首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new principle for expression of heat-sensitive recombinant proteins in Escherichia coli at temperatures close to 4°C was experimentally evaluated. This principle was based on simultaneous expression of the target protein with chaperones (Cpn60 and Cpn10) from a psychrophilic bacterium, Oleispira antarctica RB8T, that allow E. coli to grow at high rates at 4°C (maximum growth rate, 0.28 h−1) (M. Ferrer, T. N. Chernikova, M. Yakimov, P. N. Golyshin, and K. N. Timmis, Nat. Biotechnol. 21:1266-1267, 2003). The expression of a temperature-sensitive esterase in this host at 4 to 10°C yielded enzyme specific activity that was 180-fold higher than the activity purified from the non-chaperonin-producing E. coli strain grown at 37°C (32,380 versus 190 μmol min−1 g−1). We present evidence that the increased specific activity was not due to the low growth temperature per se but was due to the fact that low temperature was beneficial to folding, with or without chaperones. This is the first report of successful use of a chaperone-based E. coli strain to express heat-labile recombinant proteins at temperatures below the theoretical minimum growth temperature of a common E. coli strain (7.5°C).  相似文献   

2.
The growth of Escherichia coli cells is impaired at temperatures below 21 degrees C and stops at 7.5 degrees C; however, growth of a transgenic strain producing the cold-adapted chaperones Cpn60 and Cpn10 from the psychrophilic bacterium Oleispira antarctica is good at low temperatures. The E. coli cpn(+) transgene offers a novel opportunity for examining the essential protein for cell viability at low temperatures. By screening a large-scale protein map (proteome) of cells of K-12 and its Cpn(+) transgene incubated at 4 degrees C, we identified 22 housekeeping proteins involved in systems failure of E. coli when confronted with low temperature. Through co-immunoprecipitation of Cpn60, Northern blot, and in vitro refolding, we systematically identified that protein-chaperone interactions are key determinants of their protein functions at low temperatures. Furthermore, chromosomal gene deletion experiments suggest that the mechanism of cold-induced systems failure in E. coli is cold-induced inactivation of the GroELS chaperonins and the resulting failure to refold cold-inactivated Dps, ClpB, DnaK and RpsB proteins. These findings: (1) indicate the potential importance of chaperones in cold sensitivity, cold adaptation and cold tolerance in cellular systems, and (2) suggest the identity of a few key cold-sensitive chaperone-interacting proteins that get inactivated and ultimately cause systems failure in E. coli cells at low temperatures.  相似文献   

3.
The cpn60 and cpn10 genes from psychrophilic bacterium, Oleispira antarctica RB8, showed a positive effect in Escherichia coli growth at low temperature, shifting its theoretical minimal growth temperature from +7.5 degrees C to -13.7 degrees C [Ferrer, M., Chernikova, T.N., Yakimov, M., Golyshin, P.N., and Timmis, K.N. (2003) Nature Biotechnol 21: 1266-1267]. To provide experimental support for this finding, Cpn60 and 10 were overproduced in E. coli and purified to apparent homogeneity. Recombinant O.Cpn60 was identical to the native protein based on tetradecameric structure, and it dissociates during native PAGE. Gel filtration and native PAGE revealed that, in vivo and in vitro, (O.Cpn60)(7) was the active oligomer at 4-10 degrees C, whereas at > 10 degrees C, this complex was converted to (O.Cpn60)(14). The dissociation reduces the ATP consumption (energy-saving mechanism) and increases the refolding capacity at low temperatures. In order for this transition to occur, we demonstrated that K468 and S471 may play a key role in conforming the more advantageous oligomeric state in O.Cpn60. We have proved this hypothesis by showing that single and double mutations in K468 and S471 for T and G, as in E.GroEL, produced a more stable double-ring oligomer. The optimum temperature for ATPase and chaperone activity for the wild-type chaperonin was 24-28 degrees C and 4-18 degrees C, whereas that for the mutants was 45-55 degrees C and 14-36 degrees C respectively. The temperature inducing unfolding (T(M)) increased from 45 degrees C to more than 65 degrees C. In contrast, a single ring mutant, O.Cpn60(SR), with three amino acid substitutions (E461A, S463A and V464A) was as stable as the wild type but possessed refolding activity below 10 degrees C. Above 10 degrees C, this complex lost refolding capacity to the detriment of the double ring, which was not an efficient chaperone at 4 degrees C as the single ring variant. We demonstrated that expression of O.Cpn60(WT) and O.Cpn60(SR) leads to a higher growth of E. coli at 4 degrees C ( micro (max), 0.22 and 0.36 h(-1) respectively), whereas at 10-15 degrees C, only E. coli cells expressing O.Cpn60 or O.Cpn60(DR) grew better than parental cells (-cpn). These results clearly indicate that the single-to-double ring transition in Oleispira chaperonin is a wild-type mechanism for its thermal acclimation. Although previous studies have also reported single-to-double ring transitions under many circumstances, this is the first clear indication that single-ring chaperonins are necessary to support growth when the temperature falls from 37 degrees C to 4 degrees C.  相似文献   

