首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 'Solute Carrier Family SLC10' consists of six annotated members in humans, comprising two bile acid carriers (SLC10A1 and SLC10A2), one steroid sulfate transporter (SLC10A6), and three orphan carriers (SLC10A3 to SLC10A5). In this study we report molecular characterization and expression analysis of a novel member of the SLC10 family, SLC10A7, previously known as C4orf13. SLC10A7 proteins consist of 340-343 amino acids in humans, mice, rats, and frogs and show an overall amino acid sequence identity of >85%. SLC10A7 genes comprise 12 coding exons and show broad tissue expression pattern. When expressed in Xenopus laevis oocytes and HEK293 cells, SLC10A7 was detected in the plasma membrane but revealed no transport activity for bile acids and steroid sulfates. By immunofluorescence analysis of dual hemagglutinin (HA)- and FLAG-labeled SLC10A7 proteins in HEK293 cells, we established a topology of 10 transmembrane domains with an intracellular cis orientation of the N-terminal and C-terminal ends. This topology pattern is clearly different from the seven-transmembrane domain topology of the other SLC10 members but similar to hitherto uncharacterized non-vertebrate SLC10A7-related proteins. In contrast to the established SLC10 members, which are restricted to the taxonomic branch of vertebrates, SLC10A7-related proteins exist also in yeasts, plants, and bacteria, making SLC10A7 taxonomically the most widespread member of this carrier family. Vertebrate and bacterial SLC10A7 proteins exhibit >20% sequence identity, which is higher than the sequence identity of SLC10A7 to any other member of the SLC10 carrier family.  相似文献   

2.
3.
4.
The SLC38 family of transporters has in total 11 members in humans and they encode amino acid transporters called sodium-coupled amino acid transporters (SNAT). To date, five SNATs have been characterized and functionally subdivided into systems A (SLC38A1, SLC38A2, and SLC38A4) and N (SLC38A3 and SLC38A5) showing the highest transport for glutamine and alanine. Here we present identification of a novel glutamine transporter encoded by the Slc38a7 gene, which we propose should be named SNAT7. This transporter has L-glutamine as the preferred substrate but also transports other amino acids with polar side chains, as well as L-histidine and L-alanine. The expression pattern and substrate profile for SLC38A7 shows highest similarity to the known system N transporters. Therefore, we propose that SLC38A7 is a novel member of this system. We used in situ hybridization and immunohistochemistry with a custom-made antibody to show that SLC38A7 is expressed in all neurons, but not in astrocytes, in the mouse brain. SLC38A7 is unique in being the first system N transporter expressed in GABAergic and also other neurons. The preferred substrate and axonal localization of SLC38A7 close to the synaptic cleft indicates that SLC38A7 could have an important function for the reuptake and recycling of glutamate.  相似文献   

5.
Cystinuria represents 3% of nephrolithiasis in humans with an overall prevalence of 1 in 7,000 neonates. Two genes have been reported to account for the genetic basis of cystinuria, the SLC3A1 and the SLC7A9. Recently, the possible involvement of the SLC7A10 gene in the genetic basis of the disorder was also reported. In the present study, we found a total of 15 mutations in 20 Greek cystinuric patients. Eight mutations are novel, 4 in the SLC3A1: F266S, T351I, R456C, and N516D, and 4 in the SLC7A9: 479-1G>C, Y232C, D233E, and 1399+1G>T. Furthermore, 2 polymorphisms were identified in the SLC3A1 gene and 16 polymorphic variants were also found in the SLC7A9 gene of which the 235+18C>A, 604+10G>A, and 604+24T>C are novel. Finally, no mutation was found in the SLC7A10 gene in all patients. Only, the novel 634+8C>G and the previously reported 913-11C+T polymorphisms were identified in the SLC7A10 gene. In conclusion, a spectrum of SLC3A1 and SLC7A9 mutations are responsible for the genetic basis of cystinuria in Greek patients.  相似文献   

