首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A family of covalently linked cell wall proteins of Saccharomyces cerevisiae, called Pir proteins, are characterized by up to 10 conserved repeating units. Ccw5/Pir4p contains only one complete repeating sequence and its deletion caused a release of the protein into the medium. The exchange of each of three glutamines (Gln69, Gln74, Gln76) as well as one aspartic acid (Asp72) within the repeating unit leads to a loss of the protein from the cell wall. Amino acid sequencing revealed that only Gln74 is modified. Release of the protein with mild alkali, changed Gln74 to to glutamic acid, suggesting that Gln74 is involved in the linkage. Analysis by mass spectrometry showed that 5 hexoses are attached to Gln/Glu74. Sugar analysis revealed glucose as the only constituent. It is suggested that Pir proteins form novel, alkali labile ester linkages between the gamma-carboxyl group of glutamic acids, arising from specific glutamines, with hydroxyl groups of glucoses of beta-1,3-glucan chains. This transglutaminase-type reaction could take place extracellularly and would energetically proceed on the account of amido group elimination.  相似文献   

2.
Saccharomyces cerevisiae GSC1 (also called FKS1) and GSC2 (also called FKS2) have been identified as the genes for putative catalytic subunits of beta-1,3-glucan synthase. We have cloned three Candida albicans genes, GSC1, GSL1, and GSL2, that have significant sequence homologies with S. cerevisiae GSC1/FKS1, GSC2/FKS2, and the recently identified FKSA of Aspergillus nidulans at both nucleotide and amino acid levels. Like S. cerevisiae Gsc/Fks proteins, none of the predicted products of C. albicans GSC1, GSL1, or GSL2 displayed obvious signal sequences at their N-terminal ends, but each product possessed 10 to 16 potential transmembrane helices with a relatively long cytoplasmic domain in the middle of the protein. Northern blotting demonstrated that C. albicans GSC1 and GSL1 but not GSL2 mRNAs were expressed in the growing yeast-phase cells. Three copies of GSC1 were found in the diploid genome of C. albicans CAI4. Although we could not establish the null mutation of C. albicans GSC1, disruption of two of the three GSC1 alleles decreased both GSC1 mRNA and cell wall beta-glucan levels by about 50%. The purified C. albicans beta-1,3-glucan synthase was a 210-kDa protein as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and all sequences determined with peptides obtained by lysyl endopeptidase digestion of the 210-kDa protein were found in the deduced amino acid sequence of C. albicans Gsc1p. Furthermore, the monoclonal antibody raised against the purified beta-1,3-glucan synthase specifically reacted with the 210-kDa protein and could immunoprecipitate beta-1,3-glucan synthase activity. These results demonstrate that C. albicans GSC1 is the gene for a subunit of beta-1,3-glucan synthase.  相似文献   

3.
Recent experiments have defined cytoplasmic foci, referred to as processing bodies (P-bodies), that contain untranslating mRNAs in conjunction with proteins involved in translation repression and mRNA decapping and degradation. However, the order of protein assembly into P-bodies and the interactions that promote P-body assembly are unknown. To gain insight into how yeast P-bodies assemble, we examined the P-body accumulation of Dcp1p, Dcp2p, Edc3p, Dhh1p, Pat1p, Lsm1p, Xrn1p, Ccr4p, and Pop2p in deletion mutants lacking one or more P-body component. These experiments revealed that Dcp2p and Pat1p are required for recruitment of Dcp1p and of the Lsm1-7p complex to P-bodies, respectively. We also demonstrate that P-body assembly is redundant and no single known component of P-bodies is required for P-body assembly, although both Dcp2p and Pat1p contribute to P-body assembly. In addition, our results indicate that Pat1p can be a nuclear-cytoplasmic shuttling protein and acts early in P-body assembly. In contrast, the Lsm1-7p complex appears to primarily function in a rate limiting step after P-body assembly in triggering decapping. Taken together, these results provide insight both into the function of individual proteins involved in mRNA degradation and the mechanisms by which yeast P-bodies assemble.  相似文献   

