共查询到20条相似文献,搜索用时 0 毫秒
1.
Thymineless death (TLD) was studied inLactobacillus acidophilus R-26. Thymine synthesis was inhibited with 5-fluorouracil (FU) or deoxyadenylate (dAMP) or by the absence of folic acid. In the case of FU, the maximum rate of dying was obtained at concentrations exceeding 0.1 μg/ml. This concentration did not affect the growth of the bacteria in the presence of thymine (4 μg/ml) and uracil (10 μg/ml). At higher FU concentrations up to 10 μg/ml, the course of TLD was unaltered, but the growth of bacteria in complete medium was slower. In the case of dAMP, the same course of TLD was obtained at a concentration of 150 μg/ml. If 1,500 μg dAMP/ml was used, the pre-death lag phase was shortened the rate of dying being unaltered. These concentrations of dAMP retarded the growth of bacteria even in a complete medium. If the thymine synthesis was prevented by the absence of folic acid the rate of dying was much lower than that caused by the presence of FU or dAMP. This was true even if the aminopterin was added. The authors conclude that the folic acid starvation did not inhibit completely the synthesis of thymine. 相似文献
2.
Thymineless death (TLD) as well as deoxyribosideless death (DRLD) can be observed inLactobacillus acidophilus R-26 during growth in media lacking thymine or deoxyriboside respectively. Both phenomena exhibit the same interval of lage period (2–3 h) but the rate of inactivation is 2–3 times faster in TLD. Transfer experiments show that inactivation of bacterial reproduction is accelerated immediately if—DR medium is replaced by—T one. In the opposite case the deceleration of the inactivation rate does not appear immediately but after a 1–2 h lag period, in which no changes in the number of viable bacteria can be observed. Our results suggested that the accumulation of deoxyriboside compounds has no causal role in the inactivation of bacterial reproduction. However, the presence of deoxyribosides can accelerate the process of inactivation. 相似文献
3.
The present study compared the proteomic characteristics of a low passage number (L-33) and high passage number (H-81) LNCaP cell clone. Marked differences in protein expression were noted in the response of L-33 and H-81 cells to androgens. To investigate if regulation of these proteins was androgen-dependent, expression of the androgen receptor was silenced via small interfering RNA. Consistent with the proteomic data, abrogation of androgen receptor production in H-81 cells resulted in the reversed expression level into L-33 cells compared with non-treated H-81 LNCaP cells. The results clarify the progression into an androgen-independent phenotype. 相似文献
4.
Bispo de Jesus M Zambuzzi WF Ruela de Sousa RR Areche C Santos de Souza AC Aoyama H Schmeda-Hirschmann G Rodríguez JA Monteiro de Souza Brito AR Peppelenbosch MP den Hertog J de Paula E Ferreira CV 《Biochimie》2008,90(6):843-854
Ferruginol, a bioactive compound isolated from a Chilean tree (Podocarpaceae), attracts attention as a consequence of its pharmacological properties, which include anti-fungal, anti-bacterial, cardioprotective, anti-oxidative, anti-plasmodial and anti-ulcerogenic actions. Nevertheless, the molecular basis for these actions remains only partly understood and hence we investigated the effects of ferruginol on androgen-independent human prostate cancer cells (PC3), a known model for solid tumor cells with an exceptional resistance to therapy. The results show that ferruginol induces PC3 cell death via activation of caspases as well as apoptosis-inducing factor (AIF) as confirmed by its translocation into the nucleus. In order to clarify the biochemical mechanism responsible for the anti-tumor activity of ferruginol, we analyzed a set of molecular mediators involved in tumor cell survival, progression and aggressiveness. Ferruginol was able to trigger inhibition/downregulation of Ras/PI3K, STAT 3/5, protein tyrosine phosphatase and protein kinases related to cell cycle regulation. Importantly, the toxic effect of ferruginol was dramatically impeded in a more reducing environment, which indicates that at least in part, the anti-tumoral activity of ferruginol might be related to redox status modulation. This study supports further examination of ferruginol as a potential agent for both the prevention and treatment of prostate cancer. 相似文献
5.
