首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MY-174, a monoclonal antibody that reacts with specific sialylated O-linked glycoconjugates of chick SPACR (sialoprotein associated with cones and rods), also recognizes another molecule of 300 kDa. Here, we verified that this 300-kDa molecule is chick SPACRCAN (sialoproteoglycan associated with cones and rods), another member of a novel interphotoreceptor matrix molecule family. Screening for chick SPACRCAN was carried out by plaque hybridization using a probe for chick SPACR. Specific polyclonal antibodies raised against chick SPACRCAN were used for the following experiments. To determine whether the 300-kDa molecule detected by MY-174 was identical to 300-kDa chick SPACRCAN, the migrations of these bands were examined after various glycosidase digestions. Furthermore, the expression levels were measured during retinal development and compared with those of chick SPACR. The results demonstrated that the 300-kDa molecule recognized by MY-174 was chick SPACRCAN, and we further identified it as a proteoglycan with chondroitin sulfate chains. SPACRCAN had heavily sialylated N- and O-linked glycoconjugates, and its MY-174 antigenicity was abolished by O-glycanase treatment after neuraminidase treatment, as observed for chick SPACR. During retinal development, the mRNA and core protein expression levels, MY-174 antigenicity, and hyaluronan binding ability of SPACRCAN peaked around embryonic day 17 and then gradually decreased, whereas the corresponding expression levels of SPACR simply increased, but not its hyaluronan binding ability. The MY-174 reactivity of SPACRCAN in the adult retina was decreased compared with that in the newborn retina, whereas that of SPACR was increased. The decreased hyaluronan binding of SPACR was induced by an inhibitory effect of the excess of sialic acids in the adult stage. Thus, with similar core protein structures and specific sialylated glycoconjugates but distinct chondroitin sulfate chains, SPACRCAN and SPACR may have separate roles in the retina due to their differing expression profiles during development.  相似文献   

2.
《The Journal of cell biology》1993,122(5):1013-1022
The Drosophila retinal degeneration B (rdgB) mutation causes abnormal photoreceptor response and light-enhanced retinal degeneration. Immunoblots using polyclonal anti-rdgB serum showed that rdgB is a 160- kD membrane protein. The antiserum localized the rdgB protein in photoreceptors, antennae, and regions of the Drosophila brain, indicating that the rdgB protein functions in many sensory and neuronal cells. In photoreceptors, the protein localized adjacent to the rhabdomeres, in the vicinity of the subrhabdomeric cisternae. The rdgB protein's amino-terminal 281 residues are > 40% identical to the rat brain phosphatidylinositol transfer protein (PI-TP). A truncated rdgB protein, which contains only this amino-terminal domain, possesses a phosphatidylinositol transfer activity in vitro. The remaining 773 carboxyl terminal amino acids have additional functional domains. Nitrocellulose overlay experiments reveal that an acidic amino acid domain, adjacent to the PI transfer domain, binds 45Ca+2. Six hydrophobic segments are found in the middle of the putative translation product and likely function as membrane spanning domains. These results suggest that the rdgB protein, unlike the small soluble PI-TPs, is a membrane-associated PI-TP, which may be directly regulated by light-induced changes in intracellular calcium.  相似文献   

3.
Interphotoreceptor retinoid-binding protein (IRBP) is a large glycoprotein known to bind retinoids and found primarily in the interphotoreceptor matrix of the retina between the retinal pigment epithelium and the photoreceptor cells. It is thought to transport retinoids between the retinal pigment epithelium and the photoreceptors, a critical role in the visual process. We have used a 900-bp bovine IRBP cDNA fragment to map the corresponding gene, Rbp-3, to mouse chromosome 14 with somatic cell hybrids and have positioned the gene near Np-1 (nucleoside phosphorylase-1) by analysis of the progeny of an intersubspecific backcross. In the human genome, NP maps to human chromosome 14 and RBP3 to human chromosome 10. Thus, these two genes span the putative site of a chromosomal translocation which contributed to divergent karyotype evolution of man and mouse.  相似文献   