4.
Pyrococcus furiosus, a hyperthermophilic archaeon growing optimally at 100 degrees C, encodes three protein chaperones, a small heat shock protein (sHsp), a prefoldin (Pfd), and a chaperonin (Cpn). In this study, we report that the passive chaperones sHsp and Pfd from P. furiosus can boost the protein refolding activity of the ATP-dependent Cpn from the same hyperthermophile. The thermo-stability of Taq polymerase was significantly improved by combinations of P. furiosus chaperones, showing ongoing protein folding activity at elevated temperatures and during thermal cycling. Based on these results, we propose that the protein folding apparatus in the hyperthermophilic archaeon, P. furiosus can be utilized to enhance the durability and cost effectiveness of high temperature biocatalysts.  相似文献   

5.
The cpn60 gene from Bacillus strain MS, which is highly homologous to Bacillus stearothermophilus, was cloned. Cpn60 with a hexahistidine affinity tag (His)(6) fused to its C-terminus (cpn60-(His)(6)) was overproduced in Escherichia coli. Cpn60-(His)(6) was expressed in a soluble form in E. coli. and purified to homogeneity in a single step by nickel chelate affinity chromatography. Cpn60-(His)(6) formed a tetradecamer and had ATPase activity. Cpn60-(His)(6) mediated refolding of guanidine hydrochloride unfolded pig heart malic dehydrogenase (MDH) and Thermus flavus MDH at 25 and 70 degrees C, respectively, in an ATP-dependent manner. In addition, cpn60-(His)(6) prevented heat denaturation of pig heart MDH and T. flavus MDH at 30 and 80 degrees C, respectively, in an ATP-dependent manner. Therefore, cpn60-(His)(6) facilitates protein refolding and prevents heat denaturation of proteins across a wide temperature range.  相似文献   

6.
短双歧杆菌(Bifidobacterium breve 203)α_D_半乳糖苷酶基因(aga1)被克隆到大肠杆菌温度诱导表达质粒pBV220中,构建重组质粒pBVaga1,转入大肠杆菌进行温度诱导表达,得到的重组酶Aga1在大肠杆菌DH5α、DH10B和BL21中的比活分别为28.08、19.44和13.85U/mg, 均高于短双歧杆菌α_D_半乳糖苷酶的比活1.76U/mg。重组质粒pBVaga1在E. coli BL21中稳定性较好。重组酶Aga1蛋白亚基分子量约67kD,最适反应温度为45℃,酶在40℃以下稳定,60℃仅剩余约5%的酶活性,70℃时酶全部失活;最适反应pH为4.0~4.4,酶在pH 3.6~6.0范围内稳定;酶对p_硝基苯酚_α_半乳糖苷的Km=1.43mmol/L,Vmax=35.71μmol/(L·min),对蜜二糖的Km=261mmol/L,Vmax=63.69μmol/(L·min);酶在蜜二糖、棉子糖水解体系中不显示转糖基活性。结果说明Aga1与已经报道的一种短双歧杆菌的α_D_半乳糖苷酶不同,是新发现的一种短双歧杆菌的α_D_半乳糖苷酶。  相似文献   