Thymineless death in Escherichia coli mutants deficient in the RecF recombination pathway 总被引:1,自引:0,他引:1
Like recF and recQ mutants studied earlier, two other classes of Escherichia coli mutants defective in the RecF conjugal recombination pathway, recJ and recO, were found to be partially resistant to thymineless death. In contrast, a recN mutant, also belonging to the pathway, was indistinguishable from the wild type with respect to thymineless death. 相似文献
6.
7.
8.
9.
Yee SW Campbell MJ Simons C 《The Journal of steroid biochemistry and molecular biology》2006,98(4-5):228-235
Induction of growth arrest and differentiation by 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) occurs in non-malignant cell types but is often reduced in cancer cells. For example, androgen-independent prostate cancer cells, DU-145 and PC-3, are relatively insensitive to the anti-proliferative action of 1,25-(OH)2D3. This appears to be due to increased 1,25-(OH)2D3-metabolism, as a result of CYP24 enzyme-induction, which in turn leads to decreased anti-proliferative efficacy. In the in vitro rat kidney mitochondria assay, the 2-(4-hydroxybenzyl)-6-methoxy-3,4-dihydro-2H-naphthalen-1-one (4) was found to be a potent inhibitor of Vitamin D3 metabolising enzymes (IC50 3.5 μM), and was shown to be a more potent inhibitor than the broad spectrum P450 inhibitor ketoconazole (IC50 20 μM). The combination of the inhibitor and 1,25-(OH)2D3 caused a greater inhibition of proliferation in DU-145 cells than when treated with both agents alone. Examination of the regulation of VDR target gene mRNA in DU-145 cells revealed that co-treatment of 1,25-(OH)2D3 plus inhibitor of Vitamin D3 metabolising enzymes co-ordinately upregulated CYP24, p21waf1/cip1 and GADD45. 相似文献
10.
The interference of dnaB mutations of Escherichia coli with thymineless death is described. All the isogenic Thy- dnaB mutants of E. coli we have tested show a remarkable immunity towards cell death induced by thymine deprivation at the nonpermissive temperature. We have also constructed and tested an isogenic double dnaB dnaG mutant. It loses its viability in the absence of thymine at both permissive and nonpermissive temperatures. The role of the dnaB gene product is discussed. 相似文献
11.
Androgen-independent prostate cancer usually develops as a relapse following androgen ablation therapy. Removing androgen systemically causes vascular degeneration and nutrient depletion of the prostate tumor tissue. The fact that the malignancy later evolves to androgen-independence suggests that some cancer cells are able to survive the challenge of energy/nutrient deprivation. AMP-activated protein kinase (AMPK) is an important manager of energy stress. The present study was designed to investigate the role of AMPK in contributing to the survival of the androgen-independent phenotype. Most of the experiments were carried out in the androgen-dependent LNCaP cells and the androgen-independent C4-2 cells. These two cell lines have the same genetic background, since the C4-2 line is derived from the LNCaP line. Glucose deprivation (GD) was instituted to model energy stress encountered by these cells. The key findings are as follows. First, the activation of AMPK by GD was much stronger in C4-2 cells than in LNCaP cells, and the robustness of AMPK activation was correlated favorably with cell viability. Second, the response of AMPK was specific to energy deficiency rather than to amino acid deficiency. The activation of AMPK by GD was functional, as demonstrated by appropriate phosphorylation changes of mTOR and mTOR downstream substrates. Third, blocking AMPK activation by chemical inhibitor or dominant negative AMPK led to increased apoptotic cell death. The observation that similar results were found in other androgen-independent prostate cancer cell lines, including CW22Rv1 abd VCaP, provided further assurance that AMPK is a facilitator on the road to androgen-independence of prostate cancer cells. 相似文献
12.