4.
Interphotoreceptor retinoid-binding protein (IRBP) is a large glycoprotein known to bind retinoids and found primarily in the interphotoreceptor matrix of the retina between the retinal pigment epithelium and the photoreceptor cells. It is thought to transport retinoids between the retinal pigment epithelium and the photoreceptors, a critical role in the visual process. We have used a 900-bp bovine IRBP cDNA fragment to map the corresponding gene, Rbp-3, to mouse chromosome 14 with somatic cell hybrids and have positioned the gene near Np-1 (nucleoside phosphorylase-1) by analysis of the progeny of an intersubspecific backcross. In the human genome, NP maps to human chromosome 14 and RBP3 to human chromosome 10. Thus, these two genes span the putative site of a chromosomal translocation which contributed to divergent karyotype evolution of man and mouse.  相似文献   

5.
Interstitial retinol-binding protein (IRBP) is a soluble glycoprotein in the interphotoreceptor matrix of bovine, human, monkey, and rat eyes. It may transport retinol between the retinal pigment epithelium and the neural retina. In light-reared Royal College of Surgeons (RCS) and RCS retinal dystrophy gene (rdy)+ rats, the amount of IRBP in the interphotoreceptor matrix increased in corresponding proportion to the amount of total rhodopsin through postnatal day 22 (P22). In the RCS-rdy+ rats, the amount increased slightly after P23. However, in the RCS rats there was a rapid fall in the quantity of IRBP as the photoreceptors degenerated between P23 and P29. No IRBP was detected by immunocytochemistry in rats at P28. The amount of rhodopsin fell more slowly. Although retinas from young RCS and RCS-rdy+ rats were able to synthesize and secrete IRBP, this ability was lost in retinas from older RCS rats (P51, P88) but not their congenic controls. The photoreceptor cells have degenerated at these ages in the RCS animals, and may therefore be the retinal cells responsible for IRBP synthesis. The putative function of IRBP in the extracellular transport of retinoids during the visual cycle is consistent with a defect in retinol transport in the RCS rat reported by others.  相似文献   

6.
The interphotoreceptor matrix (IPM) occupies the extracellular space between the apical surface of the retinal pigmented epithelium and the external limiting membrane of the neural retina. This space contains two chondroitin sulfate proteoglycans, designated IPM 150 and IPM 200, which are likely to effect retinal adhesion and photoreceptor survival. In an effort to characterize human IPM 150, several cDNA clones encoding its core protein have been isolated from a human retinal cDNA library. Translation of overlapping cDNA sequences yields a novel core protein with a predicted molecular mass of 89.3 kDa. Northern and dot-blot analyses as well as the isolation of expressed sequence tags demonstrate that IPM 150 mRNA is expressed not only in the neural retina but also in several other non-ocular tissues. In situ hybridization analyses indicate that, in the eye, IPM 150 mRNA is expressed specifically by cone and rod photoreceptor cells. Characterization of IPM 150 proteoglycan core protein and identification of its site of synthesis are important steps towards understanding the architecture and biology of the IPM.  相似文献   

7.
Interstitial retinoid-binding protein (IRBP) is synthesized and secreted by rod photoreceptor cells into the interphotoreceptor matrix and is known to bind retinoids and fatty acids. We have used cDNA clones encoding human IRBP to isolate a 15-kilobase genomic fragment that encompasses the complete human IRBP gene. The IRBP gene spans more than 11 kilobases and is interrupted by three introns, all of which are positioned near the 3'-end of the coding sequence. The 3741-base pair coding region of IRBP appears to have been generated by quadruplication of an approximately 900 base pair long ancestral gene. The deduced amino acid sequence predicts a mature protein of 1,230 residues (calculated molecular weight 133,000). The protein sequence can be aligned into four homologous segments, each consisting of about 300 residues. Sequence similarity between segments is as high as 60% when conservative substitutions are taken into account. Two putative N-linked glycosylation sites are located in highly conserved domains in the center of the first and second segment of IRBP. A domain consisting of 41 residues at the COOH-terminal end of the third segment has 15 matching residues (38%) with an intradiscal loop of rhodopsin, a retinal-binding protein in rod photoreceptors.  相似文献   

