首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bisulfite reductase was purified from extracts of Desulfovibrio vulgaris. By colorimetric analyses trithionate was found to be the major product, being formed in quantities 5 to 10 times more than two other detectable products, thiosulfate and sulfide. When [35S]bisulfite was used as the substrate, all three products were radioactively labeled. Degradation of [35S]trithionate showed that all of its sulfur atoms were equally labeled. In contrast, [35S]thiosulfate contained virtually all of the radioactivity in the sulfonate atom while the sulfane atom was unlabeled. These results, in conjunction with the funding that the sulfide was radioactive, led to the conclusion that bisulfite reductase reduced bisulfite to trithionate as the major product and sulfide as the minor product; the reason for the unusual labeling pattern found in the thiosulfate molecule was not apparent at this time. When bisulfite reductase was incubated with [35S]bisulfite in the presence of another protein fraction, FII, the thiosulfate formed from this reaction contained both sulfur atoms having equal radioactivity. This discovery, plus the fact that trithionate was not reduced to thiosulfate under identical conditions, led to the speculation that bisulfite could be reduced to thiosulfate by another pathway not involving trithionate.  相似文献   

2.
The bisulfite reductase (P582) from Desulfotomaculum nigrificans was purified to homogeneity as judged by polyacrylamide gel electrophoresis. By colorimetric methods of analysis, the products of bisulfite reduction by this enzyme were determined to be trithionate, thiosulfate, and sulfide. Of these, trithionate was consistently found to be the major product, whereas the latter two were formed in lesser quantities. When [(35)S]bisulfite was incorporated as substrate, no labeled sulfide was detected. Furthermore, when trithionate and thiosulfate were isolated from reaction mixtures and chemically degraded, (35)S was found in all three sulfur atoms of trithionate; however, only the inner sulfur atom of thiosulfate was radioactive. From these data we conclude that the bisulfite reductase of D. nigrificans reduces bisulfite to trithionate and that thiosulfate and sulfide are endogenous side products of the reaction.  相似文献   

3.
Thiosulfate Reductase of Desulfovibrio vulgaris   总被引:7,自引:5,他引:2       下载免费PDF全文
The thiosulfate reductase of Desulfovibrio vulgaris has been purified and some of its properties have been determined. Only one protein component was detected when the purified enzyme was subjected to polyacrylamide gel electrophoresis at pH values of 8.9, 8.0, and 7.6. In the presence of H(2), the enzyme, when coupled to hydrogenase and with methyl viologen as an electron carrier, catalyzed the reduction of thiosulfate to hydogen sulfide. The use of specifically labeled (35)S-thiosulfate revealed that the outer sulfur atom was reduced to sulfide and the inner sulfur atom was released as sulfite. Thus, the enzyme catalyzes the reductive dismutation of thiosulfate to sulfide and sulfite. The molecular weight of the enzyme was determined by sedimentation equilibrium (16,300) and amino acid analysis (15,500). The enzyme sedimented as a single, symmetrical component with a calculated sedimentation coefficient of 2.21S. Amino acid analysis revealed the presence of two half-cystine residues per mole of enzyme and a total of 128 amino acid residues. Carbohydrate and organic phosphorus analyses revealed the presence of 9.2 moles of carbohydrate and 4.8 moles of phosphate per mole of enzyme. The substrate specificity of the enzyme was studied.  相似文献   