7.
Cooperative unfolding of Escherichia coli ribosome recycling factor (RRF) and its implication for function were investigated by comparing the in vitro unfolding and the in vivo activity of wild-type E. coli RRF and its temperature-sensitive mutant RRF(V117D). The experiments show that mutation V117D at domain I could perturb the domain II structure as evidenced in the near-UV CD and tyrosine fluorescence spectra though no significant globular conformation change occurred. Both equilibrium unfolding induced by heat or denaturant and kinetic unfolding induced by denaturant obey the two-state transition model, indicating V117D mutation does not perturb the efficient interdomain interaction, which results in cooperative unfolding of the RRF protein. However, the mutation significantly destabilizes the E. coli RRF protein, moving the thermal unfolding transition temperature range from 50-65 to 35-50 degrees C, which spans the non-permissive temperature for the growth of E. coli LJ14 strain (frr(ts)). The in vivo activity assays showed that although V117D mutation results in a temperature sensitive phenotype of E. coli LJ14 strain (frr(ts)), over-expression of mutant RRF(V117D) can eliminate the temperature sensitive phenotype at the non-permissive temperature (42 degrees C). Taking all the results into consideration, it can be suggested that the mechanism of the temperature sensitive phenotype of the E. coli LJ14 cells is due to inactivation of mutant RRF(V117D) caused by unfolding at the non-permissive temperatures.  相似文献   

8.
In the causative agent of syphilis, Treponema pallidum, the gene encoding 3-phosphoglycerate mutase, gpm, is part of a six-gene operon (tro operon) that is regulated by the Mn-dependent repressor TroR. Since substrate-level phosphorylation via the Embden-Meyerhof pathway is the principal way to generate ATP in T. pallidum and Gpm is a key enzyme in this pathway, Mn could exert a regulatory effect on central metabolism in this bacterium. To study this, T. pallidum gpm was cloned, Gpm was purified from Escherichia coli, and antiserum against the recombinant protein was raised. Immunoblots indicated that Gpm was expressed in freshly extracted infective T. pallidum. Enzyme assays indicated that Gpm did not require Mn(2+) while 2,3-diphosphoglycerate (DPG) was required for maximum activity. Consistent with these observations, Mn did not copurify with Gpm. The purified Gpm was stable for more than 4 h at 25 degrees C, retained only 50% activity after incubation for 20 min at 34 degrees C or 10 min at 37 degrees C, and was completely inactive after 10 min at 42 degrees C. The temperature effect was attenuated when 1 mM DPG was added to the assay mixture. The recombinant Gpm from pSLB2 complemented E. coli strain PL225 (gpm) and restored growth on minimal glucose medium in a temperature-dependent manner. Increasing the temperature of cultures of E. coli PL225 harboring pSLB2 from 34 to 42 degrees C resulted in a 7- to 11-h period in which no growth occurred (compared to wild-type E. coli). These data suggest that biochemical properties of Gpm could be one contributing factor to the heat sensitivity of T. pallidum.  相似文献   

9.
对人b防御素3和植物甜蛋白des-pGlu1-Brazzein嵌合基因的工程菌株BL-pET-hBD3-Bra的IPTG诱导表达条件进行了研究, 同时对所表达的目的蛋白进行了纯化和活性分析。IPTG浓度、诱导时间和诱导温度对菌株生长和目的蛋白表达的试验结果显示: 所取的IPTG浓度(0.2~1.0 mmol/L)对菌株生长和目的蛋白的表达无显著影响(P>0.05); 菌株的生物量随着诱导时间的延长而增加, 6 h优于4 h(P<0.01), 但是蛋白的表达量无明显增加(P>0.05); 其中温度是重要的影响因素, 在30°C诱导时, 目的蛋白的表达量占总蛋白的35%左右。进一步的研究表明, 菌株在30°C~32°C生长, 在 30°C诱导最优。对目的蛋白的活性分析表明, 所得到的hBD3-Bra融合蛋白有甜味, 其甜度大约是蔗糖的200倍, 但是其杀菌活性很弱, 经凝血酶切割后, des-pGlu1-Brazzein的甜度大大提高, 大约为蔗糖甜度的600倍, 重组hBD3对大肠杆菌和金黄色葡萄球菌有明显的抑菌活性。  相似文献   

