locus coeruleus neurons. The wild type beta(1)gamma(2) induced robust GIRK channel activity with an EC(50) of about 4 nm. Among the eight outer surface mutants tested, blade 1 and blade 2 mutants (D1 and CD2) were far less active than the wild type in stimulating GIRK channels. However, the ability of D1 and CD2 to regulate type I and type II adenylyl cyclases was not very different from that of the wild type beta(1)gamma(2). As to the activities to stimulate phospholipase Cbeta(2), D1 was more potent and CD2 was less potent than the wild type beta(1)gamma(2). Additionally we tested four beta(1) mutants in which mutated residues are located in the top Galpha/beta interacting surface. Among them, mutant W332A showed far less ability than the wild type to activate GIRK channels. These results suggest that the outer surface of blade 1 and blade 2 of the beta subunit might specifically interact with GIRK and that the beta subunit interacts with GIRK both over the outer surface and over the top Galpha interacting surface.  相似文献   

17.
Syncollin is a 16-kDa protein that is associated with the luminal surface of the zymogen granule membrane in the pancreatic acinar cell. Detergent-solubilized, purified syncollin migrates on sucrose density gradients as a large (120-kDa) protein, suggesting that it exists naturally as a homo-oligomer. In this study, we investigated the structure of the syncollin oligomer. Chemical cross-linking of syncollin produced a ladder of bands, the sizes of which are consistent with discrete species from monomers up to hexamers. Electron microscopy of negatively stained syncollin revealed doughnut-shaped structures of outer diameter 10 nm and inner diameter 3 nm. Atomic force microscopy (AFM) of syncollin on mica supports at pH 7.6 showed particles of molecular volume 155 nm(3). Smaller particles were observed either at alkaline pH (11.0), or in the presence of a reducing agent (dithiothreitol), conditions that cause dissociation of the oligomer. AFM imaging of syncollin attached to supported lipid bilayers again revealed doughnut-shaped structures (outer diameter 31 nm, inner diameter 6 nm) protruding 1 nm from the bilayer. Finally, addition of syncollin to liposomes rendered them permeable to the water-soluble fluorescent probe 5(6)-carboxyfluorescein. These results are discussed in relation to the possible physiological role of syncollin.  相似文献   

18.
Macromolecular Sieving by the Dormant Spore of Bacillus cereus   总被引:4,自引:3,他引:1       下载免费PDF全文
The threshold surface porosity in the dormant spore of Bacillus cereus strain T was assessed by measuring passive permeabilities to a series of polydisperse polyethylene glycol samples which increased in average molecular size. The apparent exclusion threshold at diffusional equilibrium corresponded to a polymer of number-average molecular weight ( M(n)) = 150,000 and equivalent hydrodynamic radius ( r(ES)) = 16 nm, which confirmed a previous report. However, analytical gel chromatography before and after uptake by the spores revealed that only the low molecular weight fractions in a polymer sample distribution were taken up. From graphical analyses of the changes in molecular weight distributions, a quasi-monodisperse exclusion threshold was determined corresponding to M(n) = 8,000 and r(ES) = 3.2 nm. Thus, the equivalent porosity in the limiting outer integument appeared much more restrictive than heretofore shown for spores, although still more open than the monodisperse equivalent for the cell wall of vegetative bacilli.  相似文献   

19.
Characterization of a dynamic S layer on Bacillus thuringiensis.   总被引:5,自引:3,他引:2       下载免费PDF全文
The surfaces of three Bacillus thuringiensis strains possess an S layer composed of linear arrays of small particles arranged with p2 symmetry and with a = 8.5 nm, b = 7.2 nm, and gamma = 73 degrees. Platinum shadows of whole cells and S-layer fragments revealed the outer surface of the array to be smooth and the inner surface to be corrugated. Treatment with 2 M guanidine hydrochloride at pH 2.5 to 4 best removed the S layer for chemical characterization; it was a relatively hydrophilic 91.4-kilodalton protein with a pI of 5, no detectable carbohydrate, cysteine, methionine or tryptophan, and 21.2% nonpolar residues. No N-terminal homology with other S-layer proteins was evident. Antibody labeling experiments confirmed that the amount of S layer was proportional to the growth phase in broth cultures. Late-exponential- and stationary-growth-phase cells typically sloughed off fragments of S layer, and this may be the result of wall turnover. Indigenous autolytic activity in isolated walls rapidly digested the wall fabric, liberating soluble S-layer protein. At the same time, proteases frequently reduced the molecular weight of the 91.4-kilodalton protein, but these polypeptides could still be identified as S-layer components by immunoblotting. As cultures were serially subcultured, the frequency of appearance of the S layer diminished, and it was eventually lost. The dynamic nature of this S layer makes it atypical of most previously identified S layers and made it unusually difficult to characterize.  相似文献   

20.
The Omp21 protein from the proteobacterium Comamonas (Delftia) acidovorans belongs to the recently described beta8 family of outer membrane proteins, characterized by eight antiparallel beta-strands which form a beta-barrel. This family includes virulence proteins, OmpA and OmpX from Escherichia coli, and other related molecules. After we established an expression system, recombinant Omp21 was purified by Ni(2+) chelation affinity chromatography and refolded in situ while bound to resin. The native state of refolded protein was proven by FTIR spectroscopy and monitored with denaturing PAGE (heat modification). Both native and recombinant Omp21 were reconstituted in lipid membranes and crystallized two-dimensionally by controlled dialysis. Recombinant Omp21 crystallized as dimer and formed a p22(1)2(1) lattice with constants of a = 11.1 nm, b = 12.2 nm, gamma = 89.5 degrees. The 3-D structure of negatively stained, recombinant Omp21 was determined at a resolution of 1.8 nm by means of electron crystallography. Comparison with 3-D maps of OmpX and the transmembrane domain of OmpA revealed a high similarity between the mass distribution of exoplasmic loops of Omp21 and OmpA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号