首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jung J  Fan R  Jin L 《Genetics》2005,170(2):881-898
Using multiple diallelic markers, variance component models are proposed for high-resolution combined linkage and association mapping of quantitative trait loci (QTL) based on nuclear families. The objective is to build a model that may fully use marker information for fine association mapping of QTL in the presence of prior linkage. The measures of linkage disequilibrium and the genetic effects are incorporated in the mean coefficients and are decomposed into orthogonal additive and dominance effects. The linkage information is modeled in variance-covariance matrices. Hence, the proposed methods model both association and linkage in a unified model. On the basis of marker information, a multipoint interval mapping method is provided to estimate the proportion of allele sharing identical by descent (IBD) and the probability of sharing two alleles IBD at a putative QTL for a sib-pair. To test the association between the trait locus and the markers, both likelihood-ratio tests and F-tests can be constructed on the basis of the proposed models. In addition, analytical formulas of noncentrality parameter approximations of the F-test statistics are provided. Type I error rates of the proposed test statistics are calculated to show their robustness. After comparing with the association between-family and association within-family (AbAw) approach by Abecasis and Fulker et al., it is found that the method proposed in this article is more powerful and advantageous based on simulation study and power calculation. By power and sample size comparison, it is shown that models that use more markers may have higher power than models that use fewer markers. The multiple-marker analysis can be more advantageous and has higher power in fine mapping QTL. As an application, the Genetic Analysis Workshop 12 German asthma data are analyzed using the proposed methods.  相似文献   

2.
The HapMap Project is providing a great deal of new information on high-resolution haplotype structure in various human populations. This information has the potential to greatly increase the power of association mapping for a fixed amount of genotyping. A number of methods have been proposed for the identification of haplotype blocks, common haplotypes, and tagging single-nucleotide polymorphisms. Here, we build on this work by developing novel methods for case-control multipoint linkage-disequilibrium (LD) mapping that gain power and speed by making explicit use of the inferred block structure. Specifically, we developed a virtual-variant approach that uses the haplotype-block information to greatly increase power for detection of untyped common variants associated with a trait. Because full multipoint LD mapping can be slow, we exploited the haplotype-block information to develop a fast single-block multipoint mapping method. Our methods are appropriate for genotype data and take into account the uncertainty in phase. We describe the methods in the context of case-parents trios, although they are also applicable to unrelated cases and controls. Our simulations indicate that the most important gains from taking into account the haplotype-block structure at the analysis stage of multipoint LD mapping come from (1) greatly increased power to detect association with untyped variants and (2) greatly improved localization of untyped variants associated with the trait. More-modest gains are obtained in improving power to detect association with a variant that is typed with a moderate amount of missing data. The methods are applied to a Crohn disease data set.  相似文献   

3.
Fan R  Jung J 《Human heredity》2003,56(4):166-187
This paper proposes variance component models for high resolution joint linkage disequilibrium (LD) and linkage mapping of quantitative trait loci (QTL) based on sibship data; this can include population data if independent individuals are treated as single sibships. One application of these models is late onset complex disease gene mapping, when parental data are not available. The models simultaneously incorporate both LD and linkage information. The LD information is contained in mean coefficients of sibship data. The linkage information is contained in the variance-covariance matrices of trait values for sibships with at least two siblings. We derive formulas for calculating the probability of sharing two trait alleles identical by descent (IBD) for sibpairs in interval mapping of QTL; this is the coefficient of dominant variance of the trait covariance of sibpairs on major QTL. To investigate the performance of the formulas, we calculate the numerical values via the formulas and get satisfactory approximations. We compare the power and sample sizes for both LD and linkage mapping. By simulation and theoretical analysis, we compare the results with those of Fulker and Abecasis "AbAw" approach. It is well known that the resolution of linkage analysis can be low for complex disease gene mapping. LD mapping, on the other hand, can increase mapping precision and is useful in high resolution mapping. Linkage analysis is less sensitive to population subdivisions and admixtures. The level of LD is sensitive to population stratification which may easily lead to spurious association. Performing a joint analysis of LD and linkage mapping can help to overcome the limits of both approaches. Moreover, the advantages of the two complementary strategies can be utilized maximally. In practice, linkage analysis may be performed using pedigree data to identify suggestive linkage between markers and trait loci based on a sparse marker map. In the presence of linkage, joint LD and linkage mapping can be carried out to do fine gene mapping based on a dense genetic map using both pedigree and population data. Population and pedigree data of any type can be combined to perform a joint analysis of high resolution LD and linkage mapping of QTL by generalizing the method.  相似文献   