4.
Separation of the products formed from sulfate-35S by cell-free extracts of Chlorella pyrenoidosa (Emerson Strain 3) has permitted the identification of thiosulfate as a major product which yields acid-volatile radioactivity. The products formed, as separated by Dowex-1-nitrate chromatography, are qualitatively the same whether extracts at pH 7.0 (using TPNH as the reductant) or extracts at pH 9 [using 2,3-dimercaptopropan-1-ol, (BAL) as reductant] are employed. While thiosulfate can be separated without the addition of carrier, the inclusion of carrier improves the recovery. High concentrations of ATP which have been shown previously to inhibit the formation of acid-volatile radioactivity from radioactive sulfate, inhibit the formation of thiosulfate almost completely. Degradation of the thiosulfate formed at normal ATP concentrations reveals that most of the radioactivity is in the SO3-sulfur of the molecule suggesting that the SH-sulfur is derived from the enzyme extracts. If carrier sulfite is present during thiosulfate formation from sulfate-35S, radioactive sulfite is recovered at the expense of radioactive thiosulfate. Reconstruction experiments utilizing specifically-labeled thiosulfates indicate that radioactive sulfite formation is probably not the result of trapping a normal intermediate, but can be attributed to non-enzymatic exchange between labeled thiosulfate formed from sulfate and the non-radioactive sulfite added, suggesting that free sulfite is not an intermediate in thiosulfate formation from sulfate.  相似文献   

5.
An enzyme that formed thiosulfate from bisulfite and trithionate was purified from extracts of Desulfovibrio vulgaris. This enzyme, designated as "thiosulfate-forming" enzyme, required the presence of both bisulfite and trithionate. Various 35S-labeling studies showed that thiosulfate was formed from bisulfite and the inner sulfur atom of trithionate. This involved a nucleophilic attack by the bisulfite ion, resulting in the displacement of the two outer sulfonate groups of trithionate that recycled to participate as free bisulfite in subsequent reactions. This reaction required a reduction, presumably by a concerted mechanism with thiosulfate formation. The natural electron carrier cytochrome c3 participated in this reductive formation of thiosulfate. This reaction was coupled to the bisulfite reductase-catalyzed reaction, which resulted in the reconstruction of a thiosulfate-forming pathway from bisulfite.  相似文献   

6.
The fates of the two different sulfur atoms of the thiosulfate molecule during anaerobic disproportionation by the sulfate-reducing bacterium Desulfovibrio desulfuricans were followed by isotope mass spectrometry. During disproportionation, 32S-thiosulfate was preferentially metabolized, and the residual thiosulfate became enriched in 34S. The sulfate formed was isotopically heavier than the inner sulfur of the consumed thiosulfate. Vice versa, the sulfide formed was isotopically lighter than the outer sulfur of the consumed thiosulfate. These results indicate that thiosulfate is cleaved to intermediates that undergo further disproportionation to sulfate and sulfide in a second step. These intermediates are probably elemental sulfur and sulfite. It is concluded that disproportionation of thiosulfate, sulfite and elemental sulfur includes a combined pathway.  相似文献   

7.
The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be −123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation.  相似文献   

8.
During growth of Clostridium pasteurianum on sulfite, approximately half the sulfite was reduced to sulfide and half to thiosulfate. Sulfide was enriched in 32S or 34S at different stages of growth and thiosulfate was enriched in 32S, particularly in the sulfane atom. It is suggested that thiosulfate in these bacterial cultures arose from a secondary chemical reaction. The chemical formation of thiosulfate from sulfide and sulfite was also accompanied by sulfur isotope fractionation. The implications of these results with respect to 'inverse' isotopic effects are discussed.  相似文献   

