首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
c-Myc is a critical target for c/EBPalpha in granulopoiesis   总被引:1,自引:0,他引:1       下载免费PDF全文
CCAAT/enhancer binding protein alpha (C/EBPalpha) is an integral factor in the granulocytic developmental pathway, as myeloblasts from C/EBPalpha-null mice exhibit an early block in differentiation. Since mice deficient for known C/EBPalpha target genes do not exhibit the same block in granulocyte maturation, we sought to identify additional C/EBPalpha target genes essential for myeloid cell development. To identify such genes, we used both representational difference analysis and oligonucleotide array analysis with RNA derived from a C/EBPalpha-inducible myeloid cell line. From each of these independent screens, we identified c-Myc as a C/EBPalpha negatively regulated gene. We mapped an E2F binding site in the c-Myc promoter as the cis-acting element critical for C/EBPalpha negative regulation. The identification of c-Myc as a C/EBPalpha target gene is intriguing, as it has been previously shown that down-regulation of c-Myc can induce myeloid differentiation. Here we show that stable expression of c-Myc from an exogenous promoter not responsive to C/EBPalpha-mediated down-regulation forces myeloblasts to remain in an undifferentiated state. Therefore, C/EBPalpha negative regulation of c-Myc is critical for allowing early myeloid precursors to enter a differentiation pathway. This is the first report to demonstrate that C/EBPalpha directly affects the level of c-Myc expression and, thus, the decision of myeloid blasts to enter into the granulocytic differentiation pathway.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
The fusion gene AML1-ETO is the product of t(8;21)(q22;q22), one of the most common chromosomal translocations associated with acute myeloid leukemia. To investigate the impact of AML1-ETO on hematopoiesis, tetracycline-inducible AML1-ETO-expressing cell lines were generated using myeloid cells. AML1-ETO is tightly and strongly induced upon tetracycline withdrawal. The proliferation of AML1-ETO(+) cells was markedly reduced, and most of the cells eventually underwent apoptosis. RNase protection assays revealed that the amount of Bcl-2 mRNA was decreased after AML1-ETO induction. Enforced expression of Bcl-2 was able to significantly delay, but not completely overcome, AML1-ETO-induced apoptosis. Prior to the onset of apoptosis, we also studied the ability of AML1-ETO to modulate differentiation. AML1-ETO expression altered granulocytic differentiation of U937T-A/E cells. More significantly, this change of differentiation was associated with the down-regulation of CCAAT/enhancer binding protein alpha (C/EBPalpha), a key regulator of granulocytic differentiation. These observations suggest a dichotomy in the functions of AML1-ETO: (i) reduction of granulocytic differentiation correlated with decreased expression of C/EBPalpha and (ii) growth arrest leading to apoptosis with decreased expression of CDK4, c-myc, and Bcl-2. We predict that the preleukemic AML1-ETO(+) cells must overcome AML1-ETO-induced growth arrest and apoptosis prior to fulfilling their leukemogenic potential.  相似文献   

15.
16.
17.
18.
19.
20.
The sumoylation of CCAAT/enhancer-binding proteins (C/EBPs) by small ubiquitin-related modifier-1 (SUMO-1) has been reported recently. In this study, we investigated the functional role of the sumoylation of C/EBPalpha in the differentiation of hepatocytes. The amount of sumoylated C/EBPalpha gradually decreased during the differentiation, which suggests that the sumoylation is important for the control of growth/differentiation especially in the fetal liver. To analyze the function of the sumoylation of C/EBPalpha in liver-specific gene expression, we studied its effects on the expression of the albumin gene. The C/EBPalpha-mediated transactivation of the albumin gene was reduced by sumoylation of C/EBPalpha in primary fetal hepatocytes. The enhancement of C/EBPalpha-mediated transactivation by BRG1, a core subunit of the SWI/SNF chromatin remodeling complex, was hampered by sumoylation in a luciferase reporter assay. In addition, we discovered that sumoylation of C/EBPalpha blocked its inhibitory effect on cell proliferation by leading to the disruption of a proliferation-inhibitory complex because of a failure of the sumoylated C/EBPalpha to interact with BRG1. BRG1 was recruited to the dihydrofolate reductase promoter in nonproliferating C33a cells but was not detected in proliferating cells where C/EBPalpha, BRG1, and SUMO-1 were overexpressed. This result suggests that BRG1 down-regulates the expression of the dihydrofolate reductase gene. These findings provide the insight that SUMO acts as a space regulator, which affects protein-protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号