8.
Retbindin is a novel retina-specific protein of unknown function. In this study, we have used various approaches to evaluate protein expression, localization, biochemical properties, and function. We find that retbindin is secreted by the rod photoreceptors into the inter-photoreceptor matrix where it is maintained via electrostatic forces. Retbindin is predominantly localized at the interface between photoreceptors and retinal pigment epithelium microvilli, a region critical for retinal function and homeostasis. Interestingly, although it is associated with photoreceptor outer segments, retbindin''s expression is not dependent on their presence. In vitro, retbindin is capable of binding riboflavin, thus implicating the protein as a metabolite carrier between the retina and the retinal pigment epithelium. Altogether, our data show that retbindin is a novel photoreceptor-specific protein with a unique localization and function. We hypothesize that retbindin is an excellent candidate for binding retinal flavins and possibly participating in their transport from the extracellular space to the photoreceptors. Further investigations are warranted to determine the exact function of retbindin in retinal homeostasis and disease.  相似文献   

9.
We generated a mouse model (cKO) with a conditional deletion of TGF-beta signaling in the retinal neurons by crossing TGF-beta receptor I (TGF-beta RI) floxed mice with nestin-Cre mice. Almost all of the newborn cKO mice had retinal detachment at the retinal pigment epithelium (RPE)/photoreceptor layer junction of the neurosensory retina (NSR). The immunostaining for chondroitin-6-sulfate showed a very weak reaction in cKO mice in contrast to intense staining in the photoreceptor layer in wild-type mice. Macroscopic cataracts, in one or both eyes, were observed in 50% of the mice by 6 months of age, starting as early as the first month after birth. The cKO mouse model demonstrates that the TGF-beta signaling deficiency in retinal cells leads to decreased levels of chondroitin sulfate proteoglycan in the retinal interphotoreceptor matrix. This in turn causes retinal detachment due to the loss of adhesion of the NSR to RPE.  相似文献   

10.
Uptake, transport and stabilization of xanthophylls in the human retina are important components of a complex multistep process that culminates in a non-uniform distribution of these important nutrients in the retina. The process is far from understood; here, we consider the potential role of interphotoreceptor retinoid-binding protein (IRBP) in this process. IRBP is thought to facilitate the exchange of 11-cis-retinal, 11-cis-retinol and all-trans-retinol between the retinal pigment epithelium (RPE), photoreceptors and Müller cells in the visual cycle. Structural and biochemical studies suggest that IRBP has a variety of nonequivalent ligand binding sites that function in this process. IRBP is multifunctional, being able to bind a variety of physiologically significant molecules including fatty acids in the subretinal space. This wide range of binding activities is of particular interest because it is unknown whether the lutein and zeaxanthin found in the macula originate from the choroidal or retinal circulations. If from the choroidal circulation, then IRBP is a likely mediator for their transport across the interphotoreceptor matrix. In this report, we explore the binding interactions of retinoids, fatty acids, and carotenoids with IRBP using surface plasmon resonance (SPR)-based biosensors. IRBP showed similar affinity toward retinoids and carotenoids (1–2 μM), while fatty acids had approximately 10 times less affinity. These results suggest that further studies should be carried out to evaluate whether IRBP has a physiologically relevant role in binding lutein and zeaxanthin in the interphotoreceptor matrix.  相似文献   