4.
Multilocus association mapping using variable-length Markov chains   总被引:1,自引:0,他引:1       下载免费PDF全文
I propose a new method for association-based gene mapping that makes powerful use of multilocus data, is computationally efficient, and is straightforward to apply over large genomic regions. The approach is based on the fitting of variable-length Markov chain models, which automatically adapt to the degree of linkage disequilibrium (LD) between markers to create a parsimonious model for the LD structure. Edges of the fitted graph are tested for association with trait status. This approach can be thought of as haplotype testing with sophisticated windowing that accounts for extent of LD to reduce degrees of freedom and number of tests while maximizing information. I present analyses of two published data sets that show that this approach can have better power than single-marker tests or sliding-window haplotypic tests.  相似文献   

5.
T Würschum  T Kraft 《Heredity》2014,112(4):463-468
Association mapping has become a widely applied genomic approach to identify quantitative trait loci (QTL) and dissect the genetic architecture of complex traits. However, approaches to assess the quality of the obtained QTL results are lacking. We therefore evaluated the potential of cross-validation in association mapping based on a large sugar beet data set. Our results show that the proportion of the population that should be used as estimation and validation sets, respectively, depends on the size of the mapping population. Generally, a fivefold cross-validation, that is, 20% of the lines as independent validation set, appears appropriate for commonly used population sizes. The predictive power for the proportion of genotypic variance explained by QTL was overestimated by on average 38% indicating a strong bias in the estimated QTL effects. The cross-validated predictive power ranged between 4 and 50%, which are more realistic estimates of this parameter for complex traits. In addition, QTL frequency distributions can be used to assess the precision of QTL position estimates and the robustness of the detected QTL. In summary, cross-validation can be a valuable tool to assess the quality of QTL parameters in association mapping.  相似文献   

6.

Background

Genomic imprinting, a phenomenon referring to nonequivalent expression of alleles depending on their parental origins, has been widely observed in nature. It has been shown recently that the epigenetic modification of an imprinted gene can be detected through a genetic mapping approach. Such an approach is developed based on traditional quantitative trait loci (QTL) mapping focusing on single trait analysis. Recent studies have shown that most imprinted genes in mammals play an important role in controlling embryonic growth and post-natal development. For a developmental character such as growth, current approach is less efficient in dissecting the dynamic genetic effect of imprinted genes during individual ontology.

Results

Functional mapping has been emerging as a powerful framework for mapping quantitative trait loci underlying complex traits showing developmental characteristics. To understand the genetic architecture of dynamic imprinted traits, we propose a mapping strategy by integrating the functional mapping approach with genomic imprinting. We demonstrate the approach through mapping imprinted QTL controlling growth trajectories in an inbred F2 population. The statistical behavior of the approach is shown through simulation studies, in which the parameters can be estimated with reasonable precision under different simulation scenarios. The utility of the approach is illustrated through real data analysis in an F2 family derived from LG/J and SM/J mouse stains. Three maternally imprinted QTLs are identified as regulating the growth trajectory of mouse body weight.

Conclusion

The functional iQTL mapping approach developed here provides a quantitative and testable framework for assessing the interplay between imprinted genes and a developmental process, and will have important implications for elucidating the genetic architecture of imprinted traits.  相似文献   

