首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phylum Porifera (sponges) was the first to diverge from the common ancestor of the Metazoa. In this study, six cDNAs coding for protein- serine/threonine kinases (PS/TKs) are presented; they have been isolated from libraries obtained from the demosponges Geodia cydonium and Suberites domuncula and from the calcareous sponge Sycon raphanus. Sequence alignments of the catalytic domains revealed that two major families of PS/TK, the "conventional" (Ca(2+)-dependent) protein kinase C (PKC), the cPKC subfamily, as well as the "novel" (Ca(2+)- independent) PKC (nPKC), form two separate clusters. In each cluster, the sequence from S. raphanus diverges first. To approach the question about the origin of protein-tyrosine kinases (PTK), which are found only in Metazoa, we analyzed two additional PS/TKs which have been cloned from S. domuncula: the stress-responsive protein kinase (KRSvSD) and the protein-kinase-C-related kinase (PRKvSD). The construction of the phylogenetic tree, comprising the eight PS/TKs and the PTK cloned previously from G. cydonium, revealed that the PTK derived from the branch including the KRSvSD kinase. These data facilitate the first molecular approach to elucidate the origin of metazoan PTK within the PS/TK superfamily.   相似文献   

2.
In the present review we summarize sequence data obtained from cloning of sponge receptor tyrosine kinases [RTK]. The cDNA sequences were mainly obtained from the marine sponge Geodia cydonium. RTKs (i) with immunoglobulin [Ig]-like domains in the extracellular region, (ii) of the type of insulin-like receptors, as well as (iii) RTKs with one extracellular speract domain, have been identified. The analyses revealed that the RTK genes are constructed in blocks [domains], suggesting a blockwise evolution. The phylogenetic relationships of the sequences obtained revealed that all sponge sequences fall into one branch of the evolutionary tree, while related sequences from higher Metazoa, human, mouse and rat, including also invertebrate sequences, together form a second branch. It is concluded that the RTK molecules have evolved in sponges prior to the "Cambrian Explosion" and have contributed to the rapid appearance of the higher metazoan phyla and that sponges are, as a taxon, also monophyletic. Due to the fact that protein tyrosine kinases in general and RTKs in particular have only been identified in Metazoa, they are, as a group qualified, to be considered as an autapomorphic character of all metazoan phyla.  相似文献   

3.
Receptor tyrosine kinases (RTKs) are involved in the control of fundamental cellular processes in metazoans. In vertebrates, RTK could be grouped in distinct classes based on the nature of their cognate ligand and modular composition of their extracellular domain. RTK with immunoglobulin-like domains (IG-like RTK) encompass several RTK classes and have been found in early metazoans, including sponges. Evolution of IG-like RTK is characterized by extended molecular and functional diversification, which prompted us to study their evolutionary history. For that purpose, a nonredundant data set including annotated protein sequences of IG-like RTK (n = 85) was built, representing 19 species ranging from sponges to humans. Phylogenetic trees were generated from alignment of conserved regions using maximum likelihood approach. Molecular phylogeny strongly suggests that IG-like RTK diversification occurred according to a complex scenario. In particular, we propose that specific cis duplications of a common ancestor to both platelet-derived growth factor receptor (class III) and vascular endothelial growth factor receptor (class V) families preceded two trans duplications. In contrast, other IG-like RTK genes, like Musk and PTK7, apparently did not evolve by duplications, whereas fibroblast growth factor receptors (class IV) evolved through two rounds of trans duplications. The proposed model of IG-like RTK evolution is supported by high bootstrap values and by the clustering of genes encoding class III and class V RTKs at specific chromosomal locations in mouse and human genomes.  相似文献   

4.
Both animals and plants use steroids to regulate their growth and development, but their mechanisms for steroid perception are different. Animal steroids are mainly recognized by intracellular steroid receptors, whereas plant steroids are perceived by cell-surface receptors that contain a transmembrane receptor serine/threonine kinase. Recent studies suggest that heterodimerization between two receptor kinases might be a key step in steroid perception and signaling in plants.  相似文献   