6.
Avian genomes are small and lack some genes that are conserved in the genomes of most other vertebrates including nonavian sauropsids. One hypothesis stated that paralogs may provide biochemical or physiological compensation for certain gene losses; however, no functional evidence has been reported to date. By integrating evolutionary analysis, physiological genomics, and experimental gene interference, we clearly demonstrate functional compensation for gene loss. A large-scale phylogenetic analysis of over 1,400 SLC2 gene sequences identifies six new SLC2 genes from nonmammalian vertebrates and divides the SLC2 gene family into four classes. Vertebrates retain class III SLC2 genes but partially lack the more recent duplicates of classes I and II. Birds appear to have completely lost the SLC2A4 gene that encodes an important insulin-sensitive GLUT in mammals. We found strong evidence for positive selection, indicating that the N-termini of SLC2A4 and SLC2A12 have undergone diversifying selection in birds and mammals, and there is a significant correlation between SLC2A12 functionality and basal metabolic rates in endotherms. Physiological genomics have uncovered that SLC2A12 expression and allelic variants are associated with insulin sensitivity and blood glucose levels in wild birds. Functional tests have indicated that SLC2A12 abrogation causes hyperglycemia, insulin resistance, and high relative activity, thus increasing energy expenditures that resemble a diabetic phenotype. These analyses suggest that the SLC2A12 gene not only functionally compensates insulin response for SLC2A4 loss but also affects daily physical behavior and basal metabolic rate during bird evolution, highlighting that older genes retain a higher level of functional diversification.  相似文献   

7.
The cystine/glutamate antiporter SLC7A11 (also com-monly known as xCT) functions to import cystine for glutathione biosynthesis and antioxidant defense and is overexpressed in multiple human cancers.Recent studies revealed that SLC7A11 overexpression pro-motes tumor growth partly through suppressing fer-roptosis,a form of regulated cell death induced by excessive lipid peroxidation.However,cancer cells with high expression of SLC7A11 (SLC7A11high) also have to endure the significant cost associated with SLC7A11-mediated metabolic reprogramming,leading to glucose-and glutamine-dependency in SLC7A11high cancer cells,which presents potential metabolic vulnerabilities for therapeutic targeting in SLC7A11high cancer.In this review,we summarize diverse regulatory mechanisms of SLC7A11 in cancer,discuss ferroptosis-dependent and-independent functions of SLC7A11 in promoting tumor development,explore the mechanistic basis of SLC7A11-induced nutrient dependency in cancer cells,and conceptualize therapeutic strategies to target SLC7A11 in cancer treatment.This review will provide the foundation for further understanding SLC7A11 in ferroptosis,nutrient dependency,and tumor biology and for developing novel effective cancer therapies.  相似文献   

8.
Characterization of equine and other vertebrate TLR3, TLR7, and TLR8 genes   总被引:2,自引:0,他引:2  
Toll-like receptors 3, 7, and 8 (TLR3, TLR7, and TLR8) were studied in the genomes of the domestic horse and several other mammals. The messenger RNA sequences and exon/intron structures of these TLR genes were determined. An equine bacterial artificial chromosome clone containing the TLR3 gene was assigned by fluorescent in situ hybridization to the horse chromosomal location ECA27q16–q17 and this map location was confirmed using an equine radiation hybrid panel. Direct sequencing revealed 13 single-nucleotide polymorphisms in the coding regions of the equine TLR 3, 7, and 8 genes. Of these polymorphisms, 12 were not previously reported. The allelic frequency was estimated for each single-nucleotide polymorphism from genotyping data obtained for 154 animals from five horse breeds. Some of these frequencies varied significantly among different horse breeds. Domain architecture predictions for the three equine TLR protein sequences revealed several conserved regions within the variable leucine-rich repeats between the corresponding horse and cattle TLR proteins. A phylogenetic analysis did not indicate that any significant exchanges had occurred between paralogous TLR7 and TLR8 genes in 20 vertebrate species analyzed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
10.
Residue hepatocellular carcinoma (HCC) cells enduring hypoxic environment triggered by interventional embolization obtain more malignant potential with little clarified mechanism. The N6-methyladenosine (m6A) biological activity plays essential roles in diverse physiological processes. However, its role under hypoxic condition remains largely unexplored. RT-qPCR and Western blot were used to evaluate METTL14 expression in hypoxic HCC cells. MDA assay and electronic microscopy photography were used to evaluate ferroptosis. The correlation between SLC7A11 and METTL14 was conducted by bioinformatical analysis. Flow cytometry was used to verify the effect of SLC7A11 on ROS production. Cell counting kit-8 assay was performed to detect cells proliferation ability. Hypoxia triggered suppression of METTL14 in a HIF-1α–dependent manner potently abrogated ferroptosis of HCC cells. Mechanistic investigation identified SLC7A11 was a direct target of METTL14. Both in vitro and in vivo assay demonstrated that METTL14 induced m6A modification at 5’UTR of SLC7A11 mRNA, which in turn underwent degradation relied on the YTHDF2-dependent pathway. Importantly, ectopic expression of SLC7A11 strongly blocked METTL14-induced tumour-suppressive effect in hypoxic HCC. Our investigations lay the emphasis on the hypoxia-regulated ferroptosis in HCC cells and identify the HIF-1α /METTL14/YTHDF2/SLC7A11 axis as a potential therapeutic target for the HCC interventional embolization treatment.  相似文献   

