首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystals of hen egg white lysozyme soaked in 15% (v/v) dimethyl sulfoxide have been studied with single-crystal neutron diffraction to determine the effect of the solvent molecules on the protein configuration. A total of 9423 statistically significant Bragg reflections to a resolution of approximately 1.8 A were used to locate 6 dimethyl sulfoxide molecules, and structure refinements including a model for the flat solvent lead to a final crystallographic agreement factor of 0.130. The mode of location of the dimethyl sulfoxide molecules was compared with that in previous studies employing ethanol. This showed that hydrophobic interactions can be an essential factor in fixing the probe molecules on the protein surface. There was, however, no sign of any significant change in the protein configuration; so although possibly at higher concentrations of dimethyl sulfoxide the protein will unfold, there was no indication of any precursor effect.  相似文献   

2.
Alcohols have been widely used as protein denaturants, precipitants and crystallization reagents. We have studied the effect of alcohols on aqueous hen-egg lysozyme self-interactions by measuring the osmotic second virial coefficient (B22) using static light scattering. Addition of alcohols increases B22, indicating stronger protein-protein repulsion or weaker attraction. For the monohydric alcohols used in this study (methanol, ethanol, 1-propanol, n-butanol, iso-butanol and trifluoroethanol), B22 for lysozyme reaches a common plateau at approximately 5% (v/v) alcohol, while glycerol increases B22 more than monohydric alcohols. For a 0.05 M NaCl hen-egg lysozyme solution at pH 7, B22 increases from 2.4 x 10(-4) to 4.7 x 10(-4) ml mol/g2 upon addition of monohydric alcohols and to 5.8 x 10(-4) ml mol/g2 upon addition of glycerol. We describe the alcohol effect using a simple model that supplements the DLVO theory with an additional alcohol-dependent term representing orientation-averaged hydrophobic interactions. In this model, the increased lysozyme repulsive forces in the presence of monohydric alcohols are interpreted in terms of adsorption of alcohol molecules on hydrophobic sites on the protein surface. This adsorption reduces attractive hydrophobic protein-protein interactions. A thicker lysozyme hydration layer in aqueous glycerol solution can explain the glycerol-increased lysozyme-lysozyme repulsion.  相似文献   

3.
Ethanol is used to precipitate proteins during various processes, including purification and crystallization. To elucidate the mechanism of protein precipitation by alcohol, we have investigated the solubility and structural changes of protein over a wide range of alcohol concentrations. Conformation of hen egg-white lysozyme was changed from native to α-helical rich structure in the presence of ethanol at concentrations above 60%. The solubility of lysozyme was reduced with increasing ethanol concentration, although gel formation at ethanol concentrations between 60% and 75% prevented accurate solubility measurements. SH-modified lysozyme showed largely unfolded structure in water and α-helical structure in the presence of ethanol. More importantly, solubility of the chemically modified lysozyme molecules decreased with increasing ethanol concentration. There is no indication of increased solubility upon unfolding of the lysozyme molecules by ethanol, indicating that any favorable interaction of ethanol with the hydrophobic side chains, if indeed occuring, is offset by the unfavorable interaction of ethanol with the hydrophilic side chains and peptide bonds.  相似文献   

4.
Sasahara K  Nitta K 《Proteins》2006,63(1):127-135
The equilibrium and kinetics of folding of hen egg-white lysozyme were studied by means of CD spectroscopy in the presence of varying concentrations of ethanol under acidic condition. The equilibrium transition curves of guanidine hydrochloride-induced unfolding in 13 and 26% (v/v) ethanol have shown that the unfolding significantly deviates from a two-state mechanism. The kinetics of denaturant-induced refolding and unfolding of hen egg-white lysozyme were investigated by stopped-flow CD at three ethanol concentrations: 0, 13, and 26% (v/v). Immediately after dilution of the denaturant, the refolding curves showed a biphasic time course in the far-UV region, with a burst phase with a significant secondary structure and a slower observable phase. However, when monitored by the near-UV CD, the burst phase was not observed and all refolding kinetics were monophasic. To clarify the effect of nonnative secondary structure induced by the addition of ethanol on the folding/unfolding kinetics, the kinetic m values were estimated from the chevron plots obtained for the three ethanol concentrations. The data indicated that the folding/unfolding kinetics of hen lysozyme in the presence of varying concentrations of ethanol under acidic condition is explained by a model with both on-pathway and off-pathway intermediates of protein folding.  相似文献   