4.
Limited proteolysis of beta-1,3-glucanase A1 by three different proteases, trypsin, chymotrypsin, and papain, gave three major active fragments. The sizes of the three major fragments generated by each protease treatment were identical to those of beta-1,3-glucanase A2, A3, and A4 detected in both the culture supernatant of Bacillus circulans WL-12 and the periplasmic space of Escherichia coli carrying a cloned glcA gene. These results indicate a four-domain structure for the enzyme. At the N terminus of the glucanase, duplicated segments of approximately 100 amino acids were observed. N-terminal amino acid sequence analysis revealed that the active fragments with sizes corresponding to those of A2 and A3 lack the first segment (domain) and both duplicated segments (domains), respectively. The fragment corresponding to A4 lacks both duplicated segments and the following ca. 120-amino-acid region. By losing the first, second, and third (corresponding to the segment of 120 amino acids) domains, beta-1,3-glucanase progressively lost the ability to bind to pachyman, beta-1,3-glucan. An active fragment which did not have the three N-terminal domains did not show significant binding to pachyman. Thus, all three N-terminal domains contribute to binding to beta-1,3-glucan, and the presence of three domains confers the highest binding activity on the glucanase. The loss of these binding domains remarkably decreased pachyman-hydrolyzing activity, indicating that the binding activity is essential for the efficient hydrolysis of insoluble beta-1,3-glucan.  相似文献   

5.
We constructed Saccharomyces cerevisiae centromere DNA mutants by annealing and ligating synthetic oligonucleotides, a novel approach to centromere DNA mutagenesis that allowed us to change only one structural parameter at a time. Using this method, we confirmed that CDE I, II, and III alone are sufficient for centromere function and that A+T-rich sequences in CDE II play important roles in mitosis and meiosis. Analysis of mutants also showed that a bend in the centromere DNA could be important for proper mitotic and meiotic chromosome segregation. In addition we demonstrated that the wild-type orientation of the CDE III sequence, but not the CDE I sequence, is critical for wild-type mitotic segregation. Surprisingly, we found that one mutant centromere affected the segregation of plasmids and chromosomes differently. The implications of these results for centromere function and chromosome structure are discussed.by M. Yanagida  相似文献   

6.
7.
Metabolic engineering can produce a wide range of bulk and fine chemicals using renewable resources. These approaches frequently require high levels of activity from multiple heterologous enzymes. Directed evolution techniques have been used to improve the activity of a wide range of enzymes but can be difficult to apply when the enzyme is used in whole cells. To address this limitation, we developed generalizable in vivo biosensors using engineered RNA switches to link metabolite concentrations and GFP expression levels in living cells. Using such a sensor, we quantitatively screened large enzyme libraries in high throughput based on fluorescence, either in clonal cultures or in single cells by fluorescence activated cell sorting (FACS). By iteratively screening libraries of a caffeine demethylase, we identified beneficial mutations that ultimately increased the enzyme activity in vivo by 33 fold and the product selectivity by 22 fold. As aptamer selection strategies allow RNA switches to be readily adapted to recognize new small molecules, these RNA-based screening techniques are applicable to a broad range of enzymes and metabolic pathways.  相似文献   

8.
Using the set of Saccharomyces cerevisiae mutants individually deleted for 5718 yeast genes, we screened for altered sensitivity to the antifungal protein, K1 killer toxin, that binds to a cell wall beta-glucan receptor and subsequently forms lethal pores in the plasma membrane. Mutations in 268 genes, including 42 in genes of unknown function, had a phenotype, often mild, with 186 showing resistance and 82 hypersensitivity compared to wild type. Only 15 of these genes were previously known to cause a toxin phenotype when mutated. Mutants for 144 genes were analyzed for alkali-soluble beta-glucan levels; 63 showed alterations. Further, mutants for 118 genes with altered toxin sensitivity were screened for SDS, hygromycin B, and calcofluor white sensitivity as indicators of cell surface defects; 88 showed some additional defect. There is a markedly nonrandom functional distribution of the mutants. Many genes affect specific areas of cellular activity, including cell wall glucan and mannoprotein synthesis, secretory pathway trafficking, lipid and sterol biosynthesis, and cell surface signal transduction, and offer new insights into these processes and their integration.  相似文献   

9.
In yeast and other fungi, cell division, cell shape, and growth depend on the coordinated synthesis and degradation of cell wall polymers. We have developed a reliable and efficient micro method to determine Saccharomyces cerevisiae cell wall composition that distinguishes between beta1,3- and beta1,6-glucan. The method is based on the sequential treatment of cell walls with specific hydrolytic enzymes followed by dialysis. The low molecular weight (MW) products thus separated account for each particular cell wall polymer. The method can be applied to as little as 50-100 mg (wet wt) of radioactively labeled cells. A combination of chitinase and recombinant beta-1,3-glucanase is initially used, releasing all of the chitin and 60-65% of the beta1,3-glucan from the cell walls. Next, recombinant endo-beta-1,6-glucanase from Trichoderma harzianum is utilized to release all the beta-1,6-glucan present in the wall. The chromatographic pattern of endoglucanase digested beta-1,6-glucan provides a characteristic "fingerprint" of beta-1,6-glucan and the fine structure of the oligosaccharides in this pattern was determined by 1H NMR and electrospray ionization mass spectroscopy. The final enzymatic step uses laminarinase and beta-glucosidase to release the remaining beta-1,3-glucan. The cell wall mannan remains as a high MW fraction at the end of the fractionation procedure. Good sensitivity and correlation with cell wall composition determined by traditional methods were observed for wild-type and several cell wall mutants.  相似文献   