10.
Escherichia coli cells are the most commonly used host cells for large-scale production of recombinant proteins, but some proteins are difficult to express in E. coli. Therefore, we tested the nocardioform actinomycete Rhodococcus erythropolis, which grows at temperatures ranging from 4 to 35 degrees C, as an expression host cell. We constructed inducible expression vectors, where the expression of the target genes could be controlled with the antibiotic thiostrepton. Using these expression vectors, several milligrams of reporter proteins could be isolated from 1 liter of culture of R. erythropolis cells grown at a temperature range from 4 to 35 degrees C. Moreover, we successfully purified serum amyloid A1, NADH dehydorogenase 1 alpha subcomplex 4, cytochrome b5-like protein, apolipoprotein A-V, cathepsin D, pancreatic Rnase, and HMG-1 that are all difficult to express in E. coli. In the case of kallikrein 6, mouse deoxyribonuclease I and Kid1, which are also difficult to express in E. coli, the expression level of each protein increased when proteins were expressed at low temperature (4 degrees C). Based on these results, we conclude that a recombinant protein expression system using R. erythropolis as the host cell is superior to respective E. coli systems.  相似文献   

11.
The gene encoding alkaline phosphatase from the psychrotrophic bacterium Shewanella sp. SIB1 was cloned, sequenced, and overexpressed in Escherichia coli. The recombinant protein was purified and its enzymatic properties were compared with those of E. coli alkaline phosphatase (APase), which shows an amino acid sequence identity of 37%. The optimum temperature of SIB1 APase was 50 degrees C, lower than that of E. coli APase by 30 degrees C. The specific activity of SIB1 APase at 50 degrees C was 3.1 fold higher than that of E. coli APase at 80 degrees C. SIB1 APase lost activity with a half-life of 3.9 min at 70 degrees C, whereas E. coli APase lost activity with a half-life of >6 h even at 80 degrees C. Thus SIB1 APase is well adapted to low temperatures. Comparison of the amino acid sequences of SIB1 and E. coli APases suggests that decreases in electrostatic interactions and number of disulfide bonds are responsible for the cold-adaptation of SIB1 APase.  相似文献   

12.
The chaperonins GroEL and Cpn60 were isolated from the cyanobacterium Synechocystis PCC 6803 and characterized. In cells grown under optimal conditions their ratio was about one to one. However, the amount of GroEL increased considerably more than that of Cpn60 in response to heat stress. The labile chaperonin oligomer required stabilization by MgATP or glycerol during isolation. Use of the E. coli mutant strain, groEL44 revealed that the functional properties of the two cyanobacterial chaperonins are strikingly different. Overexpression of cyanobacterial GroEL in the E. coli mutant strain allowed growth at elevated temperature, the formation of mature bacteriophage T4, and active Rubisco enzyme assembly. In contrast, Cpn60 partially complemented the temperature-sensitive phenotype, the Rubisco assembly defect and did not promote the growth of the bacteriophage T4. The difference in chaperone activity of the two cyanobacterial chaperonins very probably reflects the unique chaperonin properties required during the life of Synechocystis PCC 6803.  相似文献   

13.
Over last two decades many researchers have demonstrated the mechanisms of how the Escherichia coli chaperonin GroEL and GroES work in the binding and folding of different aggregation prone substrate proteins both in vivo and in vitro. However, preliminary aspects, such as influence of co-expressing GroEL and GroES on the over expression of other recombinant proteins in E. coli cells and subsequent growth aspects, as well as the conditions for optimum production of recombinant proteins in presence of recombinant chaperones have not been properly investigated. In the present study we have demonstrated the temperature dependent growth characteristics of E. coli cells, which are over expressing recombinant aconitase and how the co-expression of E. coli chaperonin GroEL and GroES influence the growth rate of the cells and in vivo folding of recombinant aconitase. Presence of co-expressed GroEL reduces the aconitase over-expression drastically; however, exogenous GroEL & GroES together compensate this reduction. For the aconitase over-expressing cells the growth rate decreases by 30% at 25 degrees C when compared with the M15 E. coli cells, however, there is an increase of 20% at 37 degrees C indicating the participation of endogenous chaperonin in the folding of a fraction of over expressed aconitase. However, in presence of co-expressed GroEL and GroES the growth rate of aconitase producing cells was enhanced by 30% at 37 degrees C confirming the assistance of exogenous chaperone system for the folding of recombinant aconitase. Optimum in vivo folding of aconitase requires co-production of complete E. coli chaperonin machinery GroEL and GroES together.  相似文献   