5.
Summary Specimens of Haliclona elegans (Bowerbank, 1866) are covered by a thin, double layered dermal membrane extending over large subdermal spaces. The pores in the dermal membrane are formed by single porocytes with one or sometimes several pores in the center of the cell. The subjacent tissue shows a faintly developed mesenchyme and numerous big choanocyte chambers projecting into lacunar spaces of the incurrent canal system. The outer surface of the chambers is directly covered by the pinacocyte epithelium of the incurrent canal wall, which also separates them completely from the mesenchyme. Water influx into the chambers is guaranteed by prosopylar openings in the pinacocyte cover at the outer chamber surface. The chambers are connected to the excurrent canal system in the eurypylous way by wide apopyles, each of which is surrounded by a small ring of flagellated cone cells. About 15% of the choanocyte chambers in H. elegans contain central cells, which are thought to derive from migrating pinacocytes of the canal systems.  相似文献   

6.
7.
Summary Each choanocyte chamber of Petrosia ficiformis is formed by a slightly outpocked choanocyte epithelium and by a ring of three or four uniflagellated cone cells surrounding the apopyle. The apopyle opens into a small aphodus, which leads the water flow to larger excurrent canals. Pinacocytes of the incurrent canal system cover the basal surface of the choanocytes and separate them from the incurrent canals and the mesenchyme. The water flows into the chambers by pores in the pinacocyte cover and then through gaps between adjacent choanocytes. To our knowledge this is the first report of a leuconoid canal system in which choanocyte chambers are covered by a pinacocyte epithelium of the incurrent canal system that isolates the chambers from the mesenchyme. A future comprehensive revision of the types of canal systems in sponges seems to be necessary. Permanent affiliation: Department of Biology and Health Sciences, University of Hartford, West Hartford, CT 06117, USA  相似文献   

8.
Summary The Mediterranean sponges Reniera mucosa, Haliclona mediterranea, Reniera fulva, Dendroxea lenis and Reniera sarai and the Caribbean species Callyspongia sp., Niphates digitalis, Niphates sp. and Amphimedon compressa are the subjects of this study of the arrangement of the choanocyte chambers between the canal systems and their relation to the mesenchymal tissue. The phylogenetic significance of the different organizational features is discussed.Dedicated to Prof. Dr. Norbert Weissenfels on the occasion of his 60th birthday  相似文献   

9.
10.
Receptor-like protein kinases (RLKs) are transmembrane proteins crucial for cell-to-cell and cell-to-environment communications. The extracellular domain of a RLK is responsible for perception of a specific extracellular ligand to trigger a unique intercellular signaling cascade, often via phosphorylation of cellular proteins. The signal is then transduced to the nucleus of a cell where it alters gene expression. There are more than 610 RLKs in Arabidopsis thaliana, only a handful of them have been functionally characterized. This review focuses on recent advances in our understanding of a small group of RLKs named somatic embryogenesis receptor-like protein kinases (SERKs). SERKs act as coreceptors in multiple signaling pathways via their physical interactions with distinct ligand-binding RLKs.  相似文献   

11.
Functional analysis of receptor-like kinases in monocots and dicots   总被引:2,自引:0,他引:2  
Receptor-like kinases (RLKs) are signaling proteins that feature an extracellular domain connected via a transmembrane domain to a cytoplasmic kinase. This architecture indicates that RLKs perceive external signals, transducing them into the cell. In plants, RLKs were first implicated in the regulation of development, in pathogen responses, and in recognition events. RLKs comprise a major gene family in plants, with more than 600 encoded in the Arabidopsis genome and more than 1100 found in rice genomes. The greater number of RLKs in rice is mostly attributable to expansions in the clades that are involved in pathogen responses. Recent functional studies in both monocots and dicots continue to identify individual RLKs that have similar developmental and abiotic stress roles. Analysis of closely related RLKs reveals that family members might have overlapping roles but can also possess distinct functions.  相似文献   

