首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), has historically been a significant economically important insect pest of corn (Zea mays L.) in the United States and Canada. The development in the 1990s of genetically modified corn expressing genes derived from Bacillus thuringiensis (Bt) that encodes insecticidal crystalline (Cry) proteins has proven to be effective in controlling this insect as well as other corn pests. The purpose of this study was to assess the movement and dispersal behavior of neonate European corn borer on Bt corn. We examined differences in neonate European corn borer dispersal behavior for the first 4 h after eclosion in the field among a stacked pyramid (Cry1F X Cry1Ab X Cry34/35Ab1) Bt corn, a Cry1F Bt corn, and a non-Bt sweet corn; and in the laboratory among a Bt corn hybrid containing Cry1F, a hybrid containing Cry1Ab, a pyramid combining these two hybrids (Cry1F X Cry1Ab), and a non-Bt near isoline corn. In field experiments, we found that dispersal was significantly higher on Bt corn compared with sweet corn. In laboratory experiments, dispersal was significantly higher on Cry1Ab Bt corn and Cry1F X Cry1Ab Bt corn than on non-Bt near isoline corn. Results indicated that neonate dispersal may be significantly greater in Bt cornfields compared with non-Bt cornfields. The findings on dispersal behavior in this study will be useful in evaluating the efficacy of a blended seed refuge system for managing European corn borer resistance in Bt corn.  相似文献   

2.
Genetically modified, insecticidal Bacillus thuringiensis (Bt) corn, Zea mays L., hybrids are used throughout the Corn Belt for European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), control. To slow development of Bt corn resistance, the Environmental Protection Agency requires growers to plant a refuge. Determining the appropriate distance between a refuge and Bt corn, and development of mitigation-remediation strategies such as mass releases of susceptible moths, requires an understanding of adult dispersal and mating behavior. However, much remains unknown about these behaviors. Because mating often occurs in grass near cornfields where adult O. nubilalis aggregate, we planted small-grain plots as aggregation sites in an attempt to retain mass-released adults. The objectives of this study were to examine influences of pheromone lure, plant density, and plant species on distributions of feral and newly emerged, laboratory-reared O. nubilalis among small-grain aggregation plots. Feral adults were collected in aggregation plots in relative abundance, indicating that small-grain plots were acceptable aggregation sites. In contrast, newly emerged adults that were released weekly as dye-marked pupae were rarely found in aggregation plots, with approximately 150-1,500-fold fewer adults captured than expected if all released adults had occupied the plots for > or = 1 d. The majority of newly emerged adults did not colonize the aggregation plots, suggesting that recently eclosed adults leave their natal field and do not colonize the first aggregation sites encountered. Plant species significantly influenced adult distributions among aggregation plots. Mass releases of laboratory-reared pupae in the field may not be a viable remediation tactic because almost all of the newly emerged adults dispersed beyond 300 m of the release point.  相似文献   

3.
One field strain each of the European corn borer, Ostrinia nubilalis (Hübner); southwestern corn borer, Diatraea grandiosella Dyar; and sugarcane borer, Diatraea saccharalis (F.); were collected from cornfields in northeastern Louisiana. Susceptibilities of the field strain and a corresponding laboratory strain of the three borer species to Cry1Ab protein in DK69-70 Bacillus thuringiensis (Bt) corn hybrid were determined by exposing neonates to intact leaf tissues from whorl stage plants or by feeding neonates or third instars on a meridic diet treated with different concentrations of Cry1lAb protein extracted from Bt corn leaves. Mortality and growth of larvae were evaluated after 2 and 4 d posttreatment in the bioassays by using intact leaf tissues or after 7 d in the bioassays by using diet incorporating Cry1Ab protein. D. saccharalis was the least susceptible species to Cry1Ab protein among the three species, followed by D. grandiosella, whereas O. nubilalis was most susceptible. The 2-d mortality of D. saccharalis neonates on intact Bt leaf tissues was lower than that of O. nubilalis and D. grandiosella. All neonates of O. nubilalis were killed on the diet treated with Cry1Ab protein at 0.5 and 1 mg/kg. The mortality of D. grandiosella was > 75% at 1 mg/kg, but it was < 6% for D. saccharalis at 1 mg/kg. The LC50 values of D. saccharalis were 3- and 11-fold higher than those of D. grandiosella and O. nubilalis, respectively. The LC90 values of D. saccharalis were 8- and 32-fold higher than those of D. grandiosella and O. nubilalis, respectively. Larval growth of the three species on Cry1Ab-treated diet was inhibited, but the inhibition was greater for O. nubilalis and D. grandiosella than for D. saccharalis. The lower susceptibility of D. saccharalis to Cry1Ab protein suggests that it is necessary to verify if a high-dose Bt corn for O. nubilalis and D. grandiosella is also a high dose for D. saccharalis.  相似文献   

