首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The Mediterranean climate region of central Chile is rich in biodiversity and contains highly productive agricultural lands, which creates challenges for the preservation of natural habitats and native biodiversity. Ecological data and studies for the region are also limited, making informed conservation in agricultural landscapes difficult. The increasing availability of remotely sensed data provide opportunities to relate species occurrences to measures of landscape heterogeneity even when field measures of habitat structure are lacking. When working with such remotely sensed data, it’s important to select appropriate measures of heterogeneity, including common metrics of landscape composition as well as frequently overlooked shape metrics. In this contribution we combine bird surveys with multispectral satellite imagery to develop boosted regression tree models of avian species richness, and of habitat use for 15 species across a mixed vineyard-matorral landscape in central Chile. We found a range of associations between individual species and land cover types, with the majority of species occurring most frequently in remnant habitats and ecotones rather than the interiors of large vineyard blocks. Models identified both metrics of landscape composition and patch shape as being important predictors of species occurrence, suggesting that shape metrics can complement more commonly used metrics of landscape composition. Vineyards that include corridors or islands of remnant habitat among vine blocks may increase the amount of area available to many species, although some species may still require large tracts of intact natural habitat to persist.  相似文献   

2.
Cleary DF 《Oecologia》2003,135(2):313-321
The impact of disturbance on species diversity may be related to the spatial scales over which it occurs. Here I assess the impact of logging and ENSO (El Niño Southern Oscillation) -induced burning and forest isolation on the species richness (477 species out of more than 28,000 individuals) and community composition of butterflies and butterfly guilds using small (0.9 ha) plots nested within large (450 ha) landscapes. The landscapes were located in three habitat classes: (1) continuous, unburned forest; (2) unburned isolates surrounded by burned forest; and (3) burned forest. Plots with different logging histories were sampled within the two unburned habitat classes, allowing for independent assessment of the two disturbance factors (logging and burning). Disturbance within habitat classes (logging) had a very different impact on butterfly diversity than disturbance among habitat classes (due to ENSO-induced burning and isolation). Logging increased species richness, increased evenness, and lowered dominance. Among guilds based on larval food plants, the species richness of tree and herb specialists was higher in logged areas but their abundance was lower. Both generalist species richness and abundance was higher in logged areas. Among habitat classes, species richness was lower in burned forest and isolates than continuous forest but there was no overall difference in evenness or dominance. Among guilds, generalist species richness was significantly lower in burned forest and isolates than continuous forest. Generalist abundance was also very low in the isolates. There was no difference among disturbance classes in herb specialist species richness but abundance was significantly higher in the isolates and burned forest than in continuous forest. Tree specialist species richness was lower in burned forest than continuous forest but did not differ between continuous forest and isolates.The scale of assessment proved important in estimating the impact of disturbance on species richness. Within disturbance classes, the difference in species richness between primary and logged forest was more pronounced at the smaller spatial scale. Among disturbance classes, the difference in species richness between continuous forest and isolates or burned forest was more pronounced at the larger spatial scale. The lower levels of species richness in ENSO-affected areas and at the larger (landscape) spatial scale indicate that future severe ENSO events may prove one of the most serious threats to extant biodiversity.  相似文献   

3.
Information on the spatial distribution and composition of biological communities is essential in designing effective strategies for biodiversity conservation and management. Reliable maps of species richness across the landscape can be useful tools for these purposes. Acquiring such information through traditional survey techniques is costly and logistically difficult. The kriging interpolation method has been widely used as an alternative to predict spatial distributions of species richness, as long as the data are spatially dependent. However, even when this requirement is met, researchers often have few sampled sites in relation to the area to be mapped. Remote sensing provides an inexpensive means to derive complete spatial coverage for large areas and can be extremely useful for estimating biodiversity. The aim of this study was to combine remotely sensed data with kriging estimates (hybrid procedures) to evaluate the possibility of improving the accuracy of tree species richness maps. We did this through the comparison of the predictive performance of three hybrid geostatistical procedures, based on tree species density recorded in 141 sampling quadrats: co-kriging (COK), kriging with external drift (KED), and regression kriging (RK). Reflectance values of spectral bands, computed NDVI and texture measurements of Landsat 7 TM imagery were used as ancillary variables in all methods. The R2 values of the models increased from 0.35 for ordinary kriging to 0.41 for COK, and from 0.39 for simple regression estimates to 0.52 and 0.53 when using simple KED and RK, respectively. The R2 values of the models also increased from 0.60 for multiple regression estimates to 0.62 and 0.66 when using multiple KED and RK, respectively. Overall, our results demonstrate that these procedures are capable of greatly improving estimation accuracy, with multivariate RK being clearly superior, because it produces the most accurate predictions, and because of its flexibility in modeling multivariate relationships between tree richness and remotely sensed data. We conclude that this is a valuable tool for guiding future efforts aimed at conservation and management of highly diverse tropical forests.  相似文献   

