首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Background

Strongyloidiasis is a truly neglected tropical disease, but its public health significance is far from being negligible. At present, only a few drugs are available for the treatment and control of strongyloidiasis.

Methodology/Principal Findings

We investigated the activity of tribendimidine against third-stage larvae (L3) of Strongyloides ratti in vitro and against juvenile and adult stages of the parasite in vivo. S. ratti larvae incubated in PBS buffer containing 10–100 µg/ml tribendimidine died within 24 hours. A single 50 mg/kg oral dose of tribendimidine administered to rats infected with 1-day-old S. ratti showed no effect. The same dose administered to rats harboring a 2-day-old infection showed a moderate reduction of the intestinal parasite load. Three days post-exposure a significant reduction of the immature worm burden was found. Administration of tribendimidine at doses of 50 mg/kg and above to rats harboring mature S. ratti resulted in a complete elimination of the larval and adult worm burden. For comparison, we also administered ivermectin at a single 0.5 mg/kg oral dose to rats infected with adult S. ratti and found a 90% reduction of larvae and a 100% reduction of adult worms.

Conclusion/Significance

Tribendimidine exhibits activity against S. ratti in vitro and in vivo. The effect of tribendimidine in humans infected with S. stercoralis should be assessed.  相似文献   

2.
Potential sites for expression of acquired resistance to Strongyloides ratti larvae in rats were investigated. In rats immunized by exposure to a single live infection and challenged 30 to 40 days later, 46 to 98% of the challenge larvae failed to reach the small intestine. Multiply immunized rats nearly completely eliminated migrating challenge larvae. This early killing of migrating larvae occurred during the first 48 hr after challenge infection. Resistance to migrating challenge larvae was also induced by repeated injections with heat-killed infective larvae. That the intestine may also serve as an effective site for worm expulsion was confirmed by intestinal transfers of worms from rats with primary infections into resistant rats.  相似文献   

3.
Transplantation experiments were conducted to assess the reversibility or irreversibility of the damage sustained by Strongyloides ratti during infections in the rat host. Worms of different ages from primary and secondary infections were recovered from their original hosts and transplanted surgically into naive rats. The size and fecundity of normal (Days 6–11 postinfection) worms were maintained after transfer. Damaged worms from primary infection (Days 22–26) showed complete recovery of size and fecundity within 10 days of transfer; damaged worms from a secondary infection (Days 6–7) also showed functional recovery but to a lesser extent. The ultrastructural changes observed mainly in the intestine of damaged worms from primary infections, prior to their transfer, were, however, only partially ameliorated following transplantation into new naive hosts; there was no complete return to structural normality. On the other hand, second infection worms did show almost complete ultrastructural recovery. The course of a transplanted infection established with either damaged or normal worms was similar to infections established percutaneously. Increase in the size of transplanted infections from 100 to 250 worms per recipient did not alter the dynamics of the host/parasite relationship. There was no evidence of adaptation in S. ratti and damaged worms, when transplanted into naive rats, were as successful as normal worms in protecting the host against a subcutaneous larval infection. The implications of this work on the present understanding of the phenomenon of autoinfection in experimental rodent strongyloidiasis are discussed.  相似文献   

4.
Kinetics of intestinal mast cells and goblet cells were examined in relation to worm localization at various sites in the small intestine of rats infected with 3000 filariform (stage 3) larvae of Strongyloides ratti. The most marked intestinal mastocytosis was observed on Day 20 at the anterior site of the small intestine where the majority of the worms had concentrated. The number of mast cells in the posterior small intestine increased in parallel with the posterior shift of parasites at the later stage of the infection. In contrast to the intestinal mast cell response, the number of goblet cells was not significantly affected by the infection. These results strongly suggest that intestinal mastocytosis is closely related to the presence of the worms and that mast cells may play an important role for the expulsion of S. ratti.  相似文献   

