首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 100 毫秒
1.
Methylamine can be used as the sole carbon source of certain methylotrophic bacteria. Methylamine dehydrogenase catalyzes the conversion of methylamine into formaldehyde and donates electrons to the electron transfer protein amicyanin. The crystal structure of the complex of methylamine dehydrogenase and amicyanin from Paracoccus versutus has been determined, and the rate of electron transfer from the tryptophan tryptophylquinone cofactor of methylamine dehydrogenase to the copper ion of amicyanin in solution has been determined. In the presence of monovalent ions, the rate of electron transfer from the methylamine-reduced TTQ is much higher than in their absence. In general, the kinetics are similar to those observed for the system from Paracoccus denitrificans. The complex in solution has been studied using nuclear magnetic resonance. Signals of perdeuterated, (15)N-enriched amicyanin bound to methylamine dehydrogenase are observed. Chemical shift perturbation analysis indicates that the dissociation rate constant is approximately 250 s(-1) and that amicyanin assumes a well-defined position in the complex in solution. The most affected residues are in the interface observed in the crystal structure, whereas smaller chemical shift changes extend to deep inside the protein. These perturbations can be correlated to small differences in the hydrogen bond network observed in the crystal structures of free and bound amicyanin. This study indicates that chemical shift changes can be used as reliable indicators of subtle structural changes even in a complex larger than 100 kDa.  相似文献   

2.
Suharti S  Murakami KS  de Vries S  Ferry JG 《Biochemistry》2008,47(44):11528-11535
Flavoredoxin is a FMN-containing electron transfer protein that functions in the energy-yielding metabolism of Desulfovibrio gigas of the Bacteria domain. Although characterization of this flavoredoxin is the only one reported, a database search revealed homologues widely distributed in both the Bacteria and Archaea domains that define a novel family. To improve our understanding of this family, a flavoredoxin from Methanosarcina acetivorans of the Archaea domain was produced in Escherichia coli and biochemically characterized, and a high-resolution crystal structure was determined. The protein was shown to be a homodimer with a subunit molecular mass of 21 kDa containing one noncovalently bound FMN per monomer. Redox titration showed an E(m) of -271 mV with two electrons, consistent with no semiquinone observed in the potential range studied, a result suggesting the flavoredoxin functions as a two-electron carrier. However, neither of the obligate two-electron carriers, NAD(P)H and coenzyme F420H2, was a competent electron donor, whereas 2[4Fe-4S] ferredoxin reduced the flavoredoxin. The X-ray crystal structure determined at 2.05 A resolution revealed a homodimer containing one FMN per monomer, consistent with the biochemical characterization. The isoalloxazine ring of FMN was shown buried within a narrow groove approximately 10 A from the positively charged protein surface that possibly facilitates interaction with the negatively charged ferredoxin. The structure provides a basis for predicting the mechanism by which electrons are transferred between ferredoxin and FMN. The FMN is bound with hydrogen bonds to the isoalloxazine ring and electrostatic interactions with the phosphate moiety that, together with sequence analyses of homologues, indicate a novel FMN binding motif for the flavoredoxin family.  相似文献   

3.
In vivo studies with the fruit-fly Drosophila melanogaster have shown that the Sniffer protein prevents age-dependent and oxidative stress-induced neurodegenerative processes. Sniffer is a NADPH-dependent carbonyl reductase belonging to the enzyme family of short-chain dehydrogenases/reductases (SDRs). The crystal structure of the homodimeric Sniffer protein from Drosophila melanogaster in complex with NADP+ has been determined by multiple-wavelength anomalous dispersion and refined to a resolution of 1.75 A. The observed fold represents a typical dinucleotide-binding domain as detected for other SDRs. With respect to the cofactor-binding site and the region referred to as substrate-binding loop, the Sniffer protein shows a striking similarity to the porcine carbonyl reductase (PTCR). This loop, in both Sniffer and PTCR, is substantially shortened compared to other SDRs. In most enzymes of the SDR family this loop adopts a well-defined conformation only after substrate binding and remains disordered in the absence of any bound ligands or even if only the dinucleotide cofactor is bound. In the structure of the Sniffer protein, however, the conformation of this loop is well defined, although no substrate is present. Molecular modeling studies provide an idea of how binding of substrate molecules to Sniffer could possibly occur.  相似文献   