4.
Large‐scale modifications of natural ecosystems lead to mosaics of natural, semi‐natural and intensively used habitats. To improve communication in conservation planning, managers and other stakeholders need spatially explicit projections at the landscape scale of future biodiversity under different land‐use scenarios. For that purpose, we visualized the potential effect of five forest management scenarios on the avifauna of Kakamega Forest, western Kenya using different measures of bird diversity and GIS data. Future projections of bird diversity combined: (1) remotely sensed data on the spatial distribution of different forest management types; (2) field‐based data on the biodiversity of birds in the different management types; and (3) forest management scenarios that took into account possible views of various stakeholder groups. Management scenarios based on the species richness of forest specialists were very informative, because they reflected differences in the proportions of near‐natural forest types among the five scenarios. Projections based on community composition were even more meaningful, as they mirrored not only the proportions of near‐natural forest types, but also their perimeter to area ratios. This highlights that it is important to differentiate effects of the total area of available habitat and the degree of habitat fragmentation, both for species richness and community composition. Furthermore, our study shows that an approach that combines land‐use scenarios, remote sensing and field data on biodiversity can be used to visualize future biodiversity. As such, visualizations of alternative scenarios are valuable for successful communication about conservation planning considering different groups of stakeholders in species‐rich tropical forests.  相似文献   

5.
Applications of remote sensing for biodiversity conservation typically rely on image classifications that do not capture variability within coarse land cover classes. Here, we compare two measures derived from unclassified remotely sensed data, a measure of habitat heterogeneity and a measure of habitat composition, for explaining bird species richness and the spatial distribution of 10 species in a semi-arid landscape of New Mexico. We surveyed bird abundance from 1996 to 1998 at 42 plots located in the McGregor Range of Fort Bliss Army Reserve. Normalized Difference Vegetation Index values of two May 1997 Landsat scenes were the basis for among-pixel habitat heterogeneity (image texture), and we used the raw imagery to decompose each pixel into different habitat components (spectral mixture analysis). We used model averaging to relate measures of avian biodiversity to measures of image texture and spectral mixture analysis fractions. Measures of habitat heterogeneity, particularly angular second moment and standard deviation, provide higher explanatory power for bird species richness and the abundance of most species than measures of habitat composition. Using image texture, alone or in combination with other classified imagery-based approaches, for monitoring statuses and trends in biological diversity can greatly improve conservation efforts and habitat management.  相似文献   