5.
Dawkins H. J. S. and Grove D. I. 1981 Kinetics of primary and secondary infections with Strongyloides ratti in mice. International journal for Parasitology11: 89–96. The kinetics of infection with S. ratti were quantitated in normal and previously exposed C57B1 /6 mice. In primary infections, larvae penetrated the skin rapidly and were seen in peak numbers 12 h after infection. By 24 h after infection, larval numbers had declined appreciably and there was a slow decrease in numbers thereafter. Larvae were first observed in the lungs at 24 h and maximal recovery occurred at 48 h. It is thought that larval migration through the lungs is rapid. Worms were first seen in the intestines two days after infection. Maximum numbers were seen on the fifth day and worm expulsion was complete by day 10. Two moults took place in the small intestine during days 3 and 4 after infection. Rhabditiform larvae were first noted on the fourth day after infection. Mice exposed to S. ratti four weeks previously had significantly less larvae in the skin 4 and 12 h after infection but by 24 h there was no difference when compared with mice with primary infections. Peak recovery of larvae from the lungs occurred 24 h after infection; significantly less larvae were recovered on days 2 and 3 when compared with normal mice. There was a marked reduction in the adult worm burden in the gut; the number of worms recovered was less than one fifth of that seen in primary infections. Those worms which did mature were less fecund and were expelled from the intestines within 7 days of infection. It is suggested that in previously exposed animals, the migration of larvae from the skin is hastened, many of these larvae are destroyed in the lungs and that expulsion of worms which do mature in the intestines is accelerated.  相似文献   

6.
Rats were immunized through an initial infection with 1,000 filariform larvae (L3) of Nippostrongylus brasiliensis and after complete expulsion of worms they were challenged with 1,000 L3 of Strongyloides venezuelensis to investigate whether cross-resistance developed against a heterologous parasite. Nippostrongylus brasiliensis-immunized rats developed a partial cross-resistance against S. venezuelensis migrating larvae (MSL3) in the lungs and adult worms in the small intestine. The population of MSL3 in the lungs were significantly lower (P < 0.05) in immunized rats (22.0 +/- 7.4) compared with controls (105.0 +/- 27.6). The populations of adult worms, egg output and fecundity were initially decreased but from day 14 post-challenge they did not show any significant difference between immunized and control rats. However, the length of worm in immunized rat was revealed as retardation. Peripheral blood eosinophilia was significantly decreased (P < 0.05) on day 7 post-challenge and then gradually increased, which peaked on day 42 post-challenge when most of the worms were expelled. These results suggest that peripheral blood eosinophilia is strongly involved in the worm establishment and expulsion mechanisms.  相似文献   

7.
Epithelium of isolated small intestinal segments were studied in Ussing-type chambers to detect physiological changes associated with rapid, immune rejection of Trichinella spiralis infective larvae. Electrophysiological parameters associated with Na+-coupled hexose transport were measured. Changes in transepithelial electrical potential difference (PD), resistance, and short circuit current (Isc) due to the addition of actively absorbed β-methyl-d-glucoside (BMG) to the mucosal solution were determined. Measurements were made prior to and 30 min after primary and secondary infections. Animals were infected by intraduodenal inoculation. As the infective larval dose in primarily infected (nonimmunized) rats increased from 50 to 2000 larvae the magnitude of the rise in Isc elicited by BMG decreased in a dose-dependent fashion, with 50 larvae per rat having no effect. In previously infected (immunized) rats challenged with a secondary inoculum, all doses, ranging from 50 to 2000 larvae per rat, decreased the BMG-stimulated change in Isc by approximately 50%. The effect of 50 worms per rat in immunized hosts was equivalent to that produced by ~1600 worms in nonimmunized animals. Measurements of 14C-BMG mucosa-to-serosa flux confirmed that Na+-BMG cotransport was responsible for observed changes in Isc. Results support the conclusion that changes in intestinal epithelial function are associated with larval challenge of immune rats.  相似文献   