4.
Reverse gyrase is the only topoisomerase known to positively supercoil DNA. The protein appears to be unique to hyperthermophiles, where its activity is believed to protect the genome from denaturation. The 120 kDa enzyme is the only member of the type I topoisomerase family that requires ATP, which is bound and hydrolysed by a helicase-like domain. We have determined the crystal structure of reverse gyrase from Archaeoglobus fulgidus in the presence and absence of nucleotide cofactor. The structure provides the first view of an intact supercoiling enzyme, explains mechanistic differences from other type I topoisomerases and suggests a model for how the two domains of the protein cooperate to positively supercoil DNA. Coordinates have been deposited in the Protein Data Bank under accession codes 1GKU and 1GL9.  相似文献   

5.
Lipocalins are extracellular proteins (17-25 kDa) that bind and transport small lipophilic molecules. The three-dimensional structure of the first lipocalin from a metatherian has been determined at different values of pH both with and without bound ligands. Trichosurin, a protein from the milk whey of the common brushtail possum, Trichosurus vulpecula, has been recombinantly expressed in Escherichia coli, refolded from inclusion bodies, purified and crystallized at two different pH values. The three-dimensional structure of trichosurin was solved by X-ray crystallography in two different crystal forms to 1.9 A (1 A=0.1 nm) and 2.6 A resolution, from crystals grown at low and high pH values respectively. Trichosurin has the typical lipocalin fold, an eight-stranded anti-parallel beta-barrel but dimerizes in an orientation that has not been seen previously. The putative binding pocket in the centre of the beta-barrel is well-defined in both high and low pH structures and is occupied by water molecules along with isopropanol molecules from the crystallization medium. Trichosurin was also co-crystallized with a number of small molecule ligands and structures were determined with 2-naphthol and 4-ethylphenol bound in the centre of the beta-barrel. The binding of phenolic compounds by trichosurin provides clues to the function of this important marsupial milk protein, which is highly conserved across metatherians.  相似文献   

6.
Glutamate mutase (Glm) is an adenosylcobamide-dependent enzyme that catalyzes the reversible rearrangement of (2S)-glutamate to (2S, 3S)-3-methylaspartate. The active enzyme from Clostridium cochlearium consists of two subunits (of 53.6 and 14.8 kDa) as an alpha2beta2 tetramer, whose assembly is mediated by coenzyme B12. The smaller of the protein components, GlmS, has been suggested to be the B12-binding subunit. Here we report the solution structure of GlmS, determined from a heteronuclear NMR-study, and the analysis of important dynamical aspects of this apoenzyme subunit. The global fold and dynamic behavior of GlmS in solution are similar to those of the corresponding subunit MutS from C. tetanomorphum, which has previously been investigated using NMR-spectroscopy. Both solution structures of the two Glm B12-binding subunits share striking similarities with that determined by crystallography for the B12-binding domain of methylmalonyl CoA mutase (Mcm) from Propionibacterium shermanii, which is B12 bound. In the crystal structure a conserved histidine residue was found to be coordinated to cobalt, displacing the endogenous axial ligand of the cobamide. However, in GlmS and MutS the sequence motif, Asp-x-His-x-x-Gly, which includes the cobalt-coordinating histidine residue, and a predicted alpha-helical region following the motif, are present as an unstructured and highly mobile loop. In the absence of coenzyme, the B12-binding site apparently is only partially formed. By comparing the crystal structure of Mcm with the solution structures of B12-free GlmS and MutS, a consistent picture on the mechanism of B12 binding has been obtained. Important elements of the binding site only become structured upon binding B12; these include the cobalt-coordinating histidine residue, and an alpha helix that forms one side of the cleft accommodating the nucleotide 'tail' of the coenzyme.  相似文献   