11.
The regeneration of visual pigment in rod photoreceptors of the vertebrate retina requires an exchange of retinoids between the neural retina and the retinal pigment epithelium (RPE). It has been hypothesized that interphotoreceptor retinoid-binding protein (IRBP) functions as a two-way carrier of retinoid through the aqueous compartment (interphotoreceptor matrix) that separates the RPE and the photoreceptors. The first part of this review summarizes the cellular and molecular biology of IRBP. Work on the IRBP gene indicates that the protein contains a four-fold repeat structure that may be involved in binding multiple retinoid and fatty acid ligands. These repeats and other aspects of the gene structure indicate that the gene has had an active and complex evolutionary history. IRBP mRNA is detected only in retinal photoreceptors and in the pineal gland; expression is thus restricted to the two photosensitive tissues of vertebrate organisms. In the second part of this review, we consider the results obtained in experiments that have examined the activity of IRBP in the process of visual pigment regeneration. We also consider the results obtained on the bleaching and regeneration of rhodopsin in the acutely detached retina, as well as in experiments testing the ability of IRBP to protect its retinoid ligand from isomerization and oxidation. Taken together, the findings provide evidence that, in vivo, IRBP facilitates both the delivery of all-trans retinol to the RPE and the transfer of 11-cis retinal from the RPE to bleached rod photoreceptors, and thereby directly supports the regeneration of rhodopsin in the visual cycle.  相似文献   

12.
Midkine is a heparin binding growth factor with important functions in neuronal development and survival, but little is known about its function in the retina. Previous studies show that in the developing zebrafish, Midkine-a (Mdka) regulates cell cycle kinetics in retinal progenitors, and following injury to the adult zebrafish retina, mdka is strongly upregulated in Müller glia and the injury-induced photoreceptor progenitors. Here we provide the first data describing Mdka protein localization during different stages of retinal development and during the regeneration of photoreceptors in adults. We also experimentally test the role of Mdka during photoreceptor regeneration. The immuno-localization of Mdka reflects the complex spatiotemporal pattern of gene expression and also reveals the apparent secretion and extracellular trafficking of this protein. During embryonic retinal development the Mdka antibodies label all mitotically active cells, but at the onset of neuronal differentiation, immunostaining is also localized to the nascent inner plexiform layer. Starting at five days post fertilization through the juvenile stage, Mdka immunostaining labels the cytoplasm of horizontal cells and the overlying somata of rod photoreceptors. Double immunolabeling shows that in adult horizontal cells, Mdka co-localizes with markers of the Golgi complex. Together, these data are interpreted to show that Mdka is synthesized in horizontal cells and secreted into the outer nuclear layer. In adults, Mdka is also present in the end feet of Müller glia. Similar to mdka gene expression, Mdka in horizontal cells is regulated by circadian rhythms. After the light-induced death of photoreceptors, Mdka immuonolabeling is localized to Müller glia, the intrinsic stem cells of the zebrafish retina, and proliferating photoreceptor progenitors. Knockdown of Mdka during photoreceptor regeneration results in less proliferation and diminished regeneration of rod photoreceptors. These data suggest that during photoreceptor regeneration Mdka regulates aspects of injury-induced cell proliferation.  相似文献   

13.
The interphotoreceptor space. I. Postnatal ontogeny in mice and rats   总被引:3,自引:0,他引:3  
The postnatal ontogeny of the retinal interphotoreceptor space of mice and rats was studied by electron microscopy to elucidate the cytological developments in the surrounding cells relevant to the accumulation of extracellular glycosaminoglycans and glycoproteins constituting the interphotoreceptor matrix. This extracellular material at birth is principally the cell coat on all the immature cells that border the space at that time, but later additional weblike strands are seen in the space. The cells delimiting the space in the adult are the pigment epithelium (PE), the photoreceptors, and the glial cells of Müller. The Golgi complex of the PE is large at birth but involutes by day 15. Melanogenesis is the principal activity in this cell at birth but as the melanin granules mature, lysosomes gradually accumulate. Growth of the apical microvilli of the PE is most pronounced between day 5 and 15, which is also the time of rapid expansion of the interphotoreceptor space. The Golgi complex of the photoreceptor enlarges during this interval also, and remains voluminous thereafter. Müller's cells insert only slender apical processes lacking in secretory vesicles, into the interphotoreceptor space. All the adult cells have a cell coat on the surfaces facing the interphotoreceptor space. Secretory vesicles were not identified in any of the cells impinging on the space.  相似文献   

