首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The aim of the present study was to analyse the dose rate effect of gamma radiation at the level of mutations, chromosomal aberrations, and cell growth in TK6 cells with normal as well as reduced levels of hMTH1 protein. TK6 cells were exposed to gamma radiation at dose rates ranging from 1.4 to 30.0 mGy/h (chronic exposure) as well as 24 Gy/h (acute exposure). Cell growth, frequency of thymidine kinase mutants, and of chromosomal aberrations in painted chromosomes 2, 8, and 14 were analysed. A decline in cell growth and an increase in unstable-type chromosomal aberrations with increasing dose rate were observed in both cell lines. A dose rate effect was not seen on mutations or stable-type chromosomal aberrations in any of the two cell lines. Reduction in the hMTH1 protein does not influence the sensitivity of TK6 cells to gamma radiation. This result fits well with data of others generated with the same cell line.  相似文献   

2.
Induction of chromosomal aberrations was studied from 1/4 to 14 days post irradiation in the bone marrow of mice treated or not with Liv. 52, a herbal preparation, prior to 4.5 Gy exposure. The frequency of chromatid and chromosomal aberrations started increasing at day 1/4 in the irradiation and Liv. 52 + irradiated groups. The highest frequency of aberrations was recorded at day 1/2 post exposure which declined after day 1 in both groups. The frequency of both types of aberrations was significantly lower in the Liv. 52 + irradiated group than in the irradiated group.  相似文献   

3.
The present study aims at determining the ability of 60% ethanol extract of the rhizome of Zingiber montanum (J. K?nig) A. Dietr. to protect bone marrow cells in vivo from radiation-induced chromosomal aberrations. Albino rats (Rattus norvegicus, 2n = 42) were used to carry out investigations on the radioprotective properties of Z. montanum. Acute toxicity of the extract was determined, and a suitable injectable dose was selected for intra-peritoneal administration. The LD(50) of the extract calculated for 72 h was 2.9 g/kg, and the calculated LD(10) dose was 1.7 g/kg. The calculated maximum tolerated dose of the rhizome extract was 1.3 g/kg. Rats were divided into 12 groups (with or without the administration of extract) and exposed to different radiation doses from 1 to 5 Gy. Whole-body irradiation of rats showed a significant dose-dependent increase in different types of chromosomal aberrations. The most common chromosomal aberrations were breaks, fragments, gaps, rings, endoreduplications and dicentric chromosomes. Ethanol extract of rhizome at a dose of 0.5 g/kg did not show any significant increase in chromosomal aberrations in unirradiated animals as compared to that of the control group. Intra-peritoneal administration of the extract at a dose of 0.5 g/kg considerably reduced the frequency of the aberrations stated above in irradiated animals with DMF value of 1.36 at 1 to 5 Gy dose range of gamma radiation. The incidence of micronucleated polychromatic erythrocytes and micronucleated normochromatic erythrocytes due to the radiation exposure was considerably reduced in extract-treated groups of animals with DMFs 1.34 and 1.17, respectively, as compared to that of the extract-untreated groups. Our results suggest that rhizome extract of Z. montanum may have a potential in protecting normal hematopoietic cells from radiation-induced damage.  相似文献   

4.
The frequency of chromosomal aberrations in bone marrow cells, after a single i.p. aflatoxin B1 (AFB1) dose, was examined in male Chinese hamsters (Cricetulus griseus). There was a significant increase in aberrant cells within 5 days of administration of a dose of 0.1 micrograms-5 mg AFB1/kg, and on the 36th day. After a single dose of 5 mg AFB1/kg the enhanced frequency of aberrant cells was monitored up to day 104 with no sign of a decrease to control level. The results indicate that the minimum mutagenic effect of an AFB1 dose in this system is 0.1 micrograms/kg. Attention is drawn to the long-term presence of chromosomal aberrations even after a single i.p. exposure to AFB1.  相似文献   