7.
We determined the three-dimensional (3D) crystal structure of protein TM841, a protein product from a hypothetical open-reading frame in the genome of the hyperthermophile bacterium Thermotoga maritima, to 2.0 A resolution. The protein belongs to a large protein family, DegV or COG1307 of unknown function. The 35 kDa protein consists of two separate domains, with low-level structural resemblance to domains from other proteins with known 3D structures. These structural homologies, however, provided no clues for the function of TM841. But the electron density maps revealed clear density for a bound fatty-acid molecule in a pocket between the two protein domains. The structure indicates that TM841 has the molecular function of fatty-acid binding and may play a role in the cellular functions of fatty acid transport or metabolism.  相似文献   

8.
Bacillus pasteurii UreE (BpUreE) is a putative chaperone assisting the insertion of Ni(2+) ions in the active site of urease. The x-ray structure of the protein has been determined for two crystal forms, at 1.7 and 1.85 A resolution, using SIRAS phases derived from a Hg(2+)-derivative. BpUreE is composed of distinct N- and C-terminal domains, connected by a short flexible linker. The structure reveals the topology of an elongated homodimer, formed by interaction of the two C-terminal domains through hydrophobic interactions. A single Zn(2+) ion bound to four conserved His-100 residues, one from each monomer, connects two dimers resulting in a tetrameric BpUreE known to be formed in concentrated solutions. The Zn(2+) ion can be replaced by Ni(2+) as shown by anomalous difference maps obtained on a crystal of BpUreE soaked in a solution containing NiCl(2). A large hydrophobic patch surrounding the metal ion site is surface-exposed in the biologically relevant dimer. The BpUreE structure represents the first for this class of proteins and suggests a possible role for UreE in the urease nickel-center assembly.  相似文献   

9.
Multiple-solvent crystal structure determination (MSCS) allows the position and orientation of bound solvent fragments to be identified by determining the structure of protein crystals soaked in organic solvents. We have extended this technique by the determination of high-resolution crystal structures of thermolysin (TLN), generated from crystals soaked in 2% to 100% isopropanol. The procedure causes only minor changes to the conformation of the protein, and an increasing number of isopropanol interaction sites could be identified as the solvent concentration is increased. Isopropanol occupies all four of the main subsites in the active site, although this was only observed at very high concentrations of isopropanol for three of the four subsites. Analysis of the isopropanol positions shows little correlation with interaction energy computed using a molecular mechanics force field, but the experimentally determined positions of isopropanol are consistent with the structures of known protein-ligand complexes of TLN.  相似文献   

10.
The crystal structure of Pfal009167AAA, a putative ribulose 5-phosphate 3-epimerase (PfalRPE) from Plasmodium falciparum, has been determined to 2 A resolution. RPE represents an exciting potential drug target for developing antimalarials because it is involved in the shikimate and the pentose phosphate pathways. The structure is a classic TIM-barrel fold. A coordinated Zn ion and a bound sulfate ion in the active site of the enzyme allow for a greater understanding of the mechanism of action of this enzyme. This structure is solved in the framework of the Structural Genomics of Pathogenic Protozoa (SGPP) consortium.  相似文献   