7.
The genetic mapping of complex traits has been challenging and has required new statistical methods that are robust to misspecified models. Liang et al. proposed a robust multipoint method that can be used to simultaneously estimate, on the basis of sib-pair linkage data, both the position of a trait locus on a chromosome and its effect on disease status. The advantage of their method is that it does not require specification of an underlying genetic model, so estimation of the position of a trait locus on a specified chromosome and of its standard error is robust to a wide variety of genetic mechanisms. If multiple loci influence the trait, the method models the marginal effect of a locus on a specified chromosome. The main critical assumption is that there is only one trait locus on the chromosome of interest. We extend this method to different types of affected relative pairs (ARPs) by two approaches. One approach is to estimate the position of a trait locus yet allow unconstrained trait-locus effects across different types of ARPs. This robust approach allows for differences in sharing alleles identical-by-descent across different types of ARPs. Some examples for which an unconstrained model would apply are differences due to secular changes in diagnostic methods that can change the frequency of phenocopies among different types of relative pairs, environmental factors that modify the genetic effect, epistasis, and variation in marker-information content. However, this unconstrained model requires a parameter for each type of relative pair. To reduce the number of parameters, we propose a second approach that models the marginal effect of a susceptibility locus. This constrained model is robust for a trait caused by either a single locus or by multiple loci without epistasis. To evaluate the adequacy of the constrained model, we developed a robust score statistic. These methods are applied to a prostate cancer-linkage study, which emphasizes their potential advantages and limitations.  相似文献   

8.
Genomewide scans for mapping loci have proved to be extremely powerful and popular. We present a semiparametric method of mapping a quantitative-trait locus (QTL) or QTLs with the use of sib-pair data generated from a two-stage genomic scan. In a two-stage genomic scan, either the entire genome or a large portion of the genome is saturated with low-density markers at the first stage. At the second stage, the intervals that are identified as probable locations of the trait loci, by means of analysis of data from the first stage, are then saturated with higher-density markers. These data are then analyzed for fine mapping of the loci. Our statistical strategy for analysis of data from the first stage is a low-stringency method based on the rank correlation of squared trait-difference values of the sib pairs and the estimated identity-by-descent scores at the marker loci. We suggest the use of a low-stringency method at the first stage, to save on computational time and to avoid missing any marker interval that may contain the trait loci. For analysis of data from the second stage, we have developed a high-stringency nonparametric-regression approach, using the kernel-smoothing technique. Through extensive simulations, we show that this approach is more powerful than is a currently used method for mapping QTLs by use of sib pairs, particularly in the presence of dominance and epistatic effects at the trait loci.  相似文献   

9.
Zöllner S  Pritchard JK 《Genetics》2005,169(2):1071-1092
We outline a general coalescent framework for using genotype data in linkage disequilibrium-based mapping studies. Our approach unifies two main goals of gene mapping that have generally been treated separately in the past: detecting association (i.e., significance testing) and estimating the location of the causative variation. To tackle the problem, we separate the inference into two stages. First, we use Markov chain Monte Carlo to sample from the posterior distribution of coalescent genealogies of all the sampled chromosomes without regard to phenotype. Then, averaging across genealogies, we estimate the likelihood of the phenotype data under various models for mutation and penetrance at an unobserved disease locus. The essential signal that these models look for is that in the presence of disease susceptibility variants in a region, there is nonrandom clustering of the chromosomes on the tree according to phenotype. The extent of nonrandom clustering is captured by the likelihood and can be used to construct significance tests or Bayesian posterior distributions for location. A novelty of our framework is that it can naturally accommodate quantitative data. We describe applications of the method to simulated data and to data from a Mendelian locus (CFTR, responsible for cystic fibrosis) and from a proposed complex trait locus (calpain-10, implicated in type 2 diabetes).  相似文献   

10.
In this paper, we present an innovative and powerful approach for mapping quantitative trait loci (QTL) in experimental populations. This deviates from the traditional approach of (composite) interval mapping which uses a QTL profile to simultaneously determine the number and location of QTL. Instead, we look before we leap by employing separate detection and localization stages. In the detection stage, we use an iterative variable selection process coupled with permutation to identify the number and synteny of QTL. In the localization stage, we position the detected QTL through a series of one-dimensional interval mapping scans. Results from a detailed simulation study and real analysis of wheat data are presented. We achieve impressive increases in the power of QTL detection compared to composite interval mapping. We also accurately estimate the size and position of QTL. An R library, DLMap, implements the methods described here and is freely available from CRAN ().  相似文献   