14.
Proteoglycans, located in the interphotoreceptor matrix (IPM) of vertebrate retinas, mediate interactions between the photoreceptors and retinal pigment epithelium. Molluscan retinas also have an IPM located between apposing rhabdomeres. Like the cone matrix sheath of the vertebrate IPM, the octopus IPM is labeled by peanut agglutinin (PNA) and contains retinoid-binding-like proteins. In this study we demonstrate further similarities of the vertebrate/invertebrate IPM and identify specific molecular components in this extracellular compartment of the octopus retina. For light microscopy, paraffin-embedded sections of octopus retinas were stained with dyes specific for acid mucopolysacharides including Alcian blue and colloidal iron. In addition, sections were digested with enzymes specific for hyaluronan, chondroitin sulfate, and sialoglycoconjugates. Digestion of sections with these enzymes and subsequent staining with Alcian blue or colloidal iron demonstrated the presence of chondroitin sulfate and sialoglycoconjugates in the octopus IPM as well as other retinal layers and cells. At the electron-microscope level we treated retinal tissue with Cuprolinic Blue and observed the distribution of sulfated glycosaminoglycans along the rhabdomere edges facing the IPM and in a more central area of the IPM where microvillous processes of supportive cells are located. The octopus IPM may have importance in retinal structure and may be a scaffolding on which molecular components of the IPM are located.  相似文献   

15.
BACKGROUND: We wanted to investigate the ability of recombinant equine infectious anemia virus (EIAV) vectors to transduce photoreceptor cells by developing a series of photoreceptor-specific promoters that drive strong gene expression in photoreceptor cells. METHODS: Promoter fragments derived from the rhodopsin (RHO), the beta phosphodiesterase (PDE) and the retinitis pigmentosa (RP1) genes were cloned in combination with an enhancer element, derived from the interphotoreceptor retinoid-binding protein gene (IRBP), into luciferase reporter plasmids. An in vitro transient reporter assay was carried out in the human Y-79 retinoblastoma cell line. The optimal promoters from this screen were then cloned into the recombinant EIAV vector for evaluation in vivo following subretinal delivery into mice. RESULTS: All promoters maintained a photoreceptor-specific expression profile in vitro and the gene expression was further enhanced in combination with the IRBP enhancer. The use of IRBP-combined RHO or PDE promoters showed modest but exclusive expression in photoreceptors following subretinal delivery to mice. By contrast an EIAV vector containing the cytomegalovirus (CMV) promoter drove reporter gene expression in both photoreceptors and retinal pigment epithelium. CONCLUSIONS: It may be possible to use recombinant EIAV vectors containing photoreceptor-specific promoters to drive therapeutic gene expression to treat a range of retinal degenerative diseases where the photoreceptor cell is the primary disease target.  相似文献   

16.
17.
Light stimulation of locust (Schistocerca gregaria) photoreceptors results in an actin-dependent translocation of mitochondria towards the photoreceptive microvilli and an antagonistic movement of endoplasmic reticulum towards the cell body. Using immunocytochemical techniques, we have tried to identify myosin-like motors that may drive the light-induced organelle motility. A monoclonal antibody against the motor domain of Acanthamoeba myosin identifies a prominent 110-kDa protein on Western blots of locust retina. Cross-reactivity with two polyclonal anti-myosin antibodies and a monoclonal anti-myosin-I-antibody, together with ATP-dependent binding to actin filaments, provides evidence that the 110-kDa protein is an unconventional myosin. By indirect immunofluorescence, the 110-kDa protein has been localized to both photoreceptors and pigment cells within the retina. In the photoreceptor cells, the 110-kDa protein is bound to the surface of mitochondria. This putative unconventional myosin may thus be a motor protein involved in the light-induced translocation of mitochondria in photoreceptors.  相似文献   