11.
Xing X  Bell CE 《Biochemistry》2004,43(51):16142-16152
RecA catalyzes the DNA pairing and strand-exchange steps of homologous recombination, an important mechanism for repair of double-stranded DNA breaks. The binding of RecA to DNA is modulated by adenosine nucleotides. ATP increases the affinity of RecA for DNA, while ADP decreases the affinity. Previously, the crystal structures of E. coli RecA and its complex with ADP have been determined to resolutions of 2.3 and 3.0 A, respectively, but the model for the RecA-ADP complex did not include magnesium ion or side chains. Here, we have determined the crystal structures of RecA in complex with MgADP and MnAMP-PNP, a nonhydrolyzable analogue of ATP, at resolutions of 1.9 and 2.1 A, respectively. Both crystals grow in the same conditions and have RecA in a right-handed helical form with a pitch of approximately 82 A. The crystal structures show the detailed interactions of RecA with the nucleotide cofactors, including the metal ion and the gamma phosphate of AMP-PNP. There are very few conformational differences between the structures of RecA bound to ADP and AMP-PNP, which differ from uncomplexed RecA only in a slight opening of the P-loop residues 66-73 upon nucleotide binding. To interpret the functional significance of the structure of the MnAMP-PNP complex, a coprotease assay was used to compare the ability of different nucleotides to promote the active, extended conformation of RecA. Whereas ATPgammaS and ADP-AlF(4) facilitate a robust coprotease activity, ADP and AMP-PNP do not activate RecA at all. We conclude that the crystal structure of the RecA-MnAMP-PNP complex represents a preisomerization state of the RecA protein that exists after ATP has bound but before the conformational transition to the active state.  相似文献   

12.
The structure of Escherichia blattae non-specific acid phosphatase (EB-NSAP) has been determined at 1.9 A resolution with a bound sulfate marking the phosphate-binding site. The enzyme is a 150 kDa homohexamer. EB-NSAP shares a conserved sequence motif not only with several lipid phosphatases and the mammalian glucose-6-phosphatases, but also with the vanadium-containing chloroperoxidase (CPO) of Curvularia inaequalis. Comparison of the crystal structures of EB-NSAP and CPO reveals striking similarity in the active site structures. In addition, the topology of the EB-NSAP core shows considerable similarity to the fold of the active site containing part of the monomeric 67 kDa CPO, despite the lack of further sequence identity. These two enzymes are apparently related by divergent evolution. We have also determined the crystal structure of EB-NSAP complexed with the transition-state analog molybdate. Structural comparison of the native enzyme and the enzyme-molybdate complex reveals that the side-chain of His150, a putative catalytic residue, moves toward the molybdate so that it forms a hydrogen bond with the metal oxyanion when the molybdenum forms a covalent bond with NE2 of His189.  相似文献   

13.
Rat brain hexokinase (ATP:D-hexose-6-phosphotransferase; EC 2.7.1.1) was derivatized with sulfosuccinimidyl-2-(m-azido-o-nitrobenzamido)ethyl-1,3'-dithiopro pionate (SAND), a photosensitive and cleavable crosslinking agent. The catalytic activity and mitochondrial binding properties of the enzyme were only marginally affected by reaction with SAND. When the derivatized enzyme was bound to liver mitochondria, photolysis resulted in extensive formation of a single crosslinked species with estimated molecular mass 460 kDa. This was determined to contain only hexokinase and thus represents a tetramer of the 116 kDa (apparent molecular mass in gel system used) monomeric enzyme. Although small amounts of tetramer were detected after photolysis of relatively high concentrations of derivatized enzyme in free solution, tetramer formation was greatly enhanced when the enzyme was bound to mitochondria. No evidence of dimeric or trimeric structures was seen even when only a small fraction of the available binding sites on the mitochondrial membrane were occupied. It is thus concluded that tetramer formation is closely linked with binding of the enzyme to the outer mitochondrial membrane and, more specifically, to the pore structure through which metabolites traverse this membrane. It is speculated that a tetrameric structure surrounding the mitochondrial pores may facilitate interactions between the hexokinase reaction and oxidative phosphorylation, mediated by the adenine nucleotides which are common intermediates in these reactions.  相似文献   