8.
Mice were infected orally with 1,6, or 30 cysticercoids of Hymenolepis diminuta. These were allowed to develop for different periods of time before elimination with anthelminthic, thus exposing the hosts to antigens from the prestrobilate, early strobilate, or fully strobilate worms. Other groups of mice were immunized by intraperitoneal (ip) implantation of a live strobilate worm or by ip implantation of live worms from cysticercoids excysted in vitro. Strong protection against challenge with a surgically transplanted strobilate worm was achieved by prior infection with 6 or 30 worms eliminated as early as Day 3 of infection. By this time these worms would not have strobilated. Conversely, a single worm, strobilating extensively over 16 days, stimulated only weak protection. Parenteral implantation of excysted worms protected mice but parenteral implantation of a strobilate worm had no effect. It is suggested that (i) the tapeworm protective antigens are primarily related to the scolex and/or the germinative region; (ii) the number of worms and the duration of antigenic stimulation in an immunizing infection determine the magnitude of a protective secondary response.  相似文献   

9.
Ascaris lumbricoides remains the most common endoparasite in humans, yet there is still very little information available about the immunological principles of protection, especially those directed against larval stages. Due to the natural host-parasite relationship, pigs infected with A. suum make an excellent model to study the mechanisms of protection against this nematode. In pigs, a self-cure reaction eliminates most larvae from the small intestine between 14 and 21 days post infection. In this study, we investigated the mucosal immune response leading to the expulsion of A. suum and the contribution of the hepato-tracheal migration. Self-cure was independent of previous passage through the liver or lungs, as infection with lung stage larvae did not impair self-cure. When animals were infected with 14-day-old intestinal larvae, the larvae were being driven distally in the small intestine around 7 days post infection but by 18 days post infection they re-inhabited the proximal part of the small intestine, indicating that more developed larvae can counter the expulsion mechanism. Self-cure was consistently associated with eosinophilia and intra-epithelial T cells in the jejunum. Furthermore, we identified increased gut movement as a possible mechanism of self-cure as the small intestinal transit time was markedly decreased at the time of expulsion of the worms. Taken together, these results shed new light on the mechanisms of self-cure that occur during A. suum infections.  相似文献   

10.
Formation of a marked protective immunity against the challenge infection was found in the rats immunized with excretory/secretory (ES) products of Strongyloides ratti adult worms. Immunization by intraduodenal injection of ES products reduced both the fecal egg counts and the adult worm burden by subcutaneous inoculation of infective larvae and by an intraduodenal implantation. The duration of parasitism in the immunized rats, however, was not shortened compared with that of control rats. The normal migration of subcutaneously challenged larvae was not affected by ES product immunization. Intestinal mastocytosis occurred according to the appearance of adult worms in the small intestine of the immunized rats earlier than it did in controls. This result suggests that mastocytosis is involved in the induction of protection by ES products of S. ratti adult worms.  相似文献   

11.
Eleven inbred strains of mice, and one outbred strain, were infected with Strongyloides ratti and larvae in the faeces were quantitated. Three strains, C57B1/6, CBA and BALB/c mice were susceptible to infection while other strains demonstrated negligible infections as assessed by this method. Larvae were first seen in the faeces on day 5, peak levels were reached on days 6 and 7, and excretion ceased 10 days after infection. Factors influencing intensity of larval excretion were examined in C57B1/6 mice. Young mice (1 month of age) were found to be more susceptible to infection than 2 and 6 month old animals. Male mice were much more susceptible to infection than female animals. There was a direct relationship between the number of S. ratti injected and the number of larvae excreted over the range 200–1600 larvae; subsequent increments in dose of injected larvae failed to increase the larval output. Infection by the percutaneous route resulted in a heavier infection than did subcutaneous injection. Previous exposure to S. ratti induced a profound resistance to reinfection. It is suggested that S. ratti infections of C57B1/6 and CBA mice provide a useful model for the investigation of factors influencing the host-parasite relationship in strongyloidiasis.  相似文献   