11.
12.
We analyzed the SLC4A1 gene in three Mexican patients with Hereditary Spherocytosis (HS). The promoter and all 20 exons were investigated through heteroduplex analysis and DNA sequencing. No DNA changes were detected in one of the three patients. Two well-known polymorphisms, Memphis I and the Diego-a blood group, were detected in another one. In the third, the HS phenotype could be explained by the novel 1885_1888dupCCGG mutation found in heterozygosis. This frameshift mutation is predicted to result in a truncated and unstable protein lacking normal functions.  相似文献   

13.
环状RNA(circular RNAs, circRNAs)是一类新型非编码RNA。已有研究表明,其在细胞氧化还原反应中发挥重要作用。在本文前期研究中,发现通过real-time PCR检测,hsa_circ_0087354与细胞的氧化还原状态密切相关。过表达hsa_circ_0087354后,活性氧1(reactive oxygen species1,ROS1)基因表达显著下降(P<0.01),超氧化物歧化酶1(surperoxide dismutase1,SOD1)表达显著升高(P<0.05);细胞内SOD和谷胱甘肽过氧化物酶(glutathione peroxidase,GPx)活性以及谷胱甘肽(glutathione,GSH)浓度显著升高(P<0.01),细胞增殖能力增强(P<0.05)。生物信息学分析预测,hsa-miR-199-3p与hsa_circ_0087354和溶质载体家族7成员11(solute carrier family 7 member 11,SLC7A11)存在结合位点,可能存在靶向调控关系。双荧光素酶报告基因结果证实了hsa-miR-199-3p与hsa_circ_0087354和SLC7A11之间的靶向调控关系。构建过表达hsa_circ_0087354质粒和ctrl质粒,合成hsa-miR-199a-3p、hsa-miR-199b-3p 和hsa-miR-NC mimics。通过Real-time PCR分析发现,转染hsa_circ_0087354后,hsa-miR-199-3p表达显著降低(P<0.01),SLC7A11表达显著升高(P<0.05)。转染hsa-miR-199-3p后,SLC7A11基因表达显著下降(P<0.001),细胞内SOD和GPx活性以及GSH浓度显著降低(P<0.01),细胞增殖能力下降(P<0.05)。研究结果表明,hsa_circ_0087354通过吸附hsa-miR-199-3p,增强SLC7A11表达,促进氧化应激MG-63细胞增殖,降低氧化应激水平。  相似文献   

14.

Introduction

There is inconsistent association between urate transporters SLC22A11 (organic anion transporter 4 (OAT4)) and SLC22A12 (urate transporter 1 (URAT1)) and risk of gout. New Zealand (NZ) Māori and Pacific Island people have higher serum urate and more severe gout than European people. The aim of this study was to test genetic variation across the SLC22A11/SLC22A12 locus for association with risk of gout in NZ sample sets.

Methods

A total of 12 single nucleotide polymorphism (SNP) variants in four haplotype blocks were genotyped using TaqMan® and Sequenom MassArray in 1003 gout cases and 1156 controls. All cases had gout according to the 1977 American Rheumatism Association criteria. Association analysis of single markers and haplotypes was performed using PLINK and Stata.