5.
In this study, various molecular dynamics simulations were conducted to investigate the effects of ethanol and temperature on the conformational changes of human lysozyme, which may lead insights into amyloidosis. The analyses of some important structural characteristics, such as backbone root-mean-square deviation, secondary structural stability, radius of gyration, accessible surface area, and hydrophobic contact of the hydrophobic core all show that ethanol tends to destabilize human lysozyme at high temperatures. It can be attributed to that higher temperatures result in the destruction of the native structure of this protein, leading to the exposure of the interior hydrophobic core. At this stage, ethanol plays a role to destroy this region by forming hydrophobic interactions between protein and solvent due to its lower polarity comparing to water. Such newly formed intermolecular interactions accelerate the unfolding of this protein, starting from the core between the alpha- and beta-domains. Our results are in good agreement with the previous hypothesis suggesting that the distortion of the hydrophobic core at the alpha- and beta-interface putatively results in the formation of the initial "seed" for amyloid fibril. Although the present results cannot directly be linked to fibril formation, they still provide valuable insights into amyloidosis of human lysozyme.  相似文献   

6.
Abstract

In this study, various molecular dynamics simulations were conducted to investigate the effects of ethanol and temperature on the conformational changes of human lysozyme, which may lead insights into amyloidosis. The analyses of some important structural characteristics, such as backbone root-mean-square deviation, secondary structural stability, radius of gyration, accessible surface area, and hydrophobic contact of the hydrophobic core all show that ethanol tends to destabilize human lysozyme at high temperatures. It can be attributed to that higher temperatures result in the destruction of the native structure of this protein, leading to the exposure of the interior hydrophobic core. At this stage, ethanol plays a role to destroy this region by forming hydrophobic interactions between protein and solvent due to its lower polarity comparing to water. Such newly formed intermolecular interactions accelerate the unfolding of this protein, starting from the core between the a- and β-domains. Our results are in good agreement with the previous hypothesis suggesting that the distortion of the hydrophobic core at the α- and β-interface putatively results in the formation of the initial “seed” for amyloid fibril. Although the present results cannot directly be linked to fibril formation, they still provide valuable insights into amyloidosis of human lysozyme.  相似文献   

7.
Structural and dynamic properties of β-lactoglobulin (β-LG) were revealed as a function of alcohol concentration in ethanol- and trifluoroethanol(TFE)-water mixtures with circular dichroism (CD), small-angle neutron scattering (SANS) and quasi-elastic neutron scattering (QENS). The CD spectra showed that an increase in TFE concentration promotes the formation of the β-sheet structure of β-LG. The SANS-intensities were fitted using form factors for two attached spheres for the native and native-like states of the protein. At higher alcohol concentrations, where aggregation takes place, a form factor modelling diffusion limited colloidal aggregation (DLCA) was employed. The QENS-data were analyzed in terms of internal motions for all alcohol concentrations. While low concentrations of TFE (10% (v/v)) lead to an increase of the mean square amplitudes of vibrations and a retention of a native-like structure - but not to an increase of the characteristic radius of proton diffusion processes a. Addition of 20% (v/v) of TFE induces aggregation, going along with a further increase of . Further increase of TFE concentration to 30% (v/v) changes the nanoscale structure of the oligomeric nucleate, but induces no further significant changes in . The present study underlines the necessity of methods sensitive to the dynamics of a system to obtain a complete picture of a molecular process.  相似文献   

8.
Using equilibrium dialysis, isothermal titration calorimetry (ITC) and circular dichroism (CD), the interactions of perfluorooctanoic acid (PFOA) and lysozyme were investigated under normal human physiological conditions, i.e., at pH 4.40, 6.00 and 7.40 at 37°C in 0.15 M electrolyte. A simple and rapid spectrophotometric method was developed for determining PFOA concentrations. Interactions between PFOA and lysozyme were found to result from non-specific non-covalent bonds—F/N and F/O affinity, ion-pair attraction, hydrogen bond, hydrophobic interaction and van der Waals force—and were affected by chemical adsorption to monolayers. The results indicated that binding of PFOA altered the secondary structure and activity of lysozyme. This work provides a useful experimental strategy for research into the enzyme toxicity of organic chemicals, e.g., food additives and organic contaminants, and it may help to elucidate the molecular toxicology of human health risks.  相似文献   