14.
Crystal structure of diisopropylfluorophosphatase from Loligo vulgaris.   总被引:1,自引:0,他引:1  
BACKGROUND: Phosphotriesterases (PTE) are enzymes capable of detoxifying organophosphate-based chemical warfare agents by hydrolysis. One subclass of these enzymes comprises the family of diisopropylfluorophosphatases (DFPases). The DFPase reported here was originally isolated from squid head ganglion of Loligo vulgaris and can be characterized as squid-type DFPase. It is capable of hydrolyzing the organophosphates diisopropylfluorophosphate, soman, sarin, tabun, and cyclosarin. RESULTS: Crystals were grown of both the native and the selenomethionine-labeled enzyme. The X-ray crystal structure of the DFPase from Loligo vulgaris has been solved by MAD phasing and refined to a crystallographic R value of 17.6% at a final resolution of 1.8 A. Using site-directed mutagenesis, we have structurally and functionally characterized essential residues in the active site of the enzyme. CONCLUSIONS: The crystal structure of the DFPase from Loligo vulgaris is the first example of a structural characterization of a squid-type DFPase and the second crystal structure of a PTE determined to date. Therefore, it may serve as a structural model for squid-type DFPases in general. The overall structure of this protein represents a six-fold beta propeller with two calcium ions bound in a central water-filled tunnel. The consensus motif found in the blades of this beta propeller has not yet been observed in other beta propeller structures. Based on the results obtained from mutants of active-site residues, a mechanistic model for the DFP hydrolysis has been developed.  相似文献   

15.
16.
The structure of acetamidase/formamidase (Amds/Fmds) from the archaeon Thermoanaerobacter tengcongensis has been determined by X-ray diffraction analysis using MAD data in a crystal of space group P2?, with unit-cell parameters a = 41.23 (3), b = 152.88 (6), c = 100.26 (7) ?, β = 99.49 (3) ° and been refined to a crystallographic R-factor of 17.4% and R-free of 23.7%. It contains two dimers in one asymmetric unit, in which native Amds/Fmds (TE19) contains of the 32 kDa native protein. The final model consists of 4 monomer (299 amino acids residues with additional 2 expression tag amino acids residues), 5 Ca2?, 4 Zn2? and 853 water molecules. The monomer is composed by the following: an N-domain which is featuring by three-layers β/β/β; a prominent excursion between N-terminal end of strand β? and β??, which contains four-stranded antiparallel β sheet; an C-domain which is formed by the last 82 amino acid residues with the feature of mixed α/β structure. The protein contains ion-pair Ca2?-Zn2?. The portion of three-layer β/β/β along with the loops provides four protein ligands to the tightly bound Ca2?, three water molecules complete the coordination; and provides five protein ligands to the tightly bound Zn2?, one water molecule complete the coordination.  相似文献   

17.
The rat Clara cell 17 kDa protein (previously referred to as the rat Clara cell 10 kDa protein) has been reported to inhibit phospholipase A2 and papain, and to also bind progesterone. It has been isolated from rat lung lavage fluid and crystallized in the space group P6(5)22. The structure has been determined to 3.0 A resolution using the molecular replacement method. Uteroglobin, whose amino acid sequence is 55.7% identical, was used as the search model. The structure was then refined using restrained least-squares and simulated annealing methods. The R-factor is 22.5%. The protein is a covalently bound dimer. Two disulfide bonds join the monomers together in an antiparallel manner such that the dimer encloses a large internal hydrophobic cavity. The hydrophobic cavity is large enough to serve as the progesterone binding site, but access to the cavity is limited. Each monomer is composed of four alpha-helices. The main-chain structure of the Clara cell protein closely resembles that of uteroglobin, but the nature of many of the exposed side-chains differ. This is true, particularly in a hypervariable region between residues 23 and 36, and in the H1H4 pocket.  相似文献   