5.
Studies on the induction and persistence of ethylene oxide (EO) induced chromosomal alterations in rat bone-marrow cells and splenocytes following in vivo exposure were carried out. Rats were exposed to ethylene oxide either chronically by inhalation (50-200ppm, 4 weeks, 5 days/week, 6h/day) or acutely by intraperitoneal injection (i.p.) at dose levels of 50-100ppm.Spontaneous- and induced-frequencies of micronuclei (MN), sister-chromatid exchanges (SCEs) and chromosomal aberrations were determined in rat bone-marrow cells, and in splenocytes following in vitro mitogen stimulation. Unstable chromosomal aberrations were studied in whole genome using standard Giemsa staining technique and fluorescence in situ hybridisation using probe for chromosome #2 was employed to detect chromosome translocations.Following chronic exposure, the cytogenetic analyses were carried out at days 5 and 21 in rat splenocytes, to study the induction and persistence of sister-chromatid exchanges. Following chronic exposure, ethylene oxide was effective in inducing SCEs, and markedly cells with high frequency SCEs were observed and they in-part persisted until day 21 post-exposure. However, no significant effect was observed in rat splenocytes for induction of MN and chromosomal aberrations. Following acute exposure, both SCEs and MN were increased significantly in rat bone-marrow cells as well as splenocytes.In conclusion, this study indicates that ethylene oxide at the concentrations employed by intraperitoneal injection or inhalation in adult rats is mutagenic and can induce both SCEs and MN.  相似文献   

6.
Experiments were carried out to verify the effect of selenium on the mutagenic activity of AFB1. After 14 days of selenium administration to experimental animals (Chinese hamsters, Cricetulus griseus) in the form of 2 ppm Na2SeO3 solution available ad libitum the incidence of chromosomal aberrations in bone marrow cells due to a single p.o. administration of 5 mg AFB1 per 1 kg body weight was significantly reduced. The incidence of chromosomal aberrations was monitored till day 32 after AFB1 administration. A significant decrease in the frequency of aberrant cells, breaks and gaps was observed at almost any time during the investigation. 2 ppm Na2SeO3 solution itself did not enhance the frequency of chromosomal aberrations. The mechanism of the protective effect of selenium vis-a-vis the mutagenic and carcinogenic action of AFB1 remains obscure.  相似文献   

7.
We investigated the chromosomal damage induced by in vitro exposure to γ-rays of uncultured first trimester chorionic villi. Frequency and types of chromosomal aberrations at increasing doses of radiation have been evaluated on cytotrophoblast spontaneous metaphases obtained after a short term incubation. Our results indicate a direct correlation between radiation dose and aberration frequency.  相似文献   

8.
On 25 June 1990, a radiation accident occurred in a 60Co source radiation unit in Shanghai, due to violations in operation regulations. This accident resulted in the exposure of seven individuals to acute high-dose and dose-rate whole-body external irradiation. Conventional chromosomal aberration analysis, G-banding automatic karyotype analysis and/or fluorescent in situ hybridization (FISH) painting methods were used to analyze chromosomal aberrations in peripheral blood lymphocytes from five of the victims 24 h to 17 years after accidental exposure to 1.9–5.1 Gy of 60Co γ-rays. The frequency of unstable chromosomal aberrations (dicentrics and rings) remained at constant levels 1 month after exposure. Three months after exposure, the frequency was reduced by 20–40% in three victims, while no reduction was seen in the other two victims. Twelve years after exposure, the number of dicentrics and rings decreased by more than 90%, and did not reveal a dose-dependent relationship. However, even at 12–17 years after exposure, stable chromosome aberrations, dominated by translocations, remained at a high level in a dose-dependent manner. The frequency of stable chromosomal aberrations detected by FISH showed a similar dose-dependent relationship as that detected by karyotype analysis of G-banding chromosomes. The G-banding analysis also suggested that the pattern of chromosome breakpoints is random. The FISH data showed a decreasing tendency with time for chromosome translocation frequency in the peripheral lymphocytes, and the rate of reduction varied among different individuals. It is likely that the higher dose the victim received, the lesser the translocation frequency decreased with time. The G-banding data also showed that the rate of reduction of translocations is different among individuals. From 5 to 17 years after accidental irradiation, a very small reduction (~10%) of translocation frequency was observed in victims C and D, while there was about a 35% reduction (the highest among the victims) for victim G who received the smallest dose (1.9 Gy). These observations can be used to validate the existence of chromosomal aberrations in peripheral blood lymphocytes as a biological dosimeter for radiation exposures.  相似文献   

9.
Oral administration of M. piperita (1 g/kg body weight/day) before exposure to gamma radiation was found to be effective in protecting against the chromosomal damage in bone marrow of Swiss albino mice. Animals exposed to 8 Gy gamma radiation showed chromosomal aberrations in the form of chromatid breaks, chromosome breaks, centric rings, dicentrics, exchanges and acentric fragments. There was a significant increase in the frequency of aberrant cells at 6 hr after irradiation. Maximum aberrant cells were observed at 12 hr post-irradiation autopsy time. Further, the frequency of aberrant cells showed decline at late post-irradiation autopsy time. However, in the animals pretreated with Mentha extract, there was a significant decrease in the frequency of aberrant cells as compared to the irradiated control. Also significant increase in percentage of chromatid breaks, chromosome breaks, centric rings, dicentrics, exchanges, acentric fragments, total aberrations and aberrations/damaged cell was observed at 12 hr post-irradiation autopsy time in control animals, whereas Mentha pretreated irradiated animals showed a significant decrease in percentage of such aberrations. A significant decrease in GSH content and increase in LPO level was observed in control animals, whereas Mentha pretreated irradiated animals exhibited a significant increase in GSH content and decrease in LPO level but the values remained below the normal. The radioprotective effect of Mentha was also demonstrated by determining the LD(50/30) values (DRF = 1.78). The results from the present study suggest that Mentha pretreatment provides protection against radiation induced chromosomal damage in bone marrow of Swiss albino mice.  相似文献   