9.
We applied dynamic light scattering technique on the model system of hen egg lysozyme in salt-free aqueous ethanol solution to study the mechanism of denaturation and aggregation of protein. At low ethanol concentration [0-63% (v/v)], the fast relaxation mode was observed, which was caused by lysozyme molecules in the solution interacting with each other with strong repulsive electrostatic force. At 45 and 63% (v/v) ethanol, the slow relaxation mode was also observed, which showed translational diffusive nature, similar to that observed in salt-free polyelectrolyte solution. At 72 or 81% (v/v) ethanol, the slow mode disappeared, leaving only the fast mode. However, the mutual diffusion coefficients obtained from the fast mode at 72 and 81% (v/v) ethanol decreased by about one order of magnitude compared with those from the fast mode at 0-63% (v/v). The reported alcohol-induced conformational transformation of lysozyme molecules at >60% (v/v) ethanol from their native structure to an alpha-helix-rich structure might cause such drastic decrease in the mutual diffusion coefficients. At the highest ethanol concentration of 90% (v/v), the slow mode reappeared, and its relaxation rate was decreasing with elapsed time, which is possibly due to the growth of aggregates of lysozyme molecules. X-ray diffraction results suggested that the intermolecular beta-sheet formation caused the aggregation. Thus, our results indicated that the change in molecular structure of lysozyme closely relates to the diffusion of molecules and their aggregation.  相似文献   

10.
Structural and dynamic properties of β-lactoglobulin (β-LG) were revealed as a function of alcohol concentration in ethanol- and trifluoroethanol(TFE)-water mixtures with circular dichroism (CD), small-angle neutron scattering (SANS) and quasi-elastic neutron scattering (QENS). The CD spectra showed that an increase in TFE concentration promotes the formation of the β-sheet structure of β-LG. The SANS-intensities were fitted using form factors for two attached spheres for the native and native-like states of the protein. At higher alcohol concentrations, where aggregation takes place, a form factor modelling diffusion limited colloidal aggregation (DLCA) was employed. The QENS-data were analyzed in terms of internal motions for all alcohol concentrations. While low concentrations of TFE (10% (v/v)) lead to an increase of the mean square amplitudes of vibrations < u2> and a retention of a native-like structure — but not to an increase of the characteristic radius of proton diffusion processes a. Addition of 20% (v/v) of TFE induces aggregation, going along with a further increase of < u2>. Further increase of TFE concentration to 30% (v/v) changes the nanoscale structure of the oligomeric nucleate, but induces no further significant changes in < u2>. The present study underlines the necessity of methods sensitive to the dynamics of a system to obtain a complete picture of a molecular process.  相似文献   

11.
Najbar LV  Craik DJ  Wade JD  McLeish MJ 《Biochemistry》2000,39(19):5911-5920
Using CD and 2D (1)H NMR spectroscopy, we have identified potential initiation sites for the folding of T4 lysozyme by examining the conformational preferences of peptide fragments corresponding to regions of secondary structure. CD spectropolarimetry showed most peptides were unstructured in water, but adopted partial helical conformations in TFE and SDS solution. This was also consistent with the (1)H NMR data which showed that the peptides were predominantly disordered in water, although in some cases, nascent or small populations of partially folded conformations could be detected. NOE patterns, coupling constants, and deviations from random coil Halpha chemical shift values complemented the CD data and confirmed that many of the peptides were helical in TFE and SDS micelles. In particular, the peptide corresponding to helix E in the native enzyme formed a well-defined helix in both TFE and SDS, indicating that helix E potentially forms an initiation site for T4 lysozyme folding. The data for the other peptides indicated that helices D, F, G, and H are dependent on tertiary interactions for their folding and/or stability. Overall, the results from this study, and those of our earlier studies, are in agreement with modeling and HD-deuterium exchange experiments, and support an hierarchical model of folding for T4 lysozyme.  相似文献   

12.
The solvophobic theory developed earlier by Sinanoglu introducing the use of molecular surface areas and microthermodynamic surface and interfacial tensions at molecular dimensions is applied to the interpretation of calorimetric data on denaturation of lysozyme in a wide range of methanol/water mixtures. The experimental values of standard unitary free energies of denaturation correlate well with our predictions. The molecular surface area change of the protein upon denaturation is evaluated using the solvophobic theory. The maximum in the stability of the native form of the protein is predicted to occur at 8% (v/v) methanol. This is found to be in agreement with the experimental results.  相似文献   