12.
Adult Strongyloides ratti recovered at Day 6 of a primary infection in the rat appear normal in terms of ultrastructural morphology; the occurrence of membranous material within the gut lumen of the nematode indicates that such specimens are feeding. As the infection progresses, degenerate changes occur in the worm tissues. Lipid droplets and dense granules accumulate in intestinal cells. The contents of the gut lumen indicate that worms continue to feed until at least Day 20, but thereafter, as they migrate from the anterior to the posterior half of the intestine, feeding ceases. This is associated with the development of oral plugs, which contain host immunoglobulins, and may represent antigen-antibody complexes. Damaged worms are considerably smaller than 6-day normal worms, but this stunting is not reflected by a change in the thickness of the cuticle. Worms recovered 7 days after a challenge infection do not differ significantly from specimens recovered at the end of a primary infection. A seemingly unique feature of S. ratti is the existence of a “margination membrane” which delimits the brush border glycocalyx. This membrane shows unilaminar or multilaminar configurations, unlike a true lipid bilayer; possibly it is secreted by the parasite.  相似文献   

13.
The capacity of different phases of the life cycle of Trichinella spiralis to induce rapid expulsion was examined. The phases examined included enteral preadults, enteral adults, and parenteral larvae. All had the ability to induce rapid expulsion although there were significant quantitative differences in their inductive capacity and in the kinetics of expression. Immunization with preadults required only a 48-hr enteral exposure to 2000 worms to induce strong rapid expulsion. In contrast rats required a 14-day exposure to adult worms to elicit a comparable response. After immunization with adults the reaction was demonstrable for only 2 weeks. Parenteral larvae produced only a weak rapid expulsion reaction by themselves and this response did not develop until some 8 weeks after challenge. When immunization with the enteral phases (preadult and adult) was combined with exposure to parenteral larvae a strong and enduring rapid expulsion reaction was observed. Phase specificity was also observed in the susceptibility of worms to the rapid expulsion response. The preadult phases, from infectious larvae to worms of up to 2 days of age were highly susceptible. Older worms, from 3 to 4 days old were not susceptible to rapid expulsion and could invade and establish themselves in the primed intestine for at least a 48-hr period without apparent adverse effects.  相似文献   

14.
Experimental transfer of the lung stage worms of Angiostrongylus cantonensis was performed between permissive hosts (rats) and between permissive (rat) and nonpermissive hosts (guinea pigs and rabbits). These worms from rats were rejected when implanted into nonpermissive hosts. Unexpectedly, similar worms did not survive well even in permissive hosts; the majority of recipient rats did not have first-stage larvae (L1) in their stools and, even when positive for L1, the number of the larvae shed was few. These findings contrast with the successful pulmonary arterial transfer of younger, intracranial-stage worms. It was shown that differences in rat strain between donor and recipient had no significant effect on the subsequent worm survival in recipient hosts. The alteration of maintaining conditions of the intrapulmonary worms, prior to transfer, in terms of temperature, media, and maintaining period, also showed no profound effect on the subsequent worm survival. The kinetics of precipitating and reaginic antibody levels in rats implanted with the intrapulmonary worms were analogous to those in rats with intracranial-stage worms. The findings indicate that some qualitative differences may exist between the worms obtained from two different sites.  相似文献   

15.
The effects of exposure of rats to repeated low-level (trickle) infections with Nippostrongylus brasiliensis were assessed by measuring intestinal and lung worm burdens. Worm recoveries from the intestine, made during a period of trickle infection in rats of different ages, showed a virtually complete rejection of intestinal worms in old rats and a partial rejection in young rats. Recoveries from lungs were made in young rats after challenge infection with 500 third-stage (L3) larvae, given after a 2- or 4-wk period of sensitization, during which rats were infected with 10 or 20 doses of 25 larvae. Such trickle infections elicited a strong host response to a challenge infection, manifested by low recoveries of larvae and an increased duration of larval retention in lungs. In another group of rats sensitized by a single dose of 250 L3 larvae, the recovery of larvae from challenge infection and their clearance from the lungs were similar to these observed in rats uninfected prior to challenge. The effect of trickle infections on preintestinal stages was most pronounced and consistent in rats exposed to larvae the greater numbers of times and over the longest period.  相似文献   