9.
All of fourteen sulfate-reducing bacteria tested were able to carry out aerobic respiration with at least one of the following electron donors: H2, lactate, pyruvate, formate, acetate, butyrate, ethanol, sulfide, thiosulfate, sulfite. Generally, we did not obtain growth with O2 as electron acceptor. The bacteria were microaerophilic, since the respiration rates increased with decreasing O2 concentrations or ceased after repeated O2 additions. The amounts of O2 consumed indicated that the organic substrates were oxidized incompletely to acetate; only Desulfobacter postgatei oxidized acetate with O2 completely to CO2. Many of the strains oxidized sulfite (completely to sulfate) or sulfide (incompletely, except Desulfobulbus propionicus); thiosulfate was oxidized only by strains of Desulfovibrio desulfuricans; trithionate and tetrathionate were not oxidized by any of the strains. With Desulfovibrio desulfuricans CSN and Desulfobulbus propionicus the oxidation of inorganic sulfur compounds was characterized in detail. D. desulfuricans formed sulfate during oxidation of sulfite, thiosulfate or elemental sulfur prepared from polysulfide. D. propionicus oxidized sulfite and sulfide to sulfate, and elemental sulfur mainly to thiosulfate. A novel pathway that couples the sulfur and nitrogen cycles was detected: D. desulfuricans and (only with nitrite) D. propionicus were able to completely oxidize sulfide coupled to the reduction of nitrate or nitrite to ammonia. Cell-free extracts of both strains did not oxidize sulfide or thiosulfate, but formed ATP during oxidation of sulfite (37 nmol per 100 nmol sulfite). This, and the effects of AMP, pyrophosphate and molybdate on sulfite oxidation, suggested that sulfate is formed via the (reversed) sulfate activation pathway (involving APS reductase and ATP sulfurylase). Thiosulfate oxidation with O2 probably required a reductive first step, since it was obtained only with energized intact cells.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - APS adenosine phosphosulfate or adenylyl sulfate  相似文献   

10.
Dissimilatory reduction of bisulfite by Desulfovibrio vulgaris.   总被引:2,自引:2,他引:0       下载免费PDF全文
The reduction of bisulfite by Desulfovibrio vulgaris was investigated. Crude extracts reduced bisulfite to sulfide without the formation (detection) of any intermediates such as trithionate or thiosulfate. When the particulate fractions was removed from crude extracts by high-speed centrifugation, the soluble supernatant fraction reduced bisulfite sequentially to trithionate, thiosulfate, and sulfide. Addition of particles or purified membranes to the soluble fraction restored the original activity demonstrated by crude extracts, i.e., reduction of bisulfite to sulfide without the formation of trithionate and/or thiosulfate. By using antiserum directed against bisulfite reductase, the reduction of bisulfite by crude extracts was inhibited. This finding, in addition to several recycling studies of thiosulfate reduction, provided evidence that bisulfite reduction by D. vulgaris operated through the pathway involving trithionate and thiosulfate as intermediates. The role of membranes in this process is discussed.  相似文献   

11.
M. I. H. Aleem 《Plant and Soil》1975,43(1-3):587-607
Summary Aspects of the biochemistry of the oxidation of inorganic sulfur compounds are discussed in thiobacilli but chiefly inThiobacillus denitrificans. Almost all of the thiobacilli (e.g. T. denitrificans, T. neapolitanus, T. novellus, andThiobacillus A 2) were capable of producing approximately 7.5 moles of sulfuric acid aerobically from 3.75 moles of thiosulfate per gram of cellular protein per hr. By far the most prolific producer of sulfuric acid (or sulfates) from the anaerobic thiosulfate oxidation with nitrates wasT. denitrificans which was capable of producing 15 moles of sulfates from 7.5 moles of thiosulfate with concomitant reduction of 12 moles of nitrate resulting in the evolution of 6 moles of nitrogen gas/g protein/hr. The oxidation of sulfide was mediated by the flavo-protein system and cytochromes ofb, c, o, anda-type. This process was sensitive to flavoprotein inhibitors, antimycin A, and cyanide. The aerobic thiosulfate oxidation on the other hand involved cytochromec : O2 oxidoreductase region of the electron transport chain and was sensitive to cyanide only. The anaerobic oxidation of thiosulfate byT. denitrificans, however, was severely inhibited by the flavoprotein inhibitors because of the splitting of the thiosulfate molecule into the sulfide and sulfite moieties produced by the thiosulfate-reductase. Accumulation of tetrathionate and to a small extent trithionate and pentathionate occurred during anaerobic growth ofT. denitrificans. These polythionates were subsequently oxidized to sulfate with the concomitant reduction of nitrate to N2. Intact cell suspensions catalyzed the complete oxidation of sulfide, thiosulfate, tetrathionate, and sulfite to sulfate with the stoichiometric reduction of nitrate, nitrite, nitric oxide, and nitrous oxide to nitrogen gas thus indicating that NO2 , NO, and N2O are the possible intermediates in the denitrification of nitrate. This process was mediated by the cytochrome electron transport chain and was sensitive to the electron transfer inhibitors. The oxidation of sulfite involved cytochrome-linked sulfite oxidase as well as the APS-reductase pathways. The latter was absent inT. novellus andThiobacillus A 2. In all of the thiobacilli the inner as well as the outer sulfur atoms of thiosulfate were oxidized at approximately the same rate by intact cells. The sulfide oxidation occurred in two stages: (a) a cellular-membrane-associated initial and rapid oxidation reaction which was dependent upon sulfide concentration, and (b) a slower oxidation reaction stage catalyzed by the cellfree extracts, probably involving polysulfides. InT. novellus andT. neapolitanus the oxidation of inorganic sulfur compounds is coupled to energy generation through oxidative phosphorylation, however, the reduction of pyridine nucleotides by sulfur compounds involved an energy-linked reversal of electron transfer. Paper read at the Symposium on the Sulphur Cycle, Wageningen, May 1974. Summary already inserted on p. 189 of the present volume.  相似文献   