6.
Assessing the recovery of species diversity and composition after major disturbance is key to understanding the resilience of tropical forests through successional processes, and its importance for biodiversity conservation. Despite the specific abiotic environment and ecological processes of tropical dry forests, secondary succession has received less attention in this biome than others and changes in species diversity and composition have never been synthesised in a systematic and quantitative review. This study aims to assess in tropical dry forests 1) the directionality of change in species richness and evenness during secondary succession, 2) the convergence of species composition towards that of old‐growth forest and 3) the importance of the previous land use, precipitation regime and water availability in influencing the direction and rate of change. We conducted meta‐analyses of the rate of change in species richness, evenness and composition indices with succession in 13 tropical dry forest chronosequences. Species richness increased with succession, showing a gradual accumulation of species, as did Shannon evenness index. The similarity in species composition of successional forests with old‐growth forests increased with succession, yet at a low rate. Tropical dry forests therefore do show resilience of species composition but it may never reach that of old‐growth forests. We found no significant differences in rates of change between different previous land uses, precipitation regimes or water availability. Our results show high resilience of tropical dry forests in term of species richness but a slow recovery of species composition. They highlight the need for further research on secondary succession in this biome and better understanding of impacts of previous land‐use and landscape‐scale patterns. Synthesis Secondary forests account for an increasing proportion of remaining tropical forest. Assessing their resilience is key to conservation of their biodiversity. Our study is the first meta‐analysis of species changes during succession focussing on tropical dry forests, a highly threatened yet understudied biome. We show a gradual species accumulation and convergence of composition towards that of old‐growth forests. While secondary tropical dry forests offer good potential for biodiversity conservation, their capacity for recovery at a sufficient rate to match threats is uncertain. Further research on this biome is needed to understand the effect of land use history and landscape processes.  相似文献   

7.
Understanding species diversity and disturbance relationships is important for biodiversity conservation in disturbance‐driven boreal forests. Species richness and evenness may respond differently with stand development following fire. Furthermore, few studies have simultaneously accounted for the influences of climate and local site conditions on species diversity. Using forest inventory data, we examined the relationships between species richness, Shannon''s index, evenness, and time since last stand‐replacing fire (TSF) in a large landscape of disturbance‐driven boreal forest. TSF has negative effect on species richness and Shannon''s index, and a positive effect on species evenness. Path analysis revealed that the environmental variables affect richness and Shannon''s index only through their effects on TSF while affecting evenness directly as well as through their effects on TSF. Synthesis and applications. Our results demonstrate that species richness and Shannon''s index decrease while species evenness increases with TSF in a boreal forest landscape. Furthermore, we show that disturbance frequency, local site conditions, and climate simultaneously influence tree species diversity through complex direct and indirect effects in the studied boreal forest.  相似文献   

8.
The assessment of species diversity in relatively large areas has always been a challenging task for ecologists, mainly because of the intrinsic difficulty to judge the completeness of species lists and to undertake sufficient and appropriate sampling. Since the variability of remotely sensed signal is expected to be related to landscape diversity, it could be used as a good proxy of diversity at species level.It has been demonstrated that the relation between species and landscape diversity measured from remotely sensed data or land use maps varies with scale. However, Free and Open Source tools (allowing an access to the source code) for assessing landscape diversity at different spatial scales are still lacking today. In this paper, we aim at: i) providing a theoretical background of the mostly used diversity indices stemmed from information theory that are commonly applied to quantify landscape diversity from remotely sensed data and ii) proposing a free and robust Open Source tool (r.diversity) with its source code for calculating diversity indices (and allowing an easy potential implementation of new metrics by multiple contributors globally) at different spatial scales from remotely-sensed imagery or land use maps, running under the widely used Open Source program GRASS GIS.r.diversity can be a valuable tool for calculating landscape diversity in an Open Source space given the availability of multiple indices at multiple spatial scales with the possibility to create new indices directly reusing the code.We expect that the subject of this paper will stimulate discussions on the opportunities offered by Free and Open Source Software to calculate landscape diversity indices.  相似文献   

9.
火干扰对大兴安岭北部原始林下层植物多样性的影响   总被引:5,自引:0,他引:5  
在景观尺度自然火干扰历史研究的基础上,采用1个物种丰富度指数(物种数 S)、2个均匀度指数(Pielou均匀度指数Eh'和Alatalo均匀度指数E)、3个物种多样性指数(Shannon-Wiener指数H',Hill多样性指数N1和N2)共6个?多样性指数,研究了长期火干扰与最近一次火干扰对大兴安岭北部原始林下木层、草本层及下层总体的植物多样性的影响.研究结果表明,本区下层植物的物种数、均匀度指数和多样性指数都以下木层显著大于草本层,因而下木层对下层植物总体生物多样性的贡献最大,也是主要影响因子.火干扰对下木层、草本层和下层总体的物种丰富度和物种多样性有显著影响,而对均匀度的影响不显著.长期的火干扰影响下,下木层、草本层和下层总体的物种数、各类均匀度指数和物种多样性指数都呈现如下格局:高频类>中频类>低频类,低强类>中强类>高强类.最近一次火干扰影响下,各个生物多样性指数都表现为一致的趋势:低强类>中强类>高强类;短期类>长期类>中期类.下层植物多样性与火干扰的关系是长期适应的结果.  相似文献   