12.
The lysin motif (LysM) domain is an ancient and ubiquitous protein module that binds peptidoglycan and structurally related molecules. A genomic survey in a large number of species spanning all kingdoms reveals that the combination of LysM and receptor kinase domains is present exclusively in plants. However, the particular biological functions and molecular evolution of this gene family remain largely unknown. We show that LysM domains in plant LysM proteins are highly diversified and that a minimum of six distinct types of LysM motifs exist in plant LysM kinase proteins and five additional types of LysM motifs exist in nonkinase plant LysM proteins. Further, motif similarities suggest that plant LysM motifs are ancient. Although phylogenetic signals are not sufficient to resolve the earliest relationships, plant LysM motifs may have arisen through common ancestry with LysM motifs in other kingdoms. Within plants, the gene family has evolved through local and segmental duplications. The family has undergone further duplication and diversification in legumes, where some LysM kinase genes function as receptors for bacterial nodulation factor. Two pairs of homeologous regions were identified in soybean (Glycine max) based on microsynteny and fluorescence in situ hybridization. Expression data show that most plant LysM kinase genes are expressed predominantly in the root and that orthologous LysM kinase genes share similar tissue expression patterns. We also examined synteny around plant LysM kinase genes to help reconstruct scenarios for the evolution of this important gene family.  相似文献   

13.
植物受体蛋白激酶的研究进展   总被引:1,自引:0,他引:1  
张蕾  吕应堂 《生命科学》2002,14(2):95-98,94
在植物中存在一种由胞外结构域、跨膜区域和胞内的蛋白激酶区域三部分组成的跨膜受体蛋白激酶(receptor-lik protein kinases,RLKs)。该蛋白一方面作为胞外特异配基的受体,同时本身又是一种蛋白激酶。研究表明,植物细胞中的RLKs可能参与了植物细胞抗逆反应,植物形态发生、自交不亲和等生理生化反应,作者将从RLKs的结构、种类,基因表达方式及其植物生长和发育过程中的作用做简要介绍。  相似文献   

14.
Marine sponges are potential sources of many unique metabolites, including cytotoxic and anticancer compounds. Natural sponge populations are insufficient or inaccessible for producing commercial quantities of metabolites of interest. This review focuses on methods of producing sponge biomass to overcome supply limitations. Production techniques discussed include aquaculture in the sea, the controlled environments of aquariums, and culture of sponge cells and primmorphs. Cultivation in the sea and aquariums are currently the only practicable and relatively inexpensive methods of producing significant quantities of sponge biomass. In the future, metabolite production from cultured sponge cells and primmorphs may become feasible. Obtaining a consistent biomass yield in aquariums requires attention to many factors that are discussed in this work.  相似文献   

15.
Chin CN  Sachs JN  Engelman DM 《FEBS letters》2005,579(17):3855-3858
Receptor-like protein tyrosine phosphatases (RPTPs) are type I integral membrane proteins. Together with protein tyrosine kinases, RPTPs regulate the phosphotyrosine levels in the cell. Studies of two RPTPs, CD45 and PTPalpha, have provided strong evidence that dimerization leads to inactivation of the receptors, and that the dimerization of PTPalpha involves interactions in the transmembrane domain (TMD). Using the TOXCAT assay, a genetic approach for analyzing TM interactions in Escherichia coli membranes, we show that the TMD of RPTPs interact in the membrane, albeit to different extents. Using fusion proteins of TMDs, we also observe an equilibrium between monomer and dimer in sodium dodecyl sulfate (SDS) micelles. Through a mutational study of the DEP1 TMD, we demonstrate that these interactions are specific. Taken together, our results define a subset of the RPTP family in which TM homodimerization may act as a mediator of protein function.  相似文献   