11.
Association or linkage disequilibrium (LD)-based mapping strategies are receiving increased attention for the identification of quantitative trait loci (QTL) in plants as an alternative to more traditional, purely linkage-based approaches. An attractive property of association approaches is that they do not require specially designed crosses between inbred parents, but can be applied to collections of genotypes with arbitrary and often unknown relationships between the genotypes. A less obvious additional attractive property is that association approaches offer possibilities for QTL identification in crops with hard to model segregation patterns. The availability of candidate genes and targeted marker systems facilitates association approaches, as will appropriate methods of analysis. We propose an association mapping approach based on mixed models with attention to the incorporation of the relationships between genotypes, whether induced by pedigree, population substructure, or otherwise. Furthermore, we emphasize the need to pay attention to the environmental features of the data as well, i.e., adequate representation of the relations among multiple observations on the same genotypes. We illustrate our modeling approach using 25 years of Dutch national variety list data on late blight resistance in the genetically complex crop of potato. As markers, we used nucleotide binding-site markers, a specific type of marker that targets resistance or resistance-analog genes. To assess the consistency of QTL identified by our mixed-model approach, a second independent data set was analyzed. Two markers were identified that are potentially useful in selection for late blight resistance in potato.  相似文献   

12.
Association mapping can be a powerful tool for detecting quantitative trait loci (QTLs) without requiring line-crossing experiments. We previously proposed a Bayesian approach for simultaneously mapping multiple QTLs by a regression method that directly incorporates estimates of the population structure. In the present study, we extended our method to analyze ordinal and censored traits, since both types of traits are common in the evaluation of germplasm collections. Ordinal-probit and tobit models were employed to analyze ordinal and censored traits, respectively. In both models, we postulated the existence of a latent continuous variable associated with the observable data, and we used a Markov-chain Monte Carlo algorithm to sample the latent variable and determine the model parameters. We evaluated the efficiency of our approach by using simulated- and real-trait analyses of a rice germplasm collection. Simulation analyses based on real marker data showed that our models could reduce both false-positive and false-negative rates in detecting QTLs to reasonable levels. Simulation analyses based on highly polymorphic marker data, which were generated by coalescent simulations, showed that our models could be applied to genotype data based on highly polymorphic marker systems, like simple sequence repeats. For the real traits, we analyzed heading date as a censored trait and amylose content and the shape of milled rice grains as ordinal traits. We found significant markers that may be linked to previously reported QTLs. Our approach will be useful for whole-genome association mapping of ordinal and censored traits in rice germplasm collections.  相似文献   

13.
Association mapping promises to overcome the limitations of linkage mapping methods. The main objective of this study was to examine the applicability of multivariate association mapping with an empirical data set of sugar beet. A total of 111 diploid sugar beet inbreds was selected from the seed parent heterotic pool to represent a broad diversity with respect to sugar content (SC). The inbreds were genotyped with 26 simple sequence repeat markers chosen according to their map positions in proximity to previously identified quantitative trait loci for SC. For SC and beet yield (BY), the genotypic variances were highly significant (P < 0.01). Based on the global test of the bivariate mixed-model approach, four markers were significantly associated with SC, BY, or both at a false discovery rate of 0.025. All four markers were significantly (P < 0.05) associated with BY but only two with SC. The identification of markers associated with SC, BY, or both indicated that association mapping can be successfully applied in a sugar beet breeding context for detection of marker-phenotype associations. Furthermore, based on our results multivariate association mapping can be recommended as a promising tool to discriminate with a high mapping resolution between pleiotropy and linkage as reasons for co-localization of marker-phenotype associations for different traits.  相似文献   

14.
Genetic association mapping and genome organization of maize   总被引:31,自引:0,他引:31  
Association mapping, a high-resolution method for mapping quantitative trait loci based on linkage disequilibrium, holds great promise for the dissection of complex genetic traits. The recent assembly and characterization of maize association mapping panels, development of improved statistical methods, and successful association of candidate genes have begun to realize the power of candidate-gene association mapping. Although the complexity of the maize genome poses several significant challenges to the application of association mapping, the ongoing genome sequencing project will ultimately allow for a thorough genome-wide examination of nucleotide polymorphism-trait association.  相似文献   

15.
16.

