首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paneth cells at the base of small intestinal crypts secrete apical granules that contain antimicrobial peptides including alpha-defensins, termed cryptdins. Using an antibody specific for mouse cryptdin-1, -2, -3, and -6, immunogold-localization studies demonstrated that cryptdins are constituents of mouse Paneth cell secretory granules. Several cryptdin peptides have been purified from rinses of adult mouse small intestine by gel filtration and reverse-phase high performance liquid chromatography. Their primary structures were determined by peptide sequencing, and their antimicrobial activities were compared with those of the corresponding tissue forms. The isolated luminal cryptdins included peptides identical to the tissue forms of cryptdin-2, -4, and -6 as well as variants of cryptdin-1, -4, and -6 that have N termini truncated by one or two residues. In assays of antimicrobial activity against Staphylococcus aureus, Escherichia coli, and the defensin-sensitive Salmonella typhimurium phoP(-) mutant, full-length cryptdins had the same in vitro antibacterial activities whether isolated from tissue or from the lumen. In contrast, the N-terminal-truncated (des-Leu), (des-Leu-Arg)-cryptdin-6, and (des-Gly)-cryptdin-4 peptides were markedly less active. The microbicidal activities of recombinant cryptdin-4 and (des-Gly)-cryptdin-4 peptides against E. coli, and S. typhimurium showed that the N-terminal Gly residue or the length of the cryptdin-4 N terminus are determinants of microbicidal activity. Innate immunity in the crypt lumen may be modulated by aminopeptidase modification of alpha-defensins after peptide secretion.  相似文献   

2.
The thermoanalytical analysis was applied to samples of sublingual, submandibular and parotid glands from sexually mature mice of both sexes. Findings indicated that the three salivary glands show a behaviour of water release characteristic for each type of gland. Derivative thermogravimetry curves concerned with the sublingual and parotid glands belonging to male and female subjects exhibited overlapped results. As regards submandibular gland, instead, some differences emerged between subjects of different sex. Water content and types in sublingual, submandibular and parotid glands were discussed and related to the different morphological expression, histochemical reactivity and chemical composition of these organ tissues.  相似文献   

3.
Human hepatic lipase (hHL) mainly exists cell surface bound, whereas mouse HL (mHL) circulates in the blood stream. Studies have suggested that the carboxyl terminus of HL mediates cell surface binding. We prepared recombinant hHL, mHL, and chimeric proteins (hHLmt and mHLht) in which the carboxyl terminal 70 amino acids of hHL were exchanged with the corresponding sequence from mHL. The hHL, mHL, and hHLmt proteins were catalytically active using triolein and tributyrin as substrates. In transfected cells, the majority of hHLs bound to the cell surface, with only 4% of total extracellular hHL released into heparin-free media, whereas under the same conditions, 61% of total extracellular mHLs were released. Like mHL, hHLmt showed decreased cell surface binding, with 68% of total extracellular hHLmt released. To determine the precise amino acid residues involved in cell surface binding, we prepared a truncated hHL mutant (hHL471) by deleting the carboxyl terminal five residues (KRKIR). The hHL471 also retained hydrolytic activity with triolein and tributyrin, and showed decreased cell surface binding, with 40% of total extracellular protein released into the heparin-free media.These data suggest that the determinants of cell surface binding exist within the carboxyl terminal 70 amino acids of hHL, of which the last five residues play an important role.  相似文献   

4.
The pancreatic islets of Langerhans, and especially the insulin-producing beta cells, play a central role in the maintenance of glucose homeostasis. Alterations in the expression of multiple proteins in the islets that contribute to the maintenance of islet function are likely to underlie the pathogenesis of types 1 and 2 diabetes. To identify proteins that constitute the islet proteome, we provide the first comprehensive proteomic characterization of pancreatic islets for mouse, the most commonly used animal model in diabetes research. Using strong cation exchange fractionation coupled with reversed phase LC-MS/MS we report the confident identification of 17,350 different tryptic peptides covering 2612 proteins having at least two unique peptides per protein. The data set also identified approximately 60 post-translationally modified peptides including oxidative modifications and phosphorylation. While many of the identified phosphorylation sites corroborate those previously known, the oxidative modifications observed on cysteinyl residues reveal potentially novel information suggesting a role for oxidative stress in islet function. Comparative analysis with 15 available proteomic data sets from other mouse tissues and cells revealed a set of 133 proteins predominantly expressed in pancreatic islets. This unique set of proteins, in addition to those with known functions such as peptide hormones secreted from the islets, contains several proteins with as yet unknown functions. The mouse islet protein and peptide database accessible at (http://ncrr.pnl.gov), provides an important reference resource for the research community to facilitate research in the diabetes and metabolism fields.  相似文献   