12.
Observations in enrichment cultures of ferric iron-reducing bacteria indicated that ferrihydrite was reduced to ferrous iron minerals via sulfur cycling with sulfide as the reductant. Ferric iron reduction via sulfur cycling was investigated in more detail with Sulfurospirillum deleyianum, which can utilize sulfur or thiosulfate as an electron acceptor. In the presence of cysteine (0.5 or 2 mM) as the sole sulfur source, no (microbial) reduction of ferrihydrite or ferric citrate was observed, indicating that S. deleyianum is unable to use ferric iron as an immediate electron acceptor. However, with thiosulfate at a low concentration (0.05 mM), growth with ferrihydrite (6 mM) was possible and sulfur was cycled up to 60 times. Also, spatially distant ferrihydrite in agar cultures was reduced via diffusible sulfur species. Due to the low concentrations of thiosulfate, S. deleyianum produced only small amounts of sulfide. Obviously, sulfide delivered electrons to ferrihydrite with no or only little precipitation of black iron sulfides. Ferrous iron and oxidized sulfur species were produced instead, and the latter served again as the electron acceptor. These oxidized sulfur species have not yet been identified. However, sulfate and sulfite cannot be major products of ferrihydrite-dependent sulfide oxidation, since neither compound can serve as an electron acceptor for S. deleyianum. Instead, sulfur (elemental S or polysulfides) and/or thiosulfate as oxidized products could complete a sulfur cycle-mediated reduction of ferrihydrite.  相似文献   

13.
Growing cultures and nongrowing suspensions of Halothiobacillus neapolitanus selectively fractionated (32)S and (34)S during the oxidation of the sulfane- and sulfonate-sulfur atoms of thiosulfate. Sulfate was enriched in (32)S, with delta(34)S reaching -6.3 per thousand relative to the precursor sulfonate-sulfur of thiosulfate, which was progressively resynthesized from the thiosulfate-sulfane-sulfur during thiosulfate metabolism. Polythionates, principally trithionate, accumulated during thiosulfate oxidation and showed progressive increase in the relative (34)S content of their sulfonate groups, with delta(34)S values up to +20 per thousand, relative to the substrate sulfur. The origins of the sulfur in the sulfate and polythionate products of oxidation were tracked by the use thiosulfate labelled with (35)S in each of its sulfur atoms, enabling determination of the flow of the sulfur atoms into the oxidation products. The results confirm that highly significant fractionation of stable sulfur isotopes can be catalyzed by thiobacilli oxidizing thiosulfate, but that differences in the (34)S/(32)S ratios of the nonequivalent constituent sulfur atoms of the thiosulfate used as substrate mean that the oxidative fate of each atom needs separate determination. The data are very significant to the understanding of bacterial sulfur-compound oxidation and highly relevant to the origins of biogenic sulfate minerals.  相似文献   