Holly M. Hamilton Ray Wilson Martin Blythe Ralf B. Nehring Natalie C. Fonville Edward J. Louis Susan M. Rosenberg 《DNA Repair》2013,12(11):993-999
Thymineless death (TLD) is the rapid loss of colony-forming ability in bacterial, yeast and human cells starved for thymine, and is the mechanism of action of common chemotherapeutic drugs. In Escherichia coli, significant loss of viability during TLD requires the SOS replication-stress/DNA-damage response, specifically its role in inducing the inhibitor of cell division, SulA. An independent RecQ- and RecJ-dependent TLD pathway accounts for a similarly large additional component of TLD, and a third SOS- and RecQ/J-independent TLD pathway has also been observed. Although two groups have implicated the SOS-response in TLD, an SOS-deficient mutant strain from an earlier study was found to be sensitive to thymine deprivation. We performed whole-genome resequencing on that SOS-deficient strain and find that, compared with the SOS-proficient control strain, it contains five mutations in addition to the SOS-blocking lexA(Ind−) mutation. One of the additional mutations, csrA, confers TLD sensitivity specifically in SOS-defective strains. We find that CsrA, a carbon storage regulator, reduces TLD in SOS- or SulA-defective cells, and that the increased TLD that occurs in csrA− SOS-defective cells is dependent on RecQ. We consider a hypothesis in which the modulation of nucleotide pools by CsrA might inhibit TLD specifically in SOS-deficient (SulA-deficient) cells. 相似文献
13.
14.
Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor 总被引:15,自引:0,他引:15
Zhao XY Malloy PJ Krishnan AV Swami S Navone NM Peehl DM Feldman D 《Nature medicine》2000,6(6):703-706
The androgen receptor (AR) is involved in the development, growth and progression of prostate cancer (CaP). CaP often progresses from an androgen-dependent to an androgen-independent tumor, making androgen ablation therapy ineffective. However, the mechanisms for the development of androgen-independent CaP are unclear. More than 80% of clinically androgen-independent prostate tumors show high levels of AR expression. In some CaPs, AR levels are increased because of gene amplification and/or overexpression, whereas in others, the AR is mutated. Nonetheless, the involvement of the AR in the transition of CaP to androgen-independent growth and the subsequent failure of endocrine therapy are not fully understood. Here we show that in CaP cells from a patient who failed androgen ablation therapy, a doubly mutated AR functioned as a high-affinity cortisol/cortisone receptor (ARccr). Cortisol, the main circulating glucocorticoid, and its metabolite, cortisone, both equally stimulate the growth of these CaP cells and increase the secretion of prostate-specific antigen in the absence of androgens. The physiological concentrations of free cortisol and total cortisone in men greatly exceed the binding affinity of the ARccr and would activate the receptor, promoting CaP cell proliferation. Our data demonstrate a previously unknown mechanism for the androgen-independent growth of advanced CaP. Understanding this mechanism and recognizing the presence of glucocorticoid-responsive AR mutants are important for the development of new forms of therapy for the treatment of this subset of CaP. 相似文献
15.
Patrikidou A Vlachostergios PJ Voutsadakis IA Hatzidaki E Valeri RM Destouni C Apostolou E Papandreou CN 《Cancer cell international》2012,12(1):31-14
Background
Upregulation of nuclear factor kappa B (NF??B) activity and neuroendocrine differentiation are two mechanisms known to be involved in prostate cancer (PC) progression to castration resistance. We have observed that major components of these pathways, including NF??B, proteasome, neutral endopeptidase (NEP) and endothelin 1 (ET-1), exhibit an inverse and mirror image pattern in androgen-dependent (AD) and -independent (AI) states in vitro.Methods
We have now investigated for evidence of a direct mechanistic connection between these pathways with the use of immunocytochemistry (ICC), western blot analysis, electrophoretic mobility shift assay (EMSA) and proteasome activity assessment.Results
Neuropeptide (NP) stimulation induced nuclear translocation of NF??B in a dose-dependent manner in AI cells, also evident as reduced total inhibitor ??B (I??B) levels and increased DNA binding in EMSA. These effects were preceded by increased 20?S proteasome activity at lower doses and at earlier times and were at least partially reversed under conditions of NP deprivation induced by specific NP receptor inhibitors, as well as NF??B, I??B kinase (IKK) and proteasome inhibitors. AD cells showed no appreciable nuclear translocation upon NP stimulation, with less intense DNA binding signal on EMSA.Conclusions
Our results support evidence for a direct mechanistic connection between the NPs and NF??B/proteasome signaling pathways, with a distinct NP-induced profile in the more aggressive AI cancer state. 相似文献16.