10.
11.
Beta1,6-Glucan is a key component of the yeast cell wall, interconnecting cell wall proteins, beta1,3-glucan, and chitin. It has been postulated that the synthesis of beta1,6-glucan begins in the endoplasmic reticulum with the formation of protein-bound primer structures and that these primer structures are extended in the Golgi complex by two putative glucosyltransferases that are functionally redundant, Kre6 and Skn1. This is followed by maturation steps at the cell surface and by coupling to other cell wall macromolecules. We have reinvestigated the role of Kre6 and Skn1 in the biogenesis of beta1,6-glucan. Using hydrophobic cluster analysis, we found that Kre6 and Skn1 show significant similarities to family 16 glycoside hydrolases but not to nucleotide diphospho-sugar glycosyltransferases, indicating that they are glucosyl hydrolases or transglucosylases instead of genuine glucosyltransferases. Next, using immunogold labeling, we tried to visualize intracellular beta1,6-glucan in cryofixed sec1-1 cells which had accumulated secretory vesicles at the restrictive temperature. No intracellular labeling was observed, but the cell surface was heavily labeled. Consistent with this, we could detect substantial amounts of beta1,6-glucan in isolated plasma membrane-derived microsomes but not in post-Golgi secretory vesicles. Taken together, our data indicate that the synthesis of beta1, 6-glucan takes place largely at the cell surface. An alternative function for Kre6 and Skn1 is discussed.  相似文献   

12.
Studies were undertaken to elucidate the active component in zymosan necessary to induce the delayed-onset synthesis and secretion of representative lysosomal hydrolases, hexosaminidase, and beta-glucuronidase in macrophages. Resident mouse peritoneal macrophages were challenged with zymosan particles and particulate beta-1,3-glucan, the major subcomponent of zymosan. Zymosan was found to induce a rapid secretion of preformed hexosaminidase with maximal release (75%) occurring 6 hr after the addition of zymosan. By contrast, beta-1,3-glucan was totally inactive in this respect. However, both zymosan and beta-1,3-glucan were found to induce the delayed-onset synthesis and secretion of hexosaminidase and beta-glucuronidase while maintaining constant cellular enzyme levels over a 5-day period following the addition of stimulus. These late responses were almost totally blocked by a noncytolytic concentration of cycloheximide, indicating their dependence on de novo protein synthesis. Mannan, the second major subcomponent of zymosan, had no effect on either immediate secretion or delayed-onset synthesis and secretion of hexosaminidase. These results suggest that the induction of the delayed-onset synthesis and secretion of the lysosomal hydrolases by zymosan may be dependent on the glucan subcomponent of zymosan. Moreover, it would also appear that the release of preformed lysosomal enzymes is not the trigger for the delayed-onset synthesis and secretion of hexosaminidase.  相似文献   

13.
Garber PM  Rine J 《Genetics》2002,161(2):521-534
The MAD2-dependent spindle checkpoint blocks anaphase until all chromosomes have achieved successful bipolar attachment to the mitotic spindle. The DNA damage and DNA replication checkpoints block anaphase in response to DNA lesions that may include single-stranded DNA and stalled replication forks. Many of the same conditions that activate the DNA damage and DNA replication checkpoints also activated the spindle checkpoint. The mad2Delta mutation partially relieved the arrest responses of cells to mutations affecting the replication proteins Mcm3p and Pol1p. Thus a previously unrecognized aspect of spindle checkpoint function may be to protect cells from defects in DNA replication. Furthermore, in cells lacking either the DNA damage or the DNA replication checkpoints, the spindle checkpoint contributed to the arrest responses of cells to the DNA-damaging agent methyl methanesulfonate, the replication inhibitor hydroxyurea, and mutations affecting Mcm2p and Orc2p. Thus the spindle checkpoint was sensitive to a wider range of chromosomal perturbations than previously recognized. Finally, the DNA replication checkpoint did not contribute to the arrests of cells in response to mutations affecting ORC, Mcm proteins, or DNA polymerase delta. Thus the specificity of this checkpoint may be more limited than previously recognized.  相似文献   