10.
James R. Vonesh 《Biotropica》2001,33(3):502-510
I compared species richness and habitat correlates of leaf‐litter herpetofaunal abundance in undisturbed and selectively logged forests, and an abandoned pine plantation in Kibale National Park, Uganda. I sampled 50 randomly located 25 m2 litter plots in each area during the wet and dry seasons in 1997. Ten anuran, five lizard, and three snake species were captured in plots over the study. Assemblage composition was most similar at logged and unlogged sites. The logged forest herpetofauna had higher species richness and abundance than the unlogged forest, but diversity was greater in the unlogged forest due to greater evenness. In contrast, the pine plantation site had the highest richness, abundance, and evenness of the three study sites, but species composition was distinct from the other areas. Herpetofaunal densities were significantly lower in all three areas during the dry season than in the wet season. During the dry season, soil moisture, litter mass, topography, shrub cover, and number of fallen logs were significant positive predictors of herpetofaunal presence in litter plots, but only soil moisture was significant in the wet season. The interaction of moisture and topography appears to be important in determining seasonal patterns of litter herpetofaunal distribution. Comparison of litter herpetofaunal studies across the tropics have shown that mid‐elevation faunas generally support fewer species than lowland faunas. Compared with other tropical mid‐elevation litter faunas, Kibale supports an intermediate number of species, but at lower densities than observed at any other mid‐elevation site reported in the literature.  相似文献   

11.
Industrial timber plantations severely impact biodiversity in Southeast Asia. Forest fragments survive within plantations, but their conservation value in highly deforested landscapes in Southeast Asia is poorly understood. In this study, we compared bird assemblages in acacia plantations and fragmented forests in South Sumatra to evaluate each habitat’s potential conservation value. To clarify the impact of habitat change, we also analyzed the response of feeding guild composition. Five habitat types were studied: large logged forest (LLF), burnt logged forest (BLF), remnant logged forest (RLF), 4-year-old acacia plantation (AP4), and 1-year-old acacia plantation (AP1). Estimated species richness (Chao 2) was highest in LLF then AP4 and BLF, while AP1 and RLF had lower estimated species richness. Community composition was roughly divided into two groups by non-metric multidimensional scaling ordination: acacia plantation and logged forest. Sallying substrate-gleaning insectivores, such as drongos, broadbills, and some flycatchers, were restricted to LLF, whereas acacia plantation hosted many terrestrial frugivores, such as doves. Although fragmented forests in our study site lacked several common tropical forest species, these fragments provide an important habitat for some sallying and terrestrial insectivores. A network of small riparian remnant forests could be a complementary habitat for some species, while the conservation value of burnt forest might be low. In conclusion, the highly fragmented forests in plantations are suboptimal habitats for birds but are still very important, because large primary forest blocks have been nearly lost in the surrounding landscape.  相似文献   

12.
Amazonian forests function as biomass and biodiversity reservoirs, contributing to climate change mitigation. While they continuously experience disturbance, the effect that disturbances have on biomass and biodiversity over time has not yet been assessed at a large scale. Here, we evaluate the degree of recent forest disturbance in Peruvian Amazonia and the effects that disturbance, environmental conditions and human use have on biomass and biodiversity in disturbed forests. We integrate tree-level data on aboveground biomass (AGB) and species richness from 1840 forest plots from Peru's National Forest Inventory with remotely sensed monitoring of forest change dynamics, based on disturbances detected from Landsat-derived Normalized Difference Moisture Index time series. Our results show a clear negative effect of disturbance intensity tree species richness. This effect was also observed on AGB and species richness recovery values towards undisturbed levels, as well as on the recovery of species composition towards undisturbed levels. Time since disturbance had a larger effect on AGB than on species richness. While time since disturbance has a positive effect on AGB, unexpectedly we found a small negative effect of time since disturbance on species richness. We estimate that roughly 15% of Peruvian Amazonian forests have experienced disturbance at least once since 1984, and that, following disturbance, have been increasing in AGB at a rate of 4.7 Mg ha−1 year−1 during the first 20 years. Furthermore, the positive effect of surrounding forest cover was evident for both AGB and its recovery towards undisturbed levels, as well as for species richness. There was a negative effect of forest accessibility on the recovery of species composition towards undisturbed levels. Moving forward, we recommend that forest-based climate change mitigation endeavours consider forest disturbance through the integration of forest inventory data with remote sensing methods.  相似文献   