Results

A haplotype block 1 SNP (rs17299124) (upstream of SLC22A11) was associated with gout in less admixed Polynesian sample sets, but not European Caucasian (odds ratio; OR = 3.38, P = 6.1 × 10-4; OR = 0.91, P = 0.40, respectively) sample sets. A protective block 1 haplotype caused the rs17299124 association (OR = 0.28, P = 6.0 × 10-4). Within haplotype block 2 (SLC22A11) we could not replicate previous reports of association of rs2078267 with gout in European Caucasian (OR = 0.98, P = 0.82) sample sets, however this SNP was associated with gout in Polynesian (OR = 1.51, P = 0.022) sample sets. Within haplotype block 3 (including SLC22A12) analysis of haplotypes revealed a haplotype with trans-ancestral protective effects (OR = 0.80, P = 0.004), and a second haplotype conferring protection in less admixed Polynesian sample sets (OR = 0.63, P = 0.028) but risk in European Caucasian samples (OR = 1.33, P = 0.039).

Conclusions

Our analysis provides evidence for multiple ancestral-specific effects across the SLC22A11/SLC22A12 locus that presumably influence the activity of OAT4 and URAT1 and risk of gout. Further fine mapping of the association signal is needed using trans-ancestral re-sequence data.  相似文献   

15.
The present study was conducted to characterise the transporter(s) responsible for the uptake of cyclic nucleotides to human erythrocytes. Western blotting showed that hRBC expressed OAT2 (SLC22A7), but detection of OAT1 (SLC22A6), or OAT3 (SLC22A8) was not possible. Intact hRBC were employed to clarify the simultaneous cyclic nucleotide egression and uptake. Both these opposing processes were studied. The Km‐values for high affinity efflux was 3.5 ± 0.1 and 39.4 ± 5.7 μM for cGMP and cAMP, respectively. The respective values for low affinity efflux were 212 ± 11 and 339 ± 42 μM. The uptake was characterised with apparently low affinity and similar Km‐values for cGMP (2.2 mM) and cAMP (0.89 mM). Using an iterative approach in order to balance uptake with efflux, the predicted real Km‐values for uptake were 100–200 μM for cGMP and 50–150 μM for cAMP. The established OAT2‐substrate indomethacin showed a competitive interaction with cyclic nucleotide uptake. Creatinine, also an OAT2 substrate, showed saturable uptake with a Km of 854 ± 98 μM. Unexpectedly, co‐incubation with cyclic nucleotides showed an uncompetitive inhibition. The observed Km‐values were 399 ± 44 and 259 ± 30 μM for creatinine, in the presence of cGMP and cAMP, respectively. Finally, the OAT1‐substrate para‐aminohippurate (PAH) showed some uptake (Km‐value of 2.0 ± 0.4 mM) but did not interact with cyclic nucleotide or indomethacin transport.  相似文献   

16.
SLC11A1 (also known as Natural Resistance Associated Macrophage Protein1, NRAMP1) plays a crucial role in resistance of inbred mice to infection with several intracellular pathogens such as Mycobacterium, Leishmania and Salmonella. In this study, PCR amplification and sequencing were performed to obtain the genomic organization and sequence of porcine SLC11A1 gene by comparative genomic analysis. Results showed that porcine SLC11A1 gene consists of 15 exons and 14 introns, which is consistent with that of mice and human. All introns were sequenced and their nucleotide sequences were submitted to GenBank. The exon/intron boundaries were determined by comparing cDNA sequence with amplified genomic DNA sequences. Mutational analysis was performed on exonic and neighboring intronic region by denaturing high-performance liquid chromatography (DHPLC) and sequencing confirmation. Forty polymorphisms were identified; six are located in exons and thirty-four in introns. Two exonic polymorphisms are nonsynonymous changes (D6H and V175I), three are synonymous changes (S23, G33 and I155), and one is in 3' UTR. The availability of the fine genomic organization and identification of the polymorphisms will facilitate the evaluation of porcine SLC11A1 functional role in diseases resistance or susceptibility.  相似文献   