14.
MR Jackson  SL Melideo  MS Jorns 《Biochemistry》2012,51(34):6804-6815
Sulfide:quinone oxidoreductase (SQOR) is a membrane-bound enzyme that catalyzes the first step in the mitochondrial metabolism of H(2)S. Human SQOR is successfully expressed at low temperature in Escherichia coli by using an optimized synthetic gene and cold-adapted chaperonins. Recombinant SQOR contains noncovalently bound FAD and catalyzes the two-electron oxidation of H(2)S to S(0) (sulfane sulfur) using CoQ(1) as an electron acceptor. The prosthetic group is reduced upon anaerobic addition of H(2)S in a reaction that proceeds via a long-wavelength-absorbing intermediate (λ(max) = 673 nm). Cyanide, sulfite, or sulfide can act as the sulfane sulfur acceptor in reactions that (i) exhibit pH optima at 8.5, 7.5, or 7.0, respectively, and (ii) produce thiocyanate, thiosulfate, or a putative sulfur analogue of hydrogen peroxide (H(2)S(2)), respectively. Importantly, thiosulfate is a known intermediate in the oxidation of H(2)S by intact animals and the major product formed in glutathione-depleted cells or mitochondria. Oxidation of H(2)S by SQOR with sulfite as the sulfane sulfur acceptor is rapid and highly efficient at physiological pH (k(cat)/K(m,H(2)S) = 2.9 × 10(7) M(-1) s(-1)). A similar efficiency is observed with cyanide, a clearly artificial acceptor, at pH 8.5, whereas a 100-fold lower value is seen with sulfide as the acceptor at pH 7.0. The latter reaction is unlikely to occur in healthy individuals but may become significant under certain pathological conditions. We propose that sulfite is the physiological acceptor of the sulfane sulfur and that the SQOR reaction is the predominant source of the thiosulfate produced during H(2)S oxidation by mammalian tissues.  相似文献   

15.
Thiobacillus thiooxidans was grown at pH 5 on thiosulfate as an energy source, and the mechanism of oxidation of inorganic sulfur compounds was studied by the effect of inhibitors, stoichiometries of oxygen consumption and sulfur, sulfite, or tetrathionate accumulation, and cytochrome reduction by substrates. Both intact cells and cell-free extracts were used in the study. The results are consistent with the pathway with sulfur and sulfite as the key intermediates. Thiosulfate was oxidized after cleavage to sulfur and sulfite as intermediates at pH 5, the optimal growth pH on thiosulfate, but after initial condensation to tetrathionate at pH 2.3 where the organism failed to grow. N-Ethylmaleimide (NEM) inhibited sulfur oxidation directly and the oxidation of thiosulfate or tetrathionate indirectly. It did not inhibit the sulfite oxidation by cells, but inhibited any reduction of cell cytochromes by sulfur, thiosulfate, tetrathionate, and sulfite. NEM probably binds sulfhydryl groups, which are possibly essential in supplying electrons to initiate sulfur oxidation. 2-Heptyl-4-hydroxy-quinoline N-oxide (HQNO) inhibited the oxidation of sulfite directly and that of sulfur, thiosulfate, and tetrathionate indirectly. Uncouplers, carbonyl cyanide-m-chlorophenylhydrazone (CCCP) and 2,4-dinitrophenol (DNP), inhibited sulfite oxidation by cells, but not the oxidation by extracts, while HQNO inhibited both. It is proposed that HQNO inhibits the oxidation of sulfite at the cytochrome b site both in cells and extracts, but uncouplers inhibit the oxidation in cells only by collapsing the energized state of cells, delta muH+, required either for electron transfer from cytochrome c to b or for sulfite binding.  相似文献   