18.
Whole monkey retinas were incubated in short-term organ culture with either radiolabeled amino acids or glucosamine. Soluble retinal proteins and proteins in the culture medium were analyzed by SDS-poly-acrylamide gel electrophoresis. Fluorography showed that the interphotoreceptor retinoid-binding protein (IRBP), a 146,000 Mr glycoprotein localized in the extracellular matrix, is synthesized by the neural retina and rapidly secreted into the medium. Secretion is blocked by 10-5M monensin. No significant IRBP synthesis was observed in the pigment-epithelium-choroid complex. IRBP is thus the major component synthesized and secreted by the neural retina into the interphotoreceptor space. This, and its affinity for retinoid makes it a prime candidate for an extracellular retinoid transport vehicle.  相似文献   

19.
Xia X  Li Y  Huang D  Wang Z  Luo L  Song Y  Zhao L  Wen R 《PloS one》2011,6(3):e18282
Retinitis pigmentosa (RP) is a group of photoreceptor degenerative disorders that lead to loss of vision. Typically, rod photoreceptors degenerate first, resulting in loss of night and peripheral vision. Secondary cone degeneration eventually affects central vision, leading to total blindness. Previous studies have shown that photoreceptors could be protected from degeneration by exogenous neurotrophic factors, including ciliary neurotrophic factor (CNTF), a member of the IL-6 family of cytokines. Using a transgenic rat model of retinal degeneration (the S334-ter rat), we investigated the effects of Oncostatin M (OSM), another member of the IL-6 family of cytokines, on photoreceptor protection. We found that exogenous OSM protects both rod and cone photoreceptors. In addition, OSM promotes regeneration of cone outer segments in early stages of cone degeneration. Further investigation showed that OSM treatment induces STAT3 phosphorylation in Müller cells but not in photoreceptors, suggesting that OSM not directly acts on photoreceptors and that the protective effects of OSM on photoreceptors are mediated by Müller cells. These findings support the therapeutic strategy using members of IL-6 family of cytokines for retinal degenerative disorders. They also provide evidence that activation of the STAT3 pathway in Müller cells promotes photoreceptor survival. Our work highlights the importance of Müller cell-photoreceptor interaction in the retina, which may serve as a model of glia-neuron interaction in general.  相似文献   

20.
Photoreceptors project from the outer retinal surface into a specialized glycocalyx, the interphotoreceptor matrix (IPM), which contains hyaluronan (HA) and two novel proteoglycans, Spacr and Spacrcan. This matrix must be stable enough to function in the attachment of the retina to the outer eye wall yet porous enough to allow movement of metabolites between these tissues. How this matrix is organized is not known. HA is a potential candidate in IPM organization since biochemical studies show that these proteoglycans bind HA. RHAMM (receptor for HA-mediated motility)-type HA binding motifs (HABMs) are present in their deduced amino acid sequence and may be the sites of this HA interaction. To test this hypothesis, we subcloned three fragments of mouse Spacrcan that contain the putative HABMs. We found that each recombinant fragment binds HA. Binding decreased when residues in the HABMs were mutated. This provides direct evidence that the RHAMM-type HABMs in Spacrcan are involved in hyaluronan binding. Since chondroitin sulfate and heparan sulfate proteoglycans are important for retinal development and function, we also evaluated the binding of these recombinant proteins to heparin and chondroitin sulfates, the glycosaminoglycan side chain of these proteoglycans. We found that each recombinant protein bound to both heparin and chondroitin sulfates. Binding to chondroitin sulfates involved these HABMs, because mutagenesis reduced binding. Binding to heparin was probably not mediated through these HABMs since heparin binding persisted following their mutagenesis. These studies provide the first evidence defining the sites of protein-carbohydrate interaction of molecules present in the IPM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号