14.
Yeast and hyphal walls of Candida albicans were extracted with sodium dodecyl sulfate (SDS). Some of the extracted proteins reacted with a specific beta-1,6-glucan antiserum but not with a beta-1,3-glucan antiserum. They lost their beta-1,6-glucan epitope after treatment with ice-cold aqueous hydrofluoric acid, suggesting that beta-1,6-glucan was linked to the protein through a phosphodiester bridge. When yeast and hyphal walls extracted with SDS were subsequently extracted with a pure beta-1,3-glucanase, several mannoproteins that were recognized by both the beta-1,6-glucan antiserum and the beta-1,3-glucan antiserum were released. Both epitopes were sensitive to aqueous hydrofluoric acid treatment, suggesting that beta-1,3-glucan and beta-1,6-glucan are linked to proteins by phosphodiester linkages. The possible role of beta-glucans in the retention of cell wall proteins is discussed.  相似文献   

15.
During sporulation in Saccharomyces cerevisiae, the four haploid nuclei are encapsulated within multilayered spore walls. Glucan, the major constituent of the spore wall, is synthesized by 1,3-beta-glucan synthase, which is composed of a putative catalytic subunit encoded by FKS1 and FKS2. Although another homolog, encoded by FKS3, was identified by homology searching, its function is unknown. In this report, we show that FKS2 and FKS3 are required for spore wall assembly. The ascospores of fks2 and fks3 mutants were enveloped by an abnormal spore wall with reduced resistance to diethyl ether, elevated temperatures, and ethanol. However, deletion of the FKS1 gene did not result in a defective spore wall. The construction of fusion genes that expressed Fks1p and Fks2p under the control of the FKS2 promoter revealed that asci transformed with FKS2p-driven Fks1p and Fks2p were resistant to elevated temperatures, which suggests that the expression of FKS2 plays an important role in spore wall assembly. The expression of FKS1p-driven Fks3p during vegetative growth did not affect 1,3-beta-glucan synthase activity in vitro but effectively suppressed the growth defect of the temperature-sensitive fks1 mutant by stabilizing Rho1p, which is a regulatory subunit of glucan synthase. Based on these results, we propose that FKS2 encodes the primary 1,3-beta-glucan synthase in sporulation and that FKS3 is required for normal spore wall formation because it affects the upstream regulation of 1,3-beta-glucan synthase.  相似文献   

16.
17.
Saccharomyces cerevisiae septin mutants have pleiotropic defects, which include the formation of abnormally elongated buds. This bud morphology results at least in part from a cell cycle delay imposed by the Cdc28p-inhibitory kinase Swe1p. Mutations in three other genes (GIN4, encoding a kinase related to the Schizosaccharomyces pombe mitotic inducer Nim1p; CLA4, encoding a p21-activated kinase; and NAP1, encoding a Clb2p-interacting protein) also produce perturbations of septin organization associated with an Swe1p-dependent cell cycle delay. The effects of gin4, cla4, and nap1 mutations are additive, indicating that these proteins promote normal septin organization through pathways that are at least partially independent. In contrast, mutations affecting the other two Nim1p-related kinases in S. cerevisiae, Hsl1p and Kcc4p, produce no detectable effect on septin organization. However, deletion of HSL1, but not of KCC4, did produce a cell cycle delay under some conditions; this delay appears to reflect a direct role of Hsl1p in the regulation of Swe1p. As shown previously, Swe1p plays a central role in the morphogenesis checkpoint that delays the cell cycle in response to defects in bud formation. Swe1p is localized to the nucleus and to the daughter side of the mother bud neck prior to its degradation in G(2)/M phase. Both the neck localization of Swe1p and its degradation require Hsl1p and its binding partner Hsl7p, both of which colocalize with Swe1p at the daughter side of the neck. This localization is lost in mutants with perturbed septin organization, suggesting that the release of Hsl1p and Hsl7p from the neck may reduce their ability to inactivate Swe1p and thus contribute to the G(2) delay observed in such mutants. In contrast, treatments that perturb actin organization have little effect on Hsl1p and Hsl7p localization, suggesting that such treatments must stabilize Swe1p by another mechanism. The apparent dependence of Swe1p degradation on localization of the Hsl1p-Hsl7p-Swe1p module to a site that exists only in budded cells may constitute a mechanism for deactivating the morphogenesis checkpoint when it is no longer needed (i.e., after a bud has formed).  相似文献   