14.
High-temperature-oriented production of bacterial penicillin acylase (PAC), which is usually expressed at low temperatures (less than 30 degrees C), was demonstrated in this study via heterologous expression of the Providencia rettgeri (P. rettgeri) pac gene in Escherichia coli (E. coli). While it is possible to produce PAC at a temperature as high as 37 degrees C, the environmental condition (specifically, culture pH) critically affected culture performance. Production of PAC at 37 degrees C was feasible only when culture pH was close to neutral (i.e., 6.5-7.5). Outside this pH range, cell physiology for the host/vector system was seriously affected, resulting in poor culture performance. In acidic culture environments, temperature significantly affected the pac expression level and specific PAC activity decreased with an increase in culture temperature. In basic culture environments, cell growth was seriously inhibited though the pac expression level was minimally affected by temperature. Such unusual types of pH and temperature effects on pac expression were never reported for bacterial PACs. The results suggest that culture pH should be precisely controlled for the current host/vector systems being applied on the overproduction of P. rettgeri PAC in E. coli at high temperatures.  相似文献   

15.
Endostatin, a 20kDa C-terminal fragment of collagen XVIII, is a potent anti-angiogenic protein and inhibitor of tumor growth. Recombinant endostatin was prepared from Escherichia coli deposited as insoluble, inactive inclusion bodies. In the present study, we produced soluble and biologically active recombinant human endostatin (rhEndostatin) in E. coli by employing both co-expression of the molecular chaperones and lower temperature fermentation. Two groups of chaperones Trigger factor and GroEL-GroES (GroEL/ES), DnaK-DnaJ-GrpE and GroEL/ES, were co-expressed, respectively, with rhEndostatin at different temperatures (37, 25, and 16 degrees C). It revealed that low temperature or molecular chaperones alone could enhance the production of active rhEndostatin; meanwhile, combinational employment of low temperature cultivation (16 degrees C) together with co-expression of DnaK-DnaJ-GrpE and GroEL/ES was more effective to prevent aggregation of rhEndostatin. The production of soluble rhEndostatin was about 36 mg/L, and at least 16 mg of rhEndostatin was purified from 1L flask culture. The purified rhEndostatin specifically inhibited the proliferation of endothelial cell-bovine capillary endothelial cell in a dose-dependent manner, and it showed potent anti-angiogenic capability on the chorioallantoic membrane of chick embryo in vivo. Our study provides a feasible and convenient approach to produce soluble and biologically active rhEndostatin.  相似文献   

16.
Escherichia coli mutant MM52 (secA(ts)) was transformed with a cosmid library from Staphylococcus carnosus, and a recombinant cosmid (pBO23) allowing growth at the non-permissive temperature (42 degrees C) was isolated. pBO23 also restored the growth defects of E. coli mutants IQ85 (secY(ts)) and IT41 (lep(ts)). Nucleotide sequencing revealed that the DNA fragment responsible for the suppression effect codes for a S. carnosus protein highly homologous to the ribosomal protein L13 of E. coli. The staphylococcal L13 protein was efficiently incorporated into E. coli ribosomes. Possible explanations for the effect of this polypeptide on the growth of temperature-sensitive E. coli secretion mutants are discussed.  相似文献   

17.
The rnhA gene encoding RNase HI from a psychrotrophic bacterium, Shewanella sp. SIB1, was cloned, sequenced and overexpressed in an rnh mutant strain of Escherichia coli. SIB1 RNase HI is composed of 157 amino acid residues and shows 63% amino acid sequence identity to E.coli RNase HI. Upon induction, the recombinant protein accumulated in the cells in an insoluble form. This protein was solubilized and purified in the presence of 7 M urea and refolded by removing urea. Determination of the enzymatic activity using M13 DNA-RNA hybrid as a substrate revealed that the enzymatic properties of SIB1 RNase HI, such as divalent cation requirement, pH optimum and cleavage mode of a substrate, are similar to those of E.coli RNase HI. However, SIB1 RNase HI was much less stable than E.coli RNase HI and the temperature (T(1/2)) at which the enzyme loses half of its activity upon incubation for 10 min was approximately 25 degrees C for SIB1 RNase HI and approximately 60 degrees C for E.coli RNase HI. The optimum temperature for the SIB1 RNase HI activity was also shifted downward by 20 degrees C compared with that of E.coli RNase HI. Nevertheless, SIB1 RNase HI was less active than E.coli RNase HI even at low temperatures. The specific activity determined at 10 degrees C was 0.29 units/mg for SIB1 RNase HI and 1.3 units/mg for E.coli RNase HI. Site-directed mutagenesis studies suggest that the amino acid substitution in the middle of the alphaI-helix (Pro52 for SIB1 RNase HI and Ala52 for E.coli RNase HI) partly accounts for the difference in the stability and activity between SIB1 and E.coli RNases HI.  相似文献   