13.
The interaction between myricetin and dihydromyricetin with trypsin, α-chymotrypsin and lysozyme was investigated using multispectral and molecular docking methods. The results of fluorescence quenching revealed that myricetin and dihydromyricetin could quench the intrinsic fluorescence of three different proteinases through a static quenching procedure. The binding constant and number of binding sites at different temperatures were measured. The thermodynamic parameters obtained at different temperatures showed van der Waals interactions and hydrogen bonds played the main roles in the interaction of myricetin with trypsin and lysozyme, hydrophobic force was dominant both in myricetin with α-chymotrypsin interaction and dihydromyricetin with trypsin and lysozyme interaction, as for the electrostatic forces, it was mainly the driving force in dihydromyricetin binding to α-chymotrypsin. There was non-radiative energy transfer between three proteinases and myricetin or dihydromyricetin with high probability. The microenvironment of trypsin, α-chymotrypsin and lysozyme is changed. The docking studies revealed that myricetin and dihydromyricetin entered the hydrophobic cavity of three proteinases and formed hydrogen bonds. The binding affinity of myricetin or dihydromyricetin is different with the trypsin, α-chymotrypsin and lysozyme due to the different molecular structure.  相似文献   

14.
Infrared absorption spectroscopy has been used to study the effect of organic solvents on the conformation of myoglobin, apomyoglobin, hemoglobin, lysozyme and ribonuclease. Beta structure can easily be induced by specific solvent effects. Films prepared from a 50% (v/v) mixture of alcohol, acetone, pyridine, tetrahydrofuran or dimethylsulfoxide/water mixtures show a high proportion of beta structure. The degree of induction of beta structure depends on the hydrocarbon content of the alcohol in the order methanol greater than ethanol greater than butanol. No beta structure was observed in films prepared from aqueous octanol solutions. Lyophilization tends to decrease secondary structure. The conformation of the proteins depends on the particular solvent system and the solvent composition. Solution studies of myoglobin in pure dimethylsulfoxide show that the conformation is a mixture of random and beta forms while in dimethylsulfoxide/2H2O mixtures the conformation is a mixture of alpha-helical and beta forms.  相似文献   

15.
Reduced hen lysozyme has a residual structure involving long-range interaction. It has been demonstrated that a single mutation (A9G, W62G, W111G, or W123G) in the residual structure differently modulates the long-range interactions of reduced lysozyme. To examine whether such variations in the residual structure affect amyloid formation, reduced and alkylated mutant lysozymes were incubated under the amyloid-fibrillation condition. From the analyses of CD spectra and thioflavine T fluorescences, it was suggested that variation in residual structure led to different amyloid formation. Interestingly, the extent of amyloid formation did not always correlate with the extent to which the residual structure was maintained, resulting in the involvement of a hydrophobic cluster normally contained in W111 in the reduced lysozyme.  相似文献   

16.
Tritium-hydrogen isotope exchange techniques have been employed to study the effect of tri-N-acetylglucosamine binding on the conformational dynamics of hen egg white lysozyme. Numerical Laplace inversion of the data provides exchange rate probability density functions that reveal three overlapping peaks for both the free enzyme and (GlcNAc)3-enzyme complex. Binding of (GlcNAc)3 decreases the exchange rates of all protons to some extent with by far the largest effect being observed for the slow exchanging protons. These have been located, by comparison with neutron diffraction results (Mason, S. A., Bentley, G. A., and McIntyre, G. J. (1984) in Neutrons in Biology (Schoenborn, B. P., ed) pp. 323-334, Plenum Press, New York), within the beta-sheet structure and on helices (8-13), (28-34), and (89-97), that define the edges of the so-called "hydrophobic box" in lysozyme. The regions of the protein that are most affected by binding (GlcNAc)3, as revealed by hydrogen exchange, are found to be quite distinct from the regions observed to undergo conformational changes by x-ray diffraction. Most of these segments of the protein are located at some distance from the (GlcNAc)3-binding site itself. Two segments (the beta-sheet and helix (28-34)) are closely associated with the two active-site carboxylate groups. These results suggest that exchange-stable regions having strong, highly organized hydrogen bonding may have an important role in catalytic function and the differential propagation of conformational and dynamic perturbations caused by ligand binding at distant sites on the protein.  相似文献   

17.
Antibromelain polyclonal antibodies against stem bromelain were raised in male albino rabbits and the Fab monomers isolated from the IgG of the immune sera as reported in our earlier communication (Gupta, P., Khan, R. H., and Saleemuddin, M. (2003) Biochim. Biophys. Acta, 1646, 131-135). Further, as evident from that communication bromelain:Fab complex has 1 : 1 stoichiometry. The stability of bromelain:Fab complex (1 : 1 stoichiometry) was investigated by far and near-UV CD and fluorescence measurements. Addition of up to 1.8 M NaCl caused no significant changes in fluorescence signals and near-UV CD peak pattern. However, the spectral studies together with gel filtration studies suggest dissociation of the complex beyond 5% (v/v) methanol. These results show that hydrophobic interactions play a pronounced role in the binding of Fab to bromelain while electrostatic interactions may be less crucial.  相似文献   