16.
Deenergized cells of Desulfovibrio desulfuricans strain Essex 6 formed trithionate and thiosulfate during reduction of sulfite with H2 or formate. The required conditions were pretreatment with the uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP), low concentration of the electron donor H2 or formate (25–200 M) and the presence of sulfite in excess (>250 M). The cells formed up to 20 M thiosulfate, and variable amounts of trithionate (0–9 M) and sulfide (0–62 M). Tetrathionate was not produced. Sulfate could not replace sulfite in these experiments, as deenergized cells cannot activate sulfate. However, up to 5 M thiosulfate was produced by cells growing with H2 and excess sulfate in a chemostat. Micromolar concentrations of trithionate were incompletely reduced to thiosulfate and sulfide by washed cells in the presence of CCCP. Millimolar trithionate concentrations blocked the formation of sulfide, even in the absence of CCCP, and caused thiosulfate accumulation; sulfide formation from sulfate, sulfite or thiosulfate was stopped, too. Trithionate reduction with H2 in the presence of thiocyanate was coupled to respiration-driven proton translocation (extrapolated H+/H2 ratios of 1.5±0.6). Up to 150 M trithionate was formed by washed cells during oxidation of sulfite plus thiosulfate with ferricyanide as electron acceptor (reversed trithionate reductase activity). Cell breakage resulted in drastic decrease of sulfide formation. Cell-free extract reduced sulfite incompletely to trithionate, thiosulfate, and sulfide. Thiosulfate was reduced stoichiometrically to sulfite and sulfide (thiosulfate reductase activity). The formation of sulfide from sulfite, thiosulfate or trithionate by cell-free extract was blocked by methyl viologen, leading to increased production of thiosulfate plus trithionate from sulfite, or increased thiosulfate formation from trithionate. Our study demonstrates for the first time the formation of intermediates during sulfite reduction with whole cells of a sulfate-reducing bacterium oxidizing physiological electron donors. All results are in accordance with the trithionate pathway of sulfite reduction.With gratitude dedicated to Prof. Dr. Norbert Pfennig on occasion of his 65th birthday  相似文献   

17.
Observations in enrichment cultures of ferric iron-reducing bacteria indicated that ferrihydrite was reduced to ferrous iron minerals via sulfur cycling with sulfide as the reductant. Ferric iron reduction via sulfur cycling was investigated in more detail with Sulfurospirillum deleyianum, which can utilize sulfur or thiosulfate as an electron acceptor. In the presence of cysteine (0.5 or 2 mM) as the sole sulfur source, no (microbial) reduction of ferrihydrite or ferric citrate was observed, indicating that S. deleyianum is unable to use ferric iron as an immediate electron acceptor. However, with thiosulfate at a low concentration (0.05 mM), growth with ferrihydrite (6 mM) was possible and sulfur was cycled up to 60 times. Also, spatially distant ferrihydrite in agar cultures was reduced via diffusible sulfur species. Due to the low concentrations of thiosulfate, S. deleyianum produced only small amounts of sulfide. Obviously, sulfide delivered electrons to ferrihydrite with no or only little precipitation of black iron sulfides. Ferrous iron and oxidized sulfur species were produced instead, and the latter served again as the electron acceptor. These oxidized sulfur species have not yet been identified. However, sulfate and sulfite cannot be major products of ferrihydrite-dependent sulfide oxidation, since neither compound can serve as an electron acceptor for S. deleyianum. Instead, sulfur (elemental S or polysulfides) and/or thiosulfate as oxidized products could complete a sulfur cycle-mediated reduction of ferrihydrite.  相似文献   