10.
The results of an IAEA coordinated programme on radiation induced chromosomal aberrations in human peripheral blood lymphocytes in vitro are presented. In a master experiment, a whole blood sample from one donor was irradiated with 200 R of X-rays. Different fixation times from 46 to 82 h were used. The progression of cells into mitosis was monitored by BrdUrd incorporation. 14 investigators took part in the scoring of chromosomal aberrations. The main conclusions of this study are: (1) The mean frequencies of aberrations changed with fixation time. (2) The number of cells scored as aberrant by different laboratories was very similar, but there was variability in the number of aberrations scored per aberrant cell. (3) The differences in the frequencies of aberrations between laboratories were minimal when the scoring was restricted to the first major peak of mitotic activity and sufficient cells were scored.

It is concluded that using controlled experimental conditions, human peripheral blood lymphocytes can effectively be used as a reliable biological dosimeter for absorbed radiation dose.  相似文献   


11.
Cytogenetic analysis was performed repeatedly on a breast cancer patient since the beginning of the antitumor treatment. Double minute chromosomes (DMS, 2-10 per cell) were found in less than 2% of peripheral blood lymphocytes besides other chromosomal abnormalities after radiation therapy and 8 months after chemotherapy. The level of structural chromosomal aberrations two years after the therapeutic treatment was 0.13-0.14 aberrations per cell, but DMS were not observed. Estimation of the fragile site (FS) frequency and distribution at this time revealed a significant expression of the common FS FRAGF (9q1.2) after the treatment of blood culture with 5-bromo-2-deoxyuridine at dose levels of 7 and 50 g/l and enhanced fragility in chromosome band 1p35-36.1 (FRA1A) in folate-deprived conditions. Rare FS were not found. The presented data are discussed.  相似文献   

12.
Chromosomal aberrations in human sperm and lymphocytes were compared before and after in vivo radiation treatment of 13 cancer patients. The times of analyses after radiotherapy (RT) were 1, 3, 12, 24, 36, 48 and 60 months. The median total radiation dose was 30 Gy and the testicular dose varied from 0.4 to 5.0 Gy. Human sperm chromosome complements were analysed after fusion with golden hamster eggs. There were no abnormalities in sperm or lymphocytes before RT. Following RT there was an increase in the frequency of numerical and structural chromosomal abnormalities in both lymphocytes and sperm. For structural abnormalities there were more rejoined lesions (dicentrics, rings) in lymphocytes and more unrejoined lesions (chromosome breaks, fragments) in sperm. After RT there was a dramatic increase in the frequency of chromosomal abnormalities in lymphocytes: at 1 mo. the frequency was 42%, at 3 mo. 25%, at 12 mo. 14%, at 24 mo. 11%, at 36 mo. 9%, at 48 mo. 7% and at 6 mo. 4%. Since the majority of men were azoospermic after RT, there is little data on sperm chromosome complements before the analyses performed at 24 mo. post-RT. At 24 mo. the frequency of abnormalities was 13%, followed by 21% at 36 mo., 12% at 48 mo. and 22% at 60 mo. Thus it appears that the frequency of lymphocyte chromosomal abnormalities had an initial marked increase after RT followed by a gradual decrease with time whereas the frequency of sperm chromosomal abnormalities was elevated when sperm production recovered and remained elevated from 24 to 60 mo. post-RT. This difference in the effect of time makes it very difficult to compare abnormality rates in lymphocytes and sperm and to use analysis of induced damage in somatic cells as surrogates for germ cells since the ratio between sperm and lymphocytes varied from 1:1 (at 24 mo. post-RT) to 5:1 (at 60 mo. post-RT).  相似文献   