13.
Aim The effects of logging and habitat degradation on the richness and abundance of small mammals in Asian rain forests are largely unknown. This work compares the species richness, dominance and evenness of small non‐volant mammals between logged and unlogged forests, and assesses whether assemblage variability (β‐diversity) is similar between forest types. Location Southeast Asia, northern Borneo (Sabah, Malaysia), Sunda‐shelf. Methods We surveyed species‐rich assemblages of small non‐volant mammals in three unlogged and three logged forests for 2 years. At each forest site, we sampled a permanently marked transect and two additional sites in three trapping sessions. All analyses were performed at both levels to include the effects of local abundances and point estimates, separately from the relative abundances of species on a more regional scale. Results We trapped a total of 1218 individuals of 28 species. Eleven common species accounted for 95% of all captures. Species richness and diversity were significantly higher in unlogged forest (27 species) than in logged forest (17 species). This was mainly attributable to the smaller number of rarely recorded species in logged forest (five compared with 16 in unlogged forest, with a total of fewer than 10 captures). However, all common species were present in both logged and unlogged forests, and our analyses revealed similar patterns of dominance, evenness and fluctuations in abundance. Hence overall assemblage composition in multivariate space did not differ greatly between forest types. Assemblages of Muridae and Tupaiidae showed similar population fluctuations in space and time, indicating that the ecology of these taxa may be partially driven by the same environmental factors. Main conclusions Although species were distributed patchily within sites, analyses at local and regional scales revealed similar patterns in diversity and assemblage variability, suggesting that effects of forest modification did not differ extensively locally and regionally, but had a profound effect on rare species. Our results emphasize the importance and conservation value of logged forest stands that are able to hold a large proportion of the small mammals also found in unlogged forests. Rare and more specialized species are more vulnerable to forest degradation than commonly caught species, resulting in the complete loss, or a decrease in numbers, of certain groups, such as arboreal small mammals and Viverridae.  相似文献   

14.
Anthropogenic activities have accelerated the rate of global loss of biodiversity, making it more important than ever to understand the structure of biodiversity hotspots. One current focus is the relationship between species richness and aboveground biomass (AGB) in a variety of ecosystems. Nonetheless, species diversity, evenness, rarity, or dominance represent other critical attributes of biodiversity and may have associations with AGB that are markedly different than that of species richness. Using data from large trees in four environmentally similar sites in the Luquillo Experimental Forest of Puerto Rico, we determined the shape and strength of relationships between each of five measures of biodiversity (i.e., species richness, Simpson's diversity, Simpson's evenness, rarity, and dominance) and AGB. We quantified these measures of biodiversity using either proportional biomass or proportional abundance as weighting factors. Three of the four sites had a unimodal relationship between species richness and AGB, with only the most mature site evincing a positive, linear relationship. The differences between the mature site and the other sites, as well as the differences between our richness–AGB relationships and those found at other forest sites, highlight the crucial role that prior land use and severe storms have on this forest community. Although the shape and strength of relationships differed greatly among measures of biodiversity and among sites, the strongest relationships within each site were always those involving richness or evenness.  相似文献   