17.
Copper is an essential element necessary for normal function of numerous enzymes in all living organisms. Uptake of copper into the cell is thought to occur through the membrane protein, SLC31A1 (CTR1), which has been described in a variety of species including yeast, human and mouse. In this study, we present cloning, gene structure, chromosomal localization and expression pattern of the Sus scrofa SLC31A1 gene, which encodes a 189 amino acid protein. The (SSC) SLC31A1 gene is organized in four exons and spans an approximately 2.3 kb genomic region. We have localized the gene to chromosome 1q28-q2.13 using a somatic cell hybrid panel. This region shows conservation of synteny with human chromosome 9, where the human SLC31A1 (CTR1) gene has been localized. Expression studies suggest that SLC31A1 mRNA is transcribed in all tissues examined.  相似文献   

18.
目的:探讨5-羟色胺转运体基因(solute carrier family 6 member 4,SLC6A4)基因4个单核苷酸多态性(single nucleotide polymorphism,SNP)位点与海洛因依赖之间的关系。方法:严格按照诊断标准,选取无亲缘关系的海洛因依赖个体397例(病例组)及健康对照个体402例(对照组)提取基因组DNA,采用SNaPshot SNP分型技术对SLC6A4基因4个SNP位点(rs1042173,rs3813034,rs6354,rs7224199)进行基因分型,比较病例-对照组间各位点等位基因、基因型频率的差异。结果:病例组和对照组SLC6A4基因rs1042173和rs3813034位点的基因型和等位基因频率比较存在显著性差异(P0.05),rs1042173的C等位基因(P=0.031,OR=1.317,95%CI=1.026-1.691)及rs3813034的C等位基因(P=0.013,OR=1.375,95%CI=1.069-1.768)是海洛因依赖的危险因素。病例组TCC单倍型(rs7224199、rs3813034和rs1042173)的比例较对照组显著增高(P0.05)。结论:SLC6A4基因rs1042173和rs3813034多态性可能与海洛因成瘾有关,携带有rs1042173的C等位基因和rs3813034的C等位基因的个体及携带TCC单倍型的个体可能更容易对海洛因产生依赖。  相似文献   

19.
20.
ObjectivesEvidences demonstrate that sorafenib alleviates liver fibrosis via inhibiting HSC activation and ECM accumulation. The underlying mechanism remains unclear. Ferroptosis, a novel programmed cell death, regulates diverse physiological/pathological processes. In this study, we aim to investigate the functional role of HSC ferroptosis in the anti‐fibrotic effect of sorafenib.Materials and MethodsThe effects of sorafenib on HSC ferroptosis and ECM expression were assessed in mouse model of liver fibrosis induced by CCl4. In vitro, Fer‐1 and DFO were used to block ferroptosis and then explored the anti‐fibrotic effect of sorafenib by detecting α‐SMA, COL1α1 and fibronectin proteins. Finally, HIF‐1α siRNA, plasmid and stabilizers were applied to assess related signalling pathway.ResultsSorafenib attenuated liver injury and ECM accumulation in CCl4‐induced fibrotic livers, accompanied by reduction of SLC7A11 and GPX4 proteins. In sorafenib‐treated HSC‐T6 cells, ferroptotic events (depletion of SLC7A11, GPX4 and GSH; accumulation iron, ROS and MDA) were discovered. Intriguingly, these ferroptotic events were not appeared in hepatocytes or macrophages. Sorafenib‐elicited HSC ferroptosis and ECM reduction were abrogated by Fer‐1 and DFO. Additionally, both HIF‐1α and SLC7A11 proteins were reduced in sorafenib‐treated HSC‐T6 cells. SLC7A11 was positively regulated by HIF‐1α, inactivation of HIF‐1α/SLC7A11 pathway was required for sorafenib‐induced HSC ferroptosis, and elevation of HIF‐1α could inhibit ferroptosis, ultimately limited the anti‐fibrotic effect.ConclusionsSorafenib triggers HSC ferroptosis via HIF‐1α/SLC7A11 signalling, which in turn attenuates liver injury and fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号