Background  

Finding the genetic causes of quantitative traits is a complex and difficult task. Classical methods for mapping quantitative trail loci (QTL) in miceuse an F2 cross between two strains with substantially different phenotype and an interval mapping method to compute confidence intervals at each position in the genome. This process requires significant resources for breeding and genotyping, and the data generated are usually only applicable to one phenotype of interest. Recently, we reported the application of a haplotype association mapping method which utilizes dense genotyping data across a diverse panel of inbred mouse strains and a marker association algorithm that is independent of any specific phenotype. As the availability of genotyping data grows in size and density, analysis of these haplotype association mapping methods should be of increasing value to the statistical genetics community.  相似文献   

17.
Statistical methods for expression quantitative trait loci (eQTL) mapping   总被引:7,自引:0,他引:7  
  相似文献   

18.
MOTIVATION: With the availability of large-scale, high-density single-nucleotide polymorphism markers and information on haplotype structures and frequencies, a great challenge is how to take advantage of haplotype information in the association mapping of complex diseases in case-control studies. RESULTS: We present a novel approach for association mapping based on directly mining haplotypes (i.e. phased genotype pairs) produced from case-control data or case-parent data via a density-based clustering algorithm, which can be applied to whole-genome screens as well as candidate-gene studies in small genomic regions. The method directly explores the sharing of haplotype segments in affected individuals that are rarely present in normal individuals. The measure of sharing between two haplotypes is defined by a new similarity metric that combines the length of the shared segments and the number of common alleles around any marker position of the haplotypes, which is robust against recent mutations/genotype errors and recombination events. The effectiveness of the approach is demonstrated by using both simulated datasets and real datasets. The results show that the algorithm is accurate for different population models and for different disease models, even for genes with small effects, and it outperforms some recently developed methods.  相似文献   

19.
A Bayesian approach is presented for mapping a quantitative trait locus (QTL) using the 'Fernando and Grossman' multivariate Normal approximation to QTL inheritance. For this model, a Bayesian implementation that includes QTL position is problematic because standard Markov chain Monte Carlo (MCMC) algorithms do not mix, i.e. the QTL position gets stuck in one marker interval. This is because of the dependence of the covariance structure for the QTL effects on the adjacent markers and may be typical of the 'Fernando and Grossman' model. A relatively new MCMC technique, simulated tempering, allows mixing and so makes possible inferences about QTL position based on marginal posterior probabilities. The model was implemented for estimating variance ratios and QTL position using a continuous grid of allowed positions and was applied to simulated data of a standard granddaughter design. The results showed a smooth mixing of QTL position after implementation of the simulated tempering sampler. In this implementation, map distance between QTL and its flanking markers was artificially stretched to reduce the dependence of markers and covariance. The method generalizes easily to more complicated applications and can ultimately contribute to QTL mapping in complex, heterogeneous, human, animal or plant populations.  相似文献   

20.
Wu J  Zeng Y  Huang J  Hou W  Zhu J  Wu R 《Genetical research》2007,89(1):27-38
Whether there are different genes involved in response to different environmental signals and how these genes interact to determine the final expression of the trait are of fundamental importance in agricultural and biological research. We present a statistical framework for mapping environment-induced genes (or quantitative trait loci, QTLs) of major effects on the expression of a trait that respond to changing environments. This framework is constructed with a maximum-likelihood-based mixture model, in which the mean and covariance structure of environment-induced responses is modelled. The means for responses to continuous environmental states, referred to as reaction norms, are approximated for different QTL genotypes by mathematical equations that were derived from fundamental biological principles or based on statistical goodness-of-fit to observational data. The residual covariance between different environmental states was modelled by autoregressive processes. Such an approach to studying the genetic control of reaction norms can be expected to be advantageous over traditional mapping approaches in which no biological principles and statistical structures are considered. We demonstrate the analytical procedure and power of this approach by modelling the photosynthetic rate process as a function of temperature and light irradiance. Our approach allows for testing how a QTL affects the reaction norm of photosynthetic rate to a specific environment and whether there exist different QTLs to mediate photosynthetic responses to temperature and light irradiance, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号