18.
Crystal structure of auxin-binding protein 1 in complex with auxin   总被引:9,自引:0,他引:9  
The structure of auxin-binding protein 1 (ABP1) from maize has been determined at 1.9 A resolution, revealing its auxin-binding site. The structure confirms that ABP1 belongs to the ancient and functionally diverse germin/seed storage 7S protein superfamily. The binding pocket of ABP1 is predominantly hydrophobic with a metal ion deep inside the pocket coordinated by three histidines and a glutamate. Auxin binds within this pocket, with its carboxylate binding the zinc and its aromatic ring binding hydrophobic residues including Trp151. There is a single disulfide between Cys2 and Cys155. No conformational rearrangement of ABP1 was observed when auxin bound to the protein in the crystal, but examination of the structure reveals a possible mechanism of signal transduction.  相似文献   

19.
Battiste JL  Wagner G 《Biochemistry》2000,39(18):5355-5365
To test whether distances derived from paramagnetic broadening of (15)N heteronuclear single quantum coherence (HSQC) resonances could be used to determine the global fold of a large, perdeuterated protein, we used site-directed spin-labeling of 5 amino acids on the surface of (15)N-labeled eukaryotic translation initiation factor 4E (eIF4E). eIF4E is a 25 kDa translation initiation protein, whose solution structure was previously solved in a 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate hydrate (CHAPS) micelle of total molecular mass approximately 45-50 kDa. Distance-dependent line broadening consistent with the three-dimensional structure of eIF4E was observed for all spin-label substitutions. The paramagnetic broadening effects (PBEs) were converted into distances for modeling by a simple method comparing peak heights in (15)N-HSQC spectra before and after reduction of the nitroxide spin label with ascorbic acid. The PBEs, in combination with HN-HN nuclear Overhauser effects (NOEs) and chemical shift index (CSI) angle restraints, correctly determined the global fold of eIF4E with a backbone precision of 2.3 A (1.7 A for secondary structure elements). The global fold was not correctly determined with the HN-HN NOEs and CSI angles alone. The combination of PBEs with simulated restraints from another nuclear magnetic resonance (NMR) method for global fold determination of large proteins (methyl-protonated, highly deuterated samples) improved the quality of calculated structures. In addition, the combination of the two methods simulated from a crystal structure of an all alpha-helical protein (40 kDa farnesyl diphoshphate synthase) correctly determined the global fold where neither method individually was successful. These results show the potential feasibility of obtaining medium-resolution structures for proteins in the 40-100 kDa range via NMR.  相似文献   

20.
Yang Z  Pandi L  Doolittle RF 《Biochemistry》2002,41(52):15610-15617
The crystal structure of fragment double-D from factor XIII-cross-linked lamprey fibrin has been determined at 2.9 A resolution. The 180 kDa covalent dimer was cocrystallized with the peptide Gly-His-Arg-Pro-amide, which in many fibrinogens, but not that of lamprey, corresponds to the B-knob exposed by thrombin. The structure was determined by molecular replacement, a recently determined structure of lamprey fragment D being used as a search model. GHRPam was found in both the gamma- and beta-chain holes. Unlike the situation with fragment D, the crystal packing of the cross-linked double-D structure exhibits two different D-D interfaces, each gamma-chain facing gamma-chains on two other molecules. One of these (interface I) involves the asymmetric interface observed in all other D fragments and related structures. The other (interface II) encompasses a completely different set of residues. The two abutments differ in that interface I results in an "in line" arrangement of abutting molecules and the interface II in a "zigzag" arrangement. So far as can be determined (the electron density could only be traced on one side of the cross-links), it is the gamma-chains of the newly observed zigzag units (interface II) that are joined by the reciprocal epsilon-amino-gamma-glutamyl cross-links. Auspiciously, the same novel D-D interface was observed in two lower-resolution crystal structures of human double-D preparations that had been crystallized under unusual circumstances. These observations show that double-D structures are linked in a way that is sufficiently flexible to accommodate different D-D interfaces under different circumstances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号