18.
Despite systematic approaches to mapping networks of genetic interactions in Saccharomyces cerevisiae, exploration of genetic interactions on a genome-wide scale has been limited. The S. cerevisiae haploid genome has 110 regions that are longer than 10 kb but harbor only non-essential genes. Here, we attempted to delete these regions by PCR-mediated chromosomal deletion technology (PCD), which enables chromosomal segments to be deleted by a one-step transformation. Thirty-three of the 110 regions could be deleted, but the remaining 77 regions could not. To determine whether the 77 undeletable regions are essential, we successfully converted 67 of them to mini-chromosomes marked with URA3 using PCR-mediated chromosome splitting technology and conducted a mitotic loss assay of the mini-chromosomes. Fifty-six of the 67 regions were found to be essential for cell growth, and 49 of these carried co-lethal gene pair(s) that were not previously been detected by synthetic genetic array analysis. This result implies that regions harboring only non-essential genes contain unidentified synthetic lethal combinations at an unexpectedly high frequency, revealing a novel landscape of genetic interactions in the S. cerevisiae genome. Furthermore, this study indicates that segmental deletion might be exploited for not only revealing genome function but also breeding stress-tolerant strains.  相似文献   

19.
The plasma of the crayfish Pacifastacus leniusculus contains a protein which is able to bind to laminarin (a soluble beta-1,3-glucan) and which has been isolated by two independent methods, affinity precipitation with a beta-1,3-glucan or immunoaffinity chromatography. The purified beta-1,3-glucan binding protein was homogenous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It is a monomeric glycoprotein with a molecular mass of approximately 100,000 Da and an isoelectric point of approximately 5.0. Amino acid analysis showed a very high similarity with the amino acid composition of beta-1,3-glucan binding proteins recently purified from two insects, the cockroach Blaberus craniifer and the silkworm Bombyx mori. The N-terminal amino acid sequence was determined to be: H2N-Asp-Ala-Gly-X-Ala-Ser-Leu-Val-Thr-Asn-Phe-Asn-Ser-Ala-Lys-Leu-X-X-Ly s--- Using monospecific rabbit polyclonal antibodies, the presence of this protein has also been shown within the blood cells. The purified beta-1,3-glucan binding protein did not show any peptidase or phenoloxidase activity but was able to enhance the activation of hemocyte-derived peptidase and prophenoloxidase only in the presence of the beta-1,3-glucan, laminarin, whereas mannan, dextran (alpha-glucan), or cellulose (beta-1,4-glucan) incubated with the beta-1,3-glucan binding protein had no effect on these enzyme activities. The beta-1,3-glucan binding protein could only be affinity-precipitated from crayfish plasma by the beta-1,3-glucans laminarin or curdlan (an insoluble beta-1,3-glucan), while mannan or dextran did not bind to the beta-1,3-glucan binding protein. No hemagglutinating activity of the purified beta-1,3-glucan binding protein could be detected.  相似文献   

20.
Invertebrates, like vertebrates, utilize pattern recognition proteins for detection of microbes and subsequent activation of innate immune responses. We report structural and functional properties of two domains from a beta-1,3-glucan recognition protein present in the hemolymph of a pyralid moth, Plodia interpunctella. A recombinant protein corresponding to the first 181 amino-terminal residues bound to beta-1,3-glucan, lipopolysaccharide, and lipoteichoic acid, polysaccharides found on cell surfaces of microorganisms, and also activated the prophenoloxidase-activating system, an immune response pathway in insects. The amino-terminal domain consists primarily of an alpha-helical secondary structure with a minor beta-structure. This domain was thermally stable and resisted proteolytic degradation. The 290 residue carboxyl-terminal domain, which is similar in sequence to glucanases, had less affinity for the polysaccharides, did not activate the prophenoloxidase cascade, had a more complicated CD spectrum, and was heat-labile and susceptible to proteinase digestion. The carboxyl-terminal domain bound to laminarin, a beta-1,3-glucan with beta-1,6 branches, but not to curdlan, a beta-1,3-glucan that lacks branching. These results indicate that the two domains of Plodia beta-1,3-glucan recognition protein, separated by a putative linker region, bind microbial polysaccharides with differing specificities and that the amino-terminal domain, which is unique to this class of pattern recognition receptors from invertebrates, is responsible for stimulating prophenoloxidase activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号