13.
In February 2001 a radiation accident occurred in a radiotherapy unit of an oncology hospital in Poland. Five breast cancer patients undergoing radiotherapy received a single high dose of 8 MeV electrons. The exact doses are not known, but they were heterogeneous and may have reached about 100 Gy. To assess whether such exposure would be detectable in peripheral blood lymphocytes, chromosomal aberrations and micronuclei were analyzed in lymphocytes from the accident patients and compared to values for lymphocytes from 10 control patients who were not involved in the accident but who received similar radiotherapy treatments. Lymphocytes were harvested for analysis of chromosomal aberrations at three different culture times to determine whether heavily damaged cells reached mitosis with a delay. There was no effect of harvest time on the frequencies of chromosomal aberrations, indicating that there was no delay of heavily damaged cells in entering mitosis. A good correlation was observed between micronuclei and chromosomal aberrations. In lymphocytes from three of the accident patients, significantly enhanced frequencies of both aberrations and micronuclei were found. The great individual variability observed in the frequency of cytogenetic damage in lymphocytes from both control and accident patients precluded the unambiguous identification of all accident patients.  相似文献   

14.
Chromosomal instability in proliferating mammalian cells is characterized by a persistent increase of chromosomal aberrations and rearrangements occurring de novo during successive cell generations. Recent results from many laboratories using a variety of cells and cytogenetic end points show that this phenotype can be induced by low as well as high LET irradiation. A typical feature of chromosomal instability in primary human G0-lymphocytes exposed to γ-irradiation at both high dose rate (45 Gy h−1) and low dose rate (0.024 Gy h−1) is the appearance of novel aberrations in the clonal progeny of the irradiated cell, many generations after the exposure. The same phenotype was observed in lymphocytes that were allowed to recover for 5 days in G0 after the radiation exposure, as well as in hprt-mutant T cell clones. These results demonstrate that neither the acute genotoxic stress caused by high dose rate as compared to low dose rate irradiation, nor a hypothesized conflict between mitogen induced growth stimulation and growth arrest due to radiation damage, seem to be critical conditions for the development chromosomal instability in these cells. In contrast to observations in other cells, no evidence of a persistent decrease of cloning ability was observed in the progeny of radiation-exposed human lymphocytes, and no alteration was observed in their sensitivity to a second radiation exposure. Furthermore, the frequency of CA-repeat length variation at three loci was not increased in the progeny of X-irradiated T cells as compared to non-irradiated cells, which indicates that microsatellite instability is not part of the chromosomal instability phenotype in human T-lymphocytes.  相似文献   

15.
The effect of the G2 repair of chromosomal damage in lymphocytes from workers exposed to low levels of X- or gamma-rays was evaluated. Samples of peripheral blood were collected from 15 radiation workers, 20 subjects working in radiodiagnostics, and 30 healthy control donors. Chromosomal aberrations (CA) were evaluated by scoring the presence of chromatid and isochromatid breaks, dicentric and ring chromosomes in lymphocytes with/without 5 mM caffeine plus 3 mM-aminobenzamide (3-AB) treatment during G2. Our results showed that the mean value of basal aberrations in lymphocytes from exposed workers was higher than in control cells (p < 0.001). The chromosomal damage in G2, detected with caffeine plus 3-AB treatment was higher than the basal damage (untreated conditions), both in control and exposed populations (p < 0.05). In the exposed workers group, the mean value of chromosomal abnormalities in G2 was higher than in the control (p < 0.0001). No correlation was found between the frequency of chromosome type of aberrations (basal or in G2), and the absorbed dose. Nevertheless, significant correlation coefficients (p < 0.05) between absorbed dose and basal aberrations yield (r = 0.430) or in G2 (r = 0.448) were detected when chromatid breaks were included in the total aberrations yield. Under this latter condition no significant effect of age, years of employment or smoking habit on the chromosomal aberrations yield was detected. However, analysis of the relationship between basal aberrations yield and the efficiency of G2 repair mechanisms, defined as the percentage of chromosomal lesions repaired in G2, showed a significant correlation coefficient (r = -0.802; p < 0.001). These results suggest that in addition to the absorbed dose, the individual G2 repair efficiency may be another important factor affecting the chromosomal aberrations yield detected in workers exposed to low-level ionizing radiation.  相似文献   