18.
The fully reduced hen egg white lysozyme (HEWL), which is a good model of random coil structure, has been converted to highly organized amyloid fibrils at low pH by adding ethanol. In the presence of 90% (v/v) ethanol, the fully reduced HEWL adopts beta-sheet secondary structure at pH 4.5 and 5.0, and an alpha-to-beta transition is observed at pH 4.0. A red shift of the Congo red absorption spectrum caused by the precipitation of the fully reduced HEWL in the presence of 90% (v/v) ethanol is typical of the presence of amyloid aggregation. EM reveals unbranched fibrils with a diameter of 2-5 nm and as long as 1-2 microm. The pH dependence of the initial structure of the fully reduced HEWL in the presence of 90% (v/v) ethanol suggests that Asp and His residues may play an important role.  相似文献   

19.
Characterization of conformational transition and folding intermediates is central to the study of protein folding. We studied the effect of various alcohols (trifluoroethanol (TFE), butanol, propanol, ethanol and methanol) and salts (K(3)FeCN(6), Na(2)SO(4), KClO(4) and KCl) on the acid-induced state of alpha-chymotrypsinogen A, a predominantly beta-sheet protein, at pH 2.0 by near-UV circular dichroism (CD), far-UV CD and 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence measurements. Addition of alcohols led to an increase in ellipticity value at 222 nm indicating the formation of alpha-helical structure. The order of effectiveness of alcohols was shown to be TFE>butanol>propanol>ethanol>methanol. ANS fluorescence data showed a decrease in fluorescence intensity on alcohol addition, suggesting burial of hydrophobic patches. The near-UV CD spectra showed disruption of tertiary structure on alcohol addition. No change in ellipticity was observed on addition of salts at pH 2.0, whereas in the presence of 2 M urea, salts were found to induce a molten globule-like state as evident from the increases in ellipticity at 222 nm and ANS fluorescence indicating exposure of hydrophobic regions of the protein. The effectiveness in inducing the molten globule-like state, i.e. both increase in ellipticity at 222 nm and increase in ANS fluorescence, followed the order K(3)FeCN(6)>Na(2)SO(4)>KClO(4)>KCl. The loss of signal in the near-UV CD spectrum on addition of alcohols indicating disordering of tertiary structure results suggested that the decrease in ANS fluorescence intensity may be attributed to the unfolding of the ANS binding sites. The results imply that the alcohol-induced state had characteristics of an unfolded structure and lies between the molten globule and the unfolded state. Characterization of such partially folded states has important implications for protein folding.  相似文献   

20.
Hamill AC  Wang SC  Lee CT 《Biochemistry》2005,44(46):15139-15149
A means to control lysozyme conformation with light illumination has been developed using the interaction of the protein with a photoresponsive surfactant. Upon exposure to the appropriate wavelength of light, the azobenzene surfactant undergoes a reversible photoisomerization, with the visible-light (trans) form being more hydrophobic than the UV-light (cis) form. As a result, surfactant binding to the protein and, thus, protein unfolding, can be tuned with light. Small-angle neutron scattering (SANS) measurements were used to provide detailed information of the protein conformation in solution. Shape-reconstruction methods applied to the SANS data indicate that under visible light the protein exhibits a native-like form at low surfactant concentrations, a partially swollen form at intermediate concentrations, and a swollen/unfolded form at higher surfactant concentrations. Furthermore, the SANS data combined with FT-IR spectroscopic analysis of the protein secondary structure reveal that unfolding occurs primarily in the alpha domain of lysozyme, while the beta domain remains relatively intact. Thus, the surfactant-unfolded intermediate of lysozyme appears to be a separate structure than the well-known alpha-domain intermediate of lysozyme that contains a folded alpha domain and unfolded beta domain. Because the interactions between the photosurfactant and protein can be tuned with light, illumination with UV light returns the protein to a native-like conformation. Fluorescence emission data of the nonpolar probe Nile red indicate that hydrophobic domains become available for probe partitioning in surfactant-protein solutions under visible light, while the availability of these hydrophobic domains to the probe decrease under UV light. Dynamic light scattering and UV-vis spectroscopic measurements further confirm the shape-reconstruction findings and reveal three discrete conformations of lysozyme. The results clearly demonstrate that visible light causes a greater degree of lysozyme swelling than UV light, thus allowing for the protein conformation to be controlled with light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号