18.
AIMS: To investigate the behaviour of cold-adapted, log phase Escherichia coli exposed to temperatures that fluctuate below and above the minimum for growth. METHODS AND RESULTS: Log phase E. coli cultures were incubated at a constant temperature of 2, 4 or 6 degrees C or with temperatures allowed to increase from those temperatures for 35 min, to 10 degrees C, at 6-, 12- or 24-h intervals, as commonly occurs during retail display of chilled foods. At suitable intervals for each culture, the optical absorbance value was determined using a spectrophotometer, the forward angle light scatter was determined using a flow cytometer, and portions were spread on plate count agar for enumeration of colony forming units (CFU). Numbers of CFU decreased by 3 log units or increased by 1 log unit for cultures incubated at 6 degrees C for 17 days without or with temperatures fluctuations at < or =12-h intervals, respectively. Cells elongated when cultures were incubated at 4 or 2 degrees C with temperatures fluctuating at 6-h intervals, and at 6 degrees C at constant or fluctuating temperatures, but cells did not elongate in cultures incubated at a constant temperature of 2 or 4 degrees C. SIGNIFICANCE AND IMPACT OF THE STUDY: The minimum growth temperature of E. coli is assumed to be > or =7 degrees C. Elongated cells were able to divide when temperatures rose from 6 degrees C to above 7 degrees C for <45 min at < or =12-h intervals. Such temperature fluctuations may be experienced by chilled foods during defrosting cycles of retail display cases. The finding that cells behave differently under fluctuating than at constant temperatures may significantly affect understanding of appropriate temperatures for the safe storage of chilled foods and for predictive modelling of bacterial growth in such foods.  相似文献   

19.
Members of the multifunctional Cyp family have been isolated from a wide range of organisms. However, few functional studies have been performed on the role of these proteins as chaperones in red alga. For studying the function of cDNA GjCyp-1 isolated from the red alga (Griffithsia japonica), we expressed and purified a recombinant GjCyp-1 containing a hexahistidine tag at the amino-terminus in Escherichia coli. An expressed fusion protein, H6GjCyp-1 maintained the stability of E. coli proteins up to 50 degrees C. For a functional bioassay for recombinant H6GjCyp-1, the viability of E. coli cells overexpressing H6GjCyp-1 was compared with that of cells not expressing H6GjCyp-1 at 50 degrees C. After high temperature treatment for 1 h, E. coli overexpressing H6GjCyp-1 survived about three times longer than E. coli lacking H6GjCyp-1. Measurement of the light scattering of luciferase (luc) showed that GjCyp-1 prevents the aggregation of luc during mild heat stress and that the thermoprotective activity of GjCyp-1 is blocked by cyclosporin A (CsA), an inhibitor of Cyps. Furthermore, the Cyp-CsA complex inhibited the growth of E. coli under normal conditions. The results of the GjCyp-1 bioassays as well as in vitro studies strongly suggest that Cyp confers thermotolerance to E. coli.  相似文献   

20.
When Escherichia coli was incubated at the growth-refractory temperatures of 48 and 54 degrees C, expression of the cel operon was demonstrated by phospho-beta-glucosidase activity. This enzyme activity was also detected at the growth-refractory temperatures in Salmonella typhimurium and Pseudomonas aeruginosa. Thermotolerant and mesothermophilic mutants of E. coli, S. typhimurium, and P. aeruginosa, able to grow with generation times of 30 to 40 min at 48 and 54 degrees C, exhibited phospho-beta-glucosidase activity at their growth temperatures of 48 and 54 degrees C. Thus, the cel operon previously described as a cryptic operon in E. coli and S. typhimurium was found to be expressed at growth-refractory temperatures of the mesophilic parent and growth-permissive temperatures (48 and 54 degrees C) of the thermotolerant and mesothermophilic mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号