16.
Actinobacteria exclusively within the sub-class Acidimicrobidae were shown by 16S rDNA community analysis to be major components of the bacterial community associated with two sponge species in the genus Xestospongia. Four groups of Actinobacteria were identified in Xestospongia spp., with three of these four groups being found in both Xestospongia muta from Key Largo, Florida and Xestospongia testudinaria from Manado, Indonesia. This suggests that these groups are true symbionts in these sponges and may play a common role in both the Pacific and Atlantic sponge species. The fourth group was found only in X. testudinaria and was a novel assemblage distantly related to any previously sequenced actinobacterial clones. The only actinobacteria that were obtained in initial culturing attempts were Gordonia, Micrococcus and Brachybacterium spp., none of which were represented in the clone libraries. The closest cultured actinobacteria to all the Acidimicrobidae clones from Xestospongia spp. are Microthrix parvicella and Acidimicrobium spp. Xestospongia spp. can now be targeted as source material from which to culture novel Acidimicrobidae to investigate their potential as producers of bioactive compounds. Isolation of sponge-associated Acidimicrobidae will also make it possible to elucidate their role as sponge symbionts.  相似文献   

17.
Molecular mechanisms that distinguish self and non-self are fundamental in innate immunity to prevent infections in plants and animals. Recognition of the conserved microbial components triggers immune responses against a broad spectrum of potential pathogens. In Arabidopsis, bacterial flagellin was perceived by a leucine-rich repeat-receptor-like kinase (LRR-RLK) FLS2. Upon flagellin perception, FLS2 forms a complex with another LRR-RLK BAK1. The intracellular signaling events downstream of FLS2/BAK1 receptor complex are still poorly understood. We recently identified a receptor-like cytoplasmic kinase (RLCK) BIK1 that associates with flagellin receptor complex to initiate plant innate immunity. BIK1 is rapidly phosphorylated upon flagellin perception in an FLS2- and BAK1-dependent manner. BAK1 directly phosphorylates BIK1 with an in vitro kinase assay. Plants have evolved a large number of RLCK genes involved in a wide range of biological processes. We provided evidence here that additional RLCKs could also be phosphorylated by flagellin and may play redundant role with BIK1 in plant innate immunity.  相似文献   

18.
Receptor-like kinases (RLKs) play a prominent role in the interaction between plants and extracellular pathogens. Intriguingly, in the past few years several studies have demonstrated that a number of RLKs influence plant susceptibility to viruses and, in some cases, interact with viral proteins. In this review, we will summarize and discuss recent advances suggesting a direct role for RLKs in plant–virus interactions.  相似文献   

19.
《遗传学报》2009,36(1)
Receptor-like kinases (RLKs) play crucial roles in cellular signal perception and propagation. To study the evolutionary relationships among RLKs in soybean, a large-scale expressed sequence tags (ESTs) survey for RLKs-related sequences was conducted. By doing BLAST analysis using our database and The Gene Index Database, 605 putative RLK genes were identified. Based on the phylogeny of the kinase domain, these soybean RLKs were classified into 58 different small subfamilies. The phylogenetic analysis of RLKs in soybean, rice and Arabidopsis showed that different subfamilies of RLKs had different functions and could have experienced different selective pressures.  相似文献   

20.
石雅丽  张锐  林芹  郭三堆 《遗传》2012,34(5):551-559
体细胞胚胎发生受体类蛋白激酶(Somatic embryogenesis receptor-like kinases, SERKs)属于膜富亮氨酸重复序列受体类蛋白激酶(Leucine-rich repeat sequence receptor-like kinase, LRR-RLK)家族的第二亚类。SERK具有典型的胞外信号受体结构域、跨膜结构域和胞内激酶活性结构域, 研究发现SERKs在植物生命活动中承担着多个角色。文章简述了SERKs的典型结构域特征, 重点介绍该类蛋白在体细胞胚发生、生殖发育、激素感应和病理反应方面发挥的功能, 同时对该蛋白激酶的研究价值和应用前景进行了探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号