5.
Purified E. histolytica amylases III to VI were characterized by their hydrolytic behaviour towards 4-nitrophenyl alpha-malto-oligosaccharides, malto-oligosaccharides, amylose, amylopectin, glycogen and Y-cyclodextrin. The influence of specific inhibitors on the amylase activity of E. histolytica was examined and compared with typical alpha- and beta-amylases. Amylases III and IV showed alpha-glucosidase and glucosyltransferase activity by cleaving terminal non-reducing glucose from pNPG1 (III, IV) and pNPG2 to pNPG7 (III). Both enzymes were able to cleave malto-oligosaccharides and glucopolysaccharides to a large number of malto-oligosaccharides. Also transglucosidation reactions were observed, but maltose was not hydrolysed. Amylase V showed exoamylase-like properties by preferentially cleaving maltose units from the non-reducing end of synthetic and biogenic malto-oligosaccharides by a multiple-attack mechanism. Amylase VI was characterized as an alpha-amylase, showing great similarities with porcine pancreatic alpha-amylase in the hydrolysis pattern of 4-nitrophenyl alpha-malto-oligosaccharides and glucopolysaccharides. With biogenic malto-oligosaccharides amylase VI showed a transglucosidation reaction.  相似文献   

6.
7.
The tissue-specific expression of two types of mouse amylase genes does not overlap in vivo; the Amy-1 locus is transcribed in the parotid gland and the liver, while expression of Amy-2 is limited to the pancreas. We identified a mouse hepatoma cell line, Hepa 1-6, in which both amylase genes can be simultaneously expressed. Amy-1 is constitutively active in these cells and is inducible by dexamethasone at the level of mRNA. We demonstrated that the liver-specific promoter of Amy-1 is utilized by the dexamethasone-treated hepatoma cells, and that glucocorticoid consensus sequences are present upstream of this promoter. Amy-2 is not detectable constitutively, but can be activated if the cells are cultured in serum-free medium containing dexamethasone. Expression of Amy-2 in a nonpancreatic cell type has not previously been observed. We speculate that induction of Amy-1 and activation of Amy-2 may involve different regulatory mechanisms. Hepa 1-6 cells provide an experimental system for molecular analysis of these events.  相似文献   

8.
Summary The production of -amylase activity in the yeast Schwanniomyces castellii strain 1402 is repressed in the presence of the non-metabolizable glucose analogue, 2-deoxy-glucose. Selection for resistance to 2-deoxy-glucose after treatment with ethyl methane sulphonate (EMS) or UV light has yielded mutants displaing increased -amylase activities. One such mutant, S. castellii strain 1436, was found to exhibit constitutive -amylase activity in glucose-containing medium. This constitutive enzyme activity was also observed under pilot scale fermentation conditions when the pH was maintained constant at 5.5±0.1. The disaccharide maltose served as a stronger inducer of -amylase activity than the natural substrate starch in both the wild type (1402) and mutant (1436) strains.  相似文献   

9.
Merlino A  Picone D  Ercole C  Balsamo A  Sica F 《Biochimie》2012,94(5):1108-1118
3D domain swapping is the process by which two or more protein molecules exchange part of their structure to form intertwined dimers or higher oligomers. Bovine pancreatic ribonuclease (RNase A) is able to swap the N-terminal α-helix (residues 1-13) and/or the C-terminal β-strand (residues 116-124), thus forming a variety of oligomers, including two different dimers. Cis-trans isomerization of the Asn113-Pro114 peptide group was observed when the protein formed the C-terminal swapped dimer. To study the effect of the substitution of Pro114 on the swapping process of RNase A, we have prepared and characterized the P114A monomeric and dimeric variants of the enzyme. In contrast with previous reports, the crystal structure and NMR data on the monomer reveals a mixed cis-trans conformation for the Asn113-Ala114 peptide group, whereas the X-ray structure of the C-terminal swapped dimer of the variant is very close to that of the corresponding dimer of RNase A. The mutation at the C-terminus affects the capability of the N-terminal α-helix to swap and the stability of both dimeric forms. The present results underscore the importance of the hydration shell in determining the cross-talk between the chain termini in the swapping process of RNase A.  相似文献   