15.
Agricultural expansion and intensification are major threats to global biodiversity, ecological functions, and ecosystem services. The rapid expansion of oil palm in forested tropical landscapes is of particular concern given their high biodiversity. Identifying management approaches that maintain native species and associated ecological processes within oil palm plantations is therefore a priority. Riparian reserves are strips of forest retained alongside rivers in cultivated areas, primarily for their positive hydrological impact. However, they can also support a range of forest‐dependent species or ecosystem services. We surveyed communities of dung beetles and measured dung removal activity in an oil palm‐dominated landscape in Sabah, Malaysian Borneo. The species richness, diversity, and functional group richness of dung beetles in riparian reserves were significantly higher than in oil palm, but lower than in adjacent logged forests. The community composition of the riparian reserves was more similar to logged forest than oil palm. Despite the pronounced differences in biodiversity, we did not find significant differences in dung removal rates among land uses. We also found no evidence that riparian reserves enhance dung removal rates within surrounding oil palm. These results contrast previous studies showing positive relationships between dung beetle species richness and dung removal in tropical forests. We found weak but significant positive relationships between riparian reserve width and dung beetle diversity, and between reserve vegetation complexity and dung beetle abundance, suggesting that these features may increase the conservation value of riparian reserves. Synthesis and applications: The similarity between riparian reserves and logged forest demonstrates that retaining riparian reserves increases biodiversity within oil palm landscapes. However, the lack of correlation between dung beetle community characteristics and dung removal highlights the need for further research into spatial variation in biodiversity–ecosystem function relationships and how the results of such studies are affected by methodological choices.  相似文献   

16.
Recent studies highlight the potential of climate change refugia (CCR) to support the persistence of biodiversity in regions that may otherwise become unsuitable with climate change. However, a key challenge in using CCR for climate resilient management lies in how CCR may intersect with existing forest management strategies, and subsequently influence how landscapes buffer species from negative impacts of warming climate. We address this challenge in temperate coastal forests of the Pacific Northwestern United States, where declines in the extent of late-successional forests have prompted efforts to restore old-growth forest structure. One common approach for doing so involves selectively thinning forest stands to enhance structural complexity. However, dense canopy is a key forest feature moderating understory microclimate and potentially buffering organisms from climate change impacts, raising the possibility that approaches for managing forests for old-growth structure may reduce the extent and number of CCR. We used remotely sensed vegetation indices to identify CCR in an experimental forest with control and thinned (restoration) treatments, and explored the influence of biophysical variables on buffering capacity. We found that remotely sensed vegetation indices commonly used to identify CCR were associated with understory temperature and plant community composition, and thus captured aspects of landscape buffering that might instill climate resilience and be of interest to management. We then examined the interaction between current restoration strategies and CCR, and found that selective thinning for promoting old-growth structure had only very minor, if any, effects on climatic buffering. In all, our study demonstrates that forest management approaches aimed at restoring old-growth structure through targeted thinning do not greatly decrease buffering capacity, despite a known link between dense canopy and CCR. More broadly, this study illustrates the value of using remote sensing approaches to identify CCR, facilitating the integration of climate change adaptation with other forest management approaches.  相似文献   

17.
Foody  Giles M.  Lucas  Richard M.  Curran  Paul J.  Honzak  Miroslav 《Plant Ecology》1997,131(2):143-154
At regional to global scales the only feasible approach to mapping and monitoring forests is through the use of coarse spatial resolution remotely sensed imagery. Significant errors in mapping may arise as such imagery may be dominated by pixels of mixed land cover composition which cannot be accommodated by conventional mapping approaches. This may lead to incorrect assessments of forest extent and thereby processes such as deforestation which may propagate into studies of environmental change. A method to unmix the class composition of image pixels is presented and used to map tropical forest cover in part of the Mato Grosso, Brazil. This method is based on an artificial neural network and has advantages over other techniques used in remote sensing. Fraction images depicting the proportional class coverage in each pixel were produced and shown to correspond closely to the actual land cover. The predicted and actual forest cover were, for instance, strongly correlated (up to r = 0.85, significant at the 99% level of confidence) and the predicted extent of forest over the test site much closer to the actual extent than that derived from a conventional approach to mapping from remotely sensed imagery.  相似文献   