16.
Appropriately immunized mice display a response that is biologically equivalent to rat rapid expulsion. Only two inbred strains (NFRN and NFSN derived from NIH Swiss mice) have been shown to respond in this manner. Mice of the Balbc, CBA, AHe, C3H, SJL, or C57Bl strains are “nonresponders” which require approximately twice as much intestinal exposure (in days) to Trichinella spiralis to elicit a response half as effective. Genetically, the responder is dominant, autosomal, and does not appear to be linked to the MHC. The characteristics of mouse and rat rapid expulsion of T. spiralis are not identical but share these features: initial rejection within 24 hr of challenge; a rejection efficiency >90%, from 1 to 5 weeks after the primary; induction of response does not require exposure to the complete infection; rapid expulsion is immunologically specific for preadults; adult worms are resistant. While a genetic basis for responsiveness exists in mice there is, as yet, no evidence for genetic control in rats. In both mice and rats, rapid expulsion is distinguished from the intestinal hyperreactivity associated with rejection of the primary infection by the kinetics and amplitude of the rejection of transplanted adult worms.  相似文献   

17.
In this study, Mongolian gerbils were used to analyse features of Toxocara infection that included larval migration, humoral immune responses to Toxocara canis excretory-secretory antigens (TES) and aspects of host physiology. At day 10 post-infection (p.i.) most larvae were in the intestine and the lungs while later the total number of larvae was higher in the carcass tissue; the number of larvae per gram of tissue was lower elsewhere other than in the brain. Infected animals showed several neurological abnormalities, an early increase in leukocyte and neutrophil levels, two peaks of peripheral eosinophilia (5 and 40 d.p.i.) and high antibody levels against TES in the circulation and in the vitreous humor. A sequential recognition of eight T.canis larval antigens with MW from 24 to 200 kDa was detected by Western blot. The results obtained in this study further support the use of gerbils as an experimental model for systemic, ocular and cerebral toxocariasis.  相似文献   

18.
Merino sheep immunized by the adoptive transfer of adult T. colubriformis for 8 weeks were significantly protected against a challenge infection of 20,000 larvae. Two additional groups of sheep received a primary infection of 9000 adult worms which were allowed to persist for 14 weeks before one group was drenched. When both groups were challenged 10 days later with 30,000 larvae, serial necropsies of these and naive sheep revealed that worm rejection did not occur until 7-10 days after challenge. By comparison with the rapid rejection of larval challenges from sheep immunized with normal primary infections, the results suggest that the antigens which elicited rejection in these experiments are stage-specific and were only present or synthesized in sufficient quantities when parasites had developed for 1 week.  相似文献   

19.
Trichinella spiralis whole muscle larval extract was fractionated by gel filtration and anion-exchange chromatography, and the protein fractions were assayed for allergenicity by a footpad-swelling test in mice; IgE antibody levels in rats immunized with the fractions were determined by passive cutaneous anaphylaxis test in rats. By these methods, an allergenic fraction from T. spiralis was isolated. The fraction, F1-b, was shown to be monodisperse by analysis with SDS-PAGE, IEP, and isoelectric focusing, indicating that it is a single protein moiety with a molecular weight of approximately 45,000 and a pI of approximately 5.1. The Schiff-periodate test showed Fl-b to be a glycoprotein. Rats immunized with Fl-b had significantly fewer intestinal worms than did nonimmunized controls at 24 hr and 7 days after oral challenge with T. spiralis larvae.  相似文献   

20.
Sheep immunized with multiple normal infections of 30,000 Trichostrongylus colubriformis larvae (T.c. L3) suppressed the fecundity, establishment and survival of adoptively transferred adult worms, showing that these parasites were susceptible to the effects of host immunity. When sheep were immunized by four 'truncated' larval infections of 4, 7 or 10 days' (d) duration with 10(5) T.c. L3, animals given 4 x 4d infections were susceptible to challenge, whereas sheep given 4 x 7d and 4 x 10d infections were significantly protected. A serial analysis of the rejection of T. colubriformis from nine sheep given 5 x 7d infections revealed that the challenge larval infection given intraduodenally was expelled within 3 days after challenge (DAC). However, another five of these sheep only rejected around 50% of transferred adult worms by 21 DAC when compared with control animals. The results indicate that stage-specific antigens produced by early L3 and L4 stages of T. colubriformis effectively immunize sheep against a larval challenge but appear less reliably protective against adult worms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号