10.
Bombesin (BN), gastrin-releasing peptide (GRP) and GRP(18–27) (neuromedin C) were equipotent and 30-fold more potent than neuromedin B (NMB) in inhibiting binding of 125I-GRP to and in stimulating amylase release from mouse pancreatic acini. In the present study we used 125I-GRP and chemical cross-linking techniques to characterized the mouse pancreatic BN receptor. After binding of 125I-GRP to membranes, and incubation with various chemical cross-linking agents, cross-linked radioactivity was analyzed by SDS-PAG electrophoresis and autoradiography. With each of 4 different chemical cross-linking agents, there was a single broad polypeptide band of Mr 80,000. Cross-linking did not occur in the absence of the cross-linking agent. Cross-linking was inhibited only by peptides that interact with the BN receptor such as GRP, NMB, GRP(18–27) or BN. Dose-inhibition curves for the ability of BN or NMB to inhibit binding of 125I-GRP to membranes or cross-linking to the 80,000 polypeptide demonstrated for both that BN was 15-fold more potent than NMB. The apparent molecular weight of the cross-linked polypeptide was unchanged by adding dithiothreitol. N-Glycanase treatment reduced the molecular weight of the cross-linked peptide to 40,000. The present results indicate that the BN receptor on mouse pancreatic acinar cell membranes resembles that recently described on various tumor cells in being a single glycoprotein with a molecular weight of 76,000. Because dithiothreitol had no effect, this glycoprotein is not a subunit of a larger disulfide-linked structure.  相似文献   

11.
Perilipin A is the most abundant lipid droplet-associated protein in adipocytes and serves important functions in regulating triacylglycerol levels by reducing rates of basal lipolysis and facilitating hormonally stimulated lipolysis. We have previously shown that the central region of perilipin A targets and anchors it to lipid droplets, at least in part via three moderately hydrophobic sequences that embed the protein into the hydrophobic core of the droplet. The current study examines the roles of the amino and carboxyl termini of perilipin A in facilitating triacylglycerol storage. Amino- and carboxyl-terminal truncation mutations of mouse perilipin A were stably expressed in 3T3-L1 preadipocytes, which lack perilipins. Triacylglycerol content of the cells was quantified as a measure of perilipin function and was compared with that of cells expressing full-length perilipin A or control cells lacking perilipins. The amino-terminal sequence between amino acids 122 and 222, including four 10-11-amino acid sequences predicted to form amphipathic beta-strands and a consensus site for cAMP-dependent protein kinase, and the carboxyl terminus of 112 amino acids that is unique to perilipin A were critical to facilitate triacylglycerol storage. The precocious expression of full-length perilipin A in 3T3-L1 preadipocytes aided more rapid storage of triacylglycerol during adipose differentiation. By contrast, the expression of highly truncated amino- or carboxyl-terminal mutations of perilipin failed to serve a dominant negative function in lowering triacylglycerol storage during adipose differentiation. We conclude that the amino and carboxyl termini are critical to the function of perilipin A in facilitating triacylglycerol storage.  相似文献   

12.
L-glutamate was transported into mammary tissue via Na(+)-dependent system XAG- that strongly interacted with both D- and L-isomers of aspartate but only with L-isomer of glutamate. Replacement of Cl- by gluconate from the extracellular medium did not affect the uptake of L-glutamate. Although neutral amino acids weakly inhibited the uptake of L-glutamate, there was no evidence for the heterogeneity of anionic amino acid transport system. The XAG- system was inhibited by sulfhydryl group blocking reagent N-ethylmalemide. Low pH (6) partially inhibited the uptake by L-glutamate by mammary tissue. Prior loading of mammary tissue with L-glutamate slightly down regulated its uptake. Culturing pregnant mouse mammary tissue explants in vitro in the presence of lactogenic hormones (insulin plus cortisol plus prolactin) did not affect appreciably the uptake of L-glutamate.  相似文献   

13.
The transactivation functions of the human androgen receptor (hAR) are regulated by several accessory factors that can be either positive or negative. One factor that has been previously shown to mediate hAR transactivation is the proto-oncoprotein c-Jun. The positive effect is a primary one, can be exerted by both endogenous and exogenous c-Jun, and requires multiple regions of c-Jun. However, the exact mechanism by which c-Jun exerts its enhancing function is unknown. In this study, we have used a mammalian two-hybrid system to ask if c-Jun influences the ligand-dependent amino- to carboxyl-terminal (N-to-C) interaction of hAR, which is thought to be responsible for the homodimerization of this receptor. Our results show that c-Jun enhances both hAR N-to-C terminal interaction and DNA binding in vitro. We have also tested a panel of c-Jun and c-Fos mutants for their activities on the N-to-C interaction, and the data demonstrate that the activities of these mutants parallel their activities on hAR transactivation. A mutation in the hAR activation function-2 (AF-2) abrogates N-to-C interaction, DNA binding, and transactivation, and these activities are not rescued by exogenous c-Jun. Interestingly, the p160 coactivator TIF2 can stimulate hAR N-to-C interaction, a finding consistent with the effect on hAR transactivation. These data strongly suggest that the hAR N-to-C interaction is the target of c-Jun action, and this activity requires a functional receptor AF-2.  相似文献   