18.
1. Quantifying how biological diversity is distributed in the landscape is one of the central themes of conservation ecology. For this purpose, landscape classifications are being intensively used in conservation planning and biodiversity management, although there is still little information about their efficacy. 2. I used data from 158 running water sites in Hungary to examine the contribution of six a priori established habitat types to regional level diversity of fish assemblages. Three community measures [species richness, diversity (Shannon, Simpson indices), assemblage composition] were examined at two assemblage levels (entire assemblage, the native assemblage). The relative role of non‐native species was quantified to examine their contribution to patterns in diversity in this strongly human influenced landscape. 3. Additive diversity partitioning revealed the primary importance of beta diversity (i.e. among‐site factors) to patterns in species richness. Landscape‐scale patterns in species richness were best explained by between‐habitat type (beta2: 41.2%), followed by within‐habitat type (beta1: 37.7%) and finally within‐site (alpha: 21.1%) diversity. Diversity indices showed patterns different from species richness, indicating the importance of relative abundance distributions on the results. Exclusion of non‐natives from the analysis gave similar results to the entire‐assemblage level analysis. 4. Canonical analysis of principal coordinates, complemented with indicator species analysis justified the separation of fish assemblages among the habitat types, although classification error was high. Multivariate dispersion, a measure of compositional beta diversity, showed significant differences among the habitat types. Contrary to species diversity (i.e. richness, diversity indices), patterns in compositional diversity were strongly influenced by the exclusion of non‐natives from the analyses. 5. This study is the first to quantify how running water habitat types contribute to fish diversity at the landscape scale and how non‐native species influence this pattern. These results on riverine fish assemblages support the hypothesis that environmental variability (i.e. the diversity of habitat types) is an indication of biodiversity and can be used in large‐scale conservation designs. The study emphasises the joint application of additive diversity partitioning and multivariate statistics when exploring the contribution of landscape components to the overall biodiversity of the landscape mosaic.  相似文献   

19.
The Palearctic forest-steppe biome is a narrow vegetation zone between the temperate forest and steppe biomes, which provides important habitats for many endangered species and represents an important hotspot of biodiversity. Although the number of studies on forest–grassland mosaics is increasing, information currently available about the general compositional and structural patterns of Eurasian forest-steppes is scarce. Our study aimed to compare the habitat structure, species composition and diversity patterns of two distant sandy forest-steppes of Eurasia. We compared 72 relevés made in the main habitat components (forest, forest edge and grassland) of sandy forest-steppes in three Hungarian and three Kazakh sites. The size of the plots was 25 m2. Species number, Shannon diversity and species evenness values were calculated for each plot. Fidelity calculations and linear mixed effects models were used for the analyses. We found that the vegetation and diversity patterns of the two forest-steppes are similar and their components play important roles in maintaining landscape-scale diversity. Despite the higher species richness in Hungary, Shannon diversity was higher in Kazakhstan. The deciduous forest edges of both areas had significantly higher species richness than the neighbouring habitats (forests and grasslands); therefore they can be considered local biodiversity hotspots. Due to the special characteristics of this vegetation complex, we emphasize the high conservation value of all landscape components as a coherent system throughout the entire range of the Eurasian forest-steppe biome.  相似文献   

20.
We compared bird diversity and frequency in selection logged and unlogged forest to determine the effects of recent selection logging on avian biodiversity in a subtropical, moist evergreen forest. We used a combination of mist netting and fixed-radius point counts to assess bird communities in February and March 1993 in northwestern Belize. Vegetation structure and composition was similar in logged and unlogged forest. The 66 most common species occurred with statistically similar frequency in logged and unlogged forest although 13 species were two times more frequent in intact forest. Numbers of total bird species were similar between logging gaps and the logged forest matrix, and between the logged forest matrix and unlogged forests. A comparison of numbers of species in 26 guilds based on migration strategy, diet, foraging substrate, and height strata also showed them to be similar regardless of logging history. Our results differed from previous studies that reported lower bird species richness and abundance of individual species in logged tropical forests than in unlogged forest. The differences might be explained by the lower logging intensity and/or greater levels of natural disturbance in our study area compared to previous studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号