16.
Cells of mouse knockout cell lines for Ku80 (now known as Xrcc5), Ku70 (now known as G22p1), DNA-PKcs (now known as Prkdc) and PARP (now known as Adprt) were synchronized in G1 phase and exposed to very low fluences of alpha particles. The frequency of gross chromosomal aberrations was scored at the first postirradiation metaphase. At the two lowest doses examined, aberrations were induced in 4-9% of wild-type cells and 36-55% of Xrcc5-/- cells, whereas only 2-3% of the nuclei were traversed by an alpha particle and thus received any radiation exposure. G22p1-/- cells responded similarly to Xrcc5-/- cells, whereas Prkdc-/- and Adprt-/- cells showed an intermediate effect. The frequency of aberrations per nuclear traversal increased approximately 30-fold for Xrcc5-/- and G22p1-/- cells at the lowest mean dose examined (0.17 cGy), compared with 10-fold in Prkdc-/- cells and 3-fold in wild-type cells. Based on these and other findings, we hypothesize that the marked sensitization of repair-deficient bystander cells to the induction of chromosomal aberrations is a consequence of unrejoined DNA double-strand breaks occurring as a result of clustered damage arising from opposed oxidative lesions and single-strand breaks.  相似文献   

17.
Chromosome aberrations frequency was estimated in peripheral lymphocytes from hospital workers occupationally exposed to low levels of ionizing radiation and controls. Chromosome aberrations yield was analyzed by considering the effects of dose equivalent of ionizing radiation over time, and of confounding factors, such as age, gender and smoking status. Frequencies of aberrant cells and chromosome breaks were higher in exposed workers than in controls (P = 0.007, and P = 0.001, respectively). Seven dicentric aberrations were detected in the exposed group and only three in controls, but the mean frequencies were not significantly different. The dose equivalent to whole body of ionizing radiation (Hwb) did appear to influence the spectrum of chromosomal aberrations when the exposed workers were subdivided by a cut off at 50 mSv. The frequencies of chromosome breaks in both subgroups of workers were significantly higher than in controls (< or =50 mSv, P = 0.041; >50 mSv, P = 0.018). On the other hand, the frequency of chromatid breaks observed in workers with Hwb >50 mSv was significantly higher than in controls (P = 0.015) or workers with Hwb < or =50 mSv (P = 0.046). Regarding the influence of confounding factors on genetic damage, smoking status and female gender seem to influence the increase in chromosome aberration frequencies in the study population. Overall, these results suggested that chromosome breaks might provide a good marker for assessing genetic damage in populations exposed to low levels of ionizing radiation.  相似文献   

18.
Biomonitoring methods were applied to workers exposed to high levels of chloronitrobenzenes. The external dose, internal dose, biologically effective dose, and biological effects were determined. Individual susceptibility was assessed by analyzing genetic polymorphisms of glutathione S-transferases M1, P1 and T1, and N-acetyltransferases 1 and 2. When the markers of exposure and susceptibility were compared with the frequency of chromosomal aberrations, clinical blood and urine parameters, and health effects typical of chloronitrobenzenes exposure, only a few of the comparisons were statistically significant. A statistically significantly higher frequency of chromosomal aberrations was detected in workers with a high level of hemoglobin-adducts.  相似文献   

19.
Anovlar 21, a combination drug containing the oestrogen ethinyloestradiol and the progestin norethisterone acetate, was studied for its in vivo genotoxic effect on the bone marrow cells of Swiss albino mice. The chromosomal aberration assay and the micronucleus test were employed for the study. 0.08, 0.4, 0.8, 1.6, 3.2, 4.8, 6.4 and 8.0 mg/kg/day of the drug was orally administered for 15 consecutive days to mice. Bone marrow preparations were made 24 h after the final feeding. The lowest dose, 0.08 mg/kg, represents the human therapeutic range. Marrow preparations of mice fed 0.8 mg/kg/day for 15 days were made at 6, 12, 24, 48 and 96 h, and 1, 2 and 3 weeks and a time-yield analysis was carried out. Statistically significant increases in chromosomal aberrations were observed in animal groups fed doses of greater than or equal to 0.4 mg/kg/day. In the time-response study, the maximum frequency of aberrations was noted at 24 h, thereafter decreasing gradually with increasing time. But the drug did not induce a significant increase in the number of micronuclei in bone marrow erythrocytes at any of the doses or time intervals studied.  相似文献   

20.
Benznidazole (bz) is the active component of the antichagasic drug Rochagan. Tests were carried out to detect the induction of chromosomal aberrations and micronuclei in rodent bone marrow cells and peripheral blood cells, respectively. Rats were exposed to acute treatment with Rochagan by gavage at total doses of 150, 300, 1500, 2000 and 3000 mg bz/kg body weight and killed at different times. In the chronic treatments, healthy and chagasic Balb/c mice were treated with Rochagan by gavage at a dose of 100 mg bz/kg/day for 10 and 25 days. No significant increase in frequency of chromosomal aberrations in bone marrow cells or of micronuclei in peripheral blood cells was detected in the animals acutely or chronically exposed to Rochagan in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号