18.
Reduced sulfur compound oxidation by Thiobacillus caldus.   总被引:7,自引:0,他引:7       下载免费PDF全文
The oxidation of reduced inorganic sulfur compounds was studied by using resting cells of the moderate thermophile Thiobacillus caldus strain KU. The oxygen consumption rate and total oxygen consumed were determined for the reduced sulfur compounds thiosulfate, tetrathionate, sulfur, sulfide, and sulfite in the absence and in the presence of inhibitors and uncouplers. The uncouplers 2,4-dinitrophenol and carbonyl cyanide m-chlorophenyl-hydrazone had no affect on the oxidation of thiosulfate, suggesting that thiosulfate is metabolized periplasmically. In contrast, the uncouplers completely inhibited the oxidation of tetrathionate, sulfide, sulfur, and sulfite, indicating that these compounds are metabolized in the cytoplasm of T. caldus KU. N-Ethylmaleimide inhibited the oxidation of tetrathionate and thiosulfate at the stage of elemental sulfur, while 2-heptyl-4-hydroxyquinoline-N-oxide stopped the oxidation of thiosulfate, tetrathionate, and elemental sulfur at the stage of sulfite. The following intermediates in the oxidation of the sulfur compounds were found by using uncouplers and inhibitors: thiosulfate was oxidized to tetrathionate, elemental sulfur was formed during the oxidation of tetrathionate and sulfide, and sulfite was found as an intermediate of tetrathionate and sulfur metabolism. On the basis of these data we propose a model for the metabolism of the reduced inorganic sulfur compounds by T. caldus KU.  相似文献   

19.
Chlorobaculum (Cba.) tepidum is a green sulfur bacterium that oxidizes sulfide, elemental sulfur, and thiosulfate for photosynthetic growth. To gain insight into the sulfur metabolism, the proteome of Cba. tepidum cells sampled under different growth conditions has been quantified using a rapid gel-free, filter-aided sample preparation (FASP) protocol with an in-solution isotopic labeling strategy. Among the 2245 proteins predicted from the Cba. tepidum genome, approximately 970 proteins were detected in unlabeled samples, whereas approximately 630-640 proteins were detected in labeled samples comparing two different growth conditions. Wild-type cells growing on thiosulfate had an increased abundance of periplasmic cytochrome c-555 and proteins of the periplasmic thiosulfate-oxidizing SOX enzyme system when compared with cells growing on sulfide. A dsrM mutant of Cba. tepidum, which lacks the dissimilatory sulfite reductase DsrM protein and therefore is unable to oxidize sulfur globules to sulfite, was also investigated. When compared with wild type, the dsrM cells exhibited an increased abundance of DSR enzymes involved in the initial steps of sulfur globule oxidation (DsrABCL) and a decreased abundance of enzymes putatively involved in sulfite oxidation (Sat-AprAB-QmoABC). The results show that Cba. tepidum regulates the cellular levels of enzymes involved in sulfur metabolism and other electron-transferring processes in response to the availability of reduced sulfur compounds.  相似文献   

20.
The interaction of the sulfurtransferase rhodanese (EC 2.8.1.1) with succinate dehydrogenase (EC 1.3.99.1), yeast alcohol dehydrogenase (EC 1.1.1.1) and bovine serum albumin was studied. Succinate dehydrogenase incorporates the sulfane sulfur of [35S]rhodanese and, in the presence of unlabelled rhodanese, also incorporates that of [35S]thiosulfate. Rhodanese releases most of its transferable sulfur and is re-loaded in the presence of thiosulfate. Rhodanese undergoes similar modifications with yeast alcohol dehydrogenase but this latter does not bind 35S in amounts comparable to those incorporated in succinate dehydrogenase: nearly all the 35S released by [35S]rhodanese is with low-molecular-weight compounds. Bovine serum albumin also binds very little sulfur and [35S]rhodanese present in the reaction mixture does not discharge its radioactive sulfur nor does it take up sulfur from thiosulfate. Sulfur release from rhodanese appears to depend on the presence of - SH groups in the acceptor protein. Sulfur incorporated into succinate dehydrogenase was analytically determined as sulfide. A comparison of the optical spectra of succinate dehydrogenase preparations incubated with or without rhodanese indicates that there is an effect of the sulfurtransferase on the iron-sulfur absorption of the flavorprotein. The interaction of rhodanese with succinate dehydrogenase greatly decreases the catalytic activity of rhodanese with respect to thiocyanate formation. This is attributed to modifications in rhodanese associated with the reduction of sulfane sulfur to sulfide. Thiosulfate in part protects from this deactivation. The reconstitutive capacity of succinate dehydrogenase increased in parallel with sulfur incorporated in that enzyme following its interaction with rhodanese.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号