14.
15.
16.
17.
The isozymes of porcine pancreatic α-amylase were reduced with dithiothreitol to two enzymatically active subunits which had molecular weights of 25,000 daltons each. These subunits could be isolated and separated from each other by chromatography on DEAE-cellulose. Subsequent treatment of the subunits with EDTA, DTT, and iodoacetamide gave derivatives that emerged in identical elution volumes from DEAE-cellulose columns and that migrated very rapidly and identically on disc-gel electrophoresis. These latter experiments suggested that the subunits might have similar primary structures. This hypothesis was tested by preparing tryptic peptide maps of the subunits. The results indicated that the subunits had very similar, if not identical, primary structures.  相似文献   

18.
An electrophoretic polymorphism of salivary amylases (Amy-1) in mastomys (Praomys coucha) (MWC, MRJ and MCC strains) was detected. Amylase in MWC or MRJ saliva, which migrated fast toward the anode, was designated as AMY-1A, and that in MCC saliva migrating slowly as AMY-1B. Salivary amylases are controlled by a pair of codominant alleles at a single autosomal locus (Amy-1). No polymorphism was seen in pancreatic amylases (Amy-2). The frequencies of these phenotypes did not differ between the sexes. Some isoamylases were observed and these were different from those in mouse or rat.  相似文献   

19.
We have determined the partial molar volumes and adiabatic compressibilities of a homologous series of six alpha,omega-aminocarboxylic acids over a broad pH range at 25 degrees C. We interpret the resulting data in terms of the changes in hydration associated with neutralization of amino and carboxyl termini. By combining our volumetric results with pH-dependent data on 1-anilinonaphthalene-8-sulfonic acid fluorescence we propose the following explanation to the long-standing observation that changes in volume and compressibility accompanying neutralization of a carboxyl group depend on the type of the solute in contrast to solute-independent changes in these parameters accompanying neutralization of an amino group. Unlike amino groups, neutralized carboxyl groups are capable of forming hydrogen-bonded structures stabilized by hydrogen bonds between the carbonyl oxygen of one solute molecule and the hydroxyl group of another molecule. Formation of such hydrogen-bonded structures causes an additional decrease in solute hydration with concomitant increases in volume and compressibility. Furthermore, solutes with large aliphatic moieties may form larger associates stabilized, in addition to intermolecular hydrogen bonds, by hydrophobic interactions which will result in further increases in volume and compressibility. In the aggregate, our results emphasize the need for further studies focused on developing an understanding of the role of electrostatic interactions in stabilizing/destabilizing proteins and protein complexes.  相似文献   

20.
Intramolecular interactions between the amino and carboxy termini of apolipoprotein A-I (apoAI) are believed to stabilize the helix bundle conformation of the protein. During lipid assembly the protein undergoes conformational changes that result in an exposure of the carboxy terminus and its insertion into the lipid phase. To determine the role of the two termini in the energetics of unfolding, we studied the guanidine-hydrochloride-induced unfolding and refolding of apoAI as well as its N-terminal deletion (del[1-43]), C-terminal deletion (del[186-243]), and the double deletion containing only the central residues 44-185. Thermodynamic analysis of the equilibrium unfolding measured by fluorescence spectroscopy revealed the presence of an intermediate unfolded state (I(equil)) in addition to the native (N) and unfolded states. Refolding kinetics of apoAI, measured by stopped-flow circular dichroism, revealed two kinetic intermediates, I(burst) and I(recovery). Computer modeling suggested that the first resembles the partially unfolded protein, whereas the second overlaps with the native state of the protein. The free energy changes for the N --> I(equil) transition of the N-terminal and double deletions were lower then that of the full-length form, whereas that for the C-terminal deletion was higher. Our findings suggest that the N-terminus of apoAI stabilizes the native state of the protein by increasing the Eyring energy barrier for the N --> I(equil) unfolding transition; whereas the carboxyl terminus destabilizes that state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号