To clarify the relationship between thymineless death and thymineless mutagenesis, the induction of arginine revertants of Escherichia coli TAU-bar by thymine starvation was examined in physiological terms. Induced revertants were detectable both on minimal medium lacking arginine and minimal medium supplemented with 1 mug of arginine per ml. Substantial thymineless mutagenesis occurred during the period before the onset of thymineless death. Mutagenesis and loss of viability were observed upon incubation in medium lacking thymine and arginine, and both were inhibited upon incubation in medium lacking thymine and uracil. Mutagenesis also occurred during thymine starvation at 25 C, where there was relatively little loss of viability. At 37 C thymineless mutagenesis did not require complete thymine starvation, and the induction of revertants appeared to be initiated at the same suboptimal thymine concentration at which lethality was first detectable. Mutagenesis was found not to occur preferentially at the growing point of deoxyribonucleic acid replication. These results suggest that thymineless mutagenesis does not involve simply errors in base pairing due to the absence of thymine. The data also suggest that the induction of mutations and thymineless death are due to the same primary event but that mutagenesis is the more sensitive response. 相似文献
17.
Gao S Lee P Wang H Gerald W Adler M Zhang L Wang YF Wang Z 《Molecular endocrinology (Baltimore, Md.)》2005,19(7):1792-1802
Androgens provide survival signals to prostate epithelial cells, and androgen ablation induces apoptosis in the prostate gland. However, the molecular mechanisms of actions of the androgen-signaling pathway in these processes are not fully understood. Here, we report that androgens induced expression of the cellular Fas/FasL-associated death domain protein-like inhibitory protein (c-FLIP) gene, which is a potent inhibitor of Fas/FasL-mediated apoptosis. The androgen receptor was recruited to the promoter of the c-FLIP gene in the presence of androgens. We found that c-FLIP promoter contained multiple functional androgen response elements. In addition, we show that c-FLIP overexpression accelerated progression to androgen independence by inhibiting apoptosis in LNCaP prostate tumors implanted in nude mice. Our results suggest that the androgen receptor affects survival and apoptosis of prostate cells through regulation of the c-FLIP gene in response to androgens. 相似文献
18.
Molecular properties and possible mechanisms of action of cytotoxic ribonucleases (RNases), potential antitumor therapeutics, are characterized. The analysis of recent publications and own experimental results have allowed the authors, on the one hand, to distinguish cellular components that are responsible for selective activity of exogenous RNases towards malignant cells, and on the other--to identify the contribution of definite molecular determinants to the enzyme cytotoxicity. The predominant effect of the RNase molecule charge on the cell death induction is shown. The RNase cytotoxic effects are caused by catalytic cleavage of available RNA, by products of its hydrolysis, as well as by non-catalytic electrostatic interaction of exogenous enzyme with cell components. Potential targets for RNase action in a cancer cell have been revealed. The role of modulation of the membrane calcium-dependent potassium channels and ras-oncogene functions in the RNase-induced cell damage is defined. The effect of cytotoxic RNases on gene expression via influencing the RNA interference is discussed. 相似文献
19.
Thymine deprivation can be achieved in bacteriophage T4 either by the use of the thymidylate synthetase inhibitor FUdR, or by an appropriate combination of genetic blocks; both methods produce marked mutagenesis. Extensive tests of the specificity of thymineless mutagenesis reveal that only A:T base pairs are affected, and that transitions and possibly transversions are produced. This system therefore constitutes the first example of an A:T-specific mutagen. Thymineless mutagenesis in bacteriophage T4 exhibits a marked dependence upon the functional state of the DNA polymerase gene, but is largely independent of the px-y misrepair system. 相似文献
20.
Jordi Muntané Angel J. De la Rosa Luís M. Marín Francisco J. Padillo 《Mitochondrion》2013,13(3):257-262
Nitric oxide (NO) is a lipophillic, highly diffusible, and short-lived physiological messenger which regulates a variety of physiopathological responses. NO may exert its cellular action through cGMP-dependent and cGMP-independent pathways which includes different postranslational modifications. The effect of NO in cancer depends on the activity and localization of NOS isoforms, concentration and duration of NO exposure, cellular sensitivity, and hypoxia/re-oxygenation process. NO regulates critical factors such as the hypoxia inducible factor-1 (HIF-1) and p53 generally leading to growth arrest, apoptosis or adaptation. NO sensitizes hepatoma cells to chemotherapeutic compounds probably through increased p53 and cell death receptor expressions. 相似文献