4.
The European corn borer, Ostrinia nubilalis Hübner (Lepidoptera: Crambidae) has been a major pest of corn and other crops in North America since its accidental introduction nearly a hundred years ago. Wide adoption of transgenic corn hybrids that express toxins from Bacillus thuringiensis, referred to as Bt corn, has suppressed corn borer populations and reduced the pest status of this insect in parts of the Corn Belt. Continued suppression of this pest, however, will depend on managing potential resistance to Bt corn, currently through the high-dose refuge (HDR) strategy. In this review, we describe what has been learned with regard to O. nubilalis resistance to Bt toxins either through laboratory selection experiments or isolation of resistance from field populations. We also describe the essential components of the HDR strategy as they relate to O. nubilalis biology and ecology. Additionally, recent developments in insect resistance management (IRM) specific to O. nubilalis that may affect the continued sustainability of this technology are considered.  相似文献   

5.
The efficacy of nontransgenic sweet corn, Zea mays L., hybrids cross-pollinated by Bacillus thuringiensis (Bt) sweet corn hybrids expressing Cry1Ab toxin was evaluated in both field and laboratory studies in Minnesota in 2000. Non-Bt and Bt hybrids (maternal plants) were cross-pollinated with pollen from both non-Bt and Bt hybrids (paternal plants) to create four crosses. Subsequent crosses were evaluated for efficacy in the field against European corn borer, Ostrinia nubilalis (Hübner), and corn earworm, Helicoverpa zea (Boddie), and in laboratory bioassays against O. nubilalis. Field studies indicated that crosses with maternal Bt plants led to low levels of survival for both O. nubilalis and H. zea compared with the non-Bt x non-Bt cross. However, the cross between non-Bt ears and Bt pollen led to survival rates of 43 and 63% for O. nubilalis and H. zea larvae, respectively. This intermediate level of survival also was reflected in the number of kernels damaged. Laboratory bioassays for O. nubilalis, further confirmed field results with larval survival on kernels from the cross between non-Bt ears and Bt pollen reaching 60% compared with non-Bt crossed with non-Bt. These results suggest that non-Bt refuge plants, when planted in proximity to Bt plants, and cross-pollinated, can result in sublethal exposure of O. nubilalis and H. zea larvae to Bt and may undermine the high-dose/refuge resistance management strategy for corn hybrids expressing Cry1Ab.  相似文献   

6.
The European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), is often controlled with genetically modified corn, Zea mays L., hybrids (Bacillus thuringiensis [Bt] corn) in the United States. If Bt-resistant insects are detected in the field, mitigation-remediation tactics must be implemented to sustain the efficacy of insecticidal, transgenic corn. Mass releasing laboratory-reared, susceptible adults near aggregation sites to mate with locally emerging resistant adults is a possible remediation tactic, but it is imperative that the former remain in or near the release site long enough to mate. Understanding adult dispersal behavior relative to the timing of mating is important, because it directly affects patterns of gene flow and the rate at which Bt resistance moves through a population. Previous work shows that newly eclosed adults do not remain in proximity to their natal field. However, moth age, reproductive development, or mating status may influence the propensity to disperse. The objectives of this study were to determine the effect of adult age (0-3, 4-6, and 7-10 d old) and mating status on dispersal of adults released in small-grain aggregation plots. Less than 1% of the marked adults released in the aggregation plots remained after one night. More males than females were recovered. Age influenced dispersal, with mostly 4-6-d old adults being recovered. Conversely, mating status did not affect the number of adults recovered. Given the paucity of marked adult moths recovered near their release sites, mass releases of adults may not be a viable tactic to combat the spread of resistance to Bt corn.  相似文献   

7.
Field studies were conducted to determine how field corn, Zea mays L., phenologies in combination with transgenic Bacillus thuringiensis Berliner (Bt) corn and non-Bt (near isogenic) corn could affect egg laying by female European corn borer, Ostrinia nubilalis (Hubner), and subsequent larval injury. Transgenic Bt (events 176 and Bt11) and non-Bt corn was planted at three different times to assess the use of early- and late- planted Bt corn as a means for egg recruitment to these targeted planting dates. Plant growth stages, egg densities, and stalk tunneling was recorded at four locations in southwestern, central, and northern Iowa for three summers (1996-1998). No significant differences in egg densities were observed between Bt and non-Bt corn during the first and second generation for all three years. Significant differences did occur among planting dates. Between 50 and 100% of the eggs were laid in the early planting during the first generation. In addition, between 40 and 65% of the eggs were laid in the late planting for the second generation. Correlations between egg density and larval tunneling were inconsistent from year to year. Additional inconsistencies stemming from yearly phenological differences among sequential plantings and variable O. nubilalis populations increases the difficulty in recommending planting date adjustments as a practical management tool for European corn borer and Bt corn.  相似文献   

8.
Planting dates of transgenic Bacillus thuringiensis Berliner (Bt) corn were adjusted to determine the utility in managing European corn borer, Ostrinia nubilalis (Hübner). Transgenic Bt (events 176 and Bt11) corn and non-Bt corn were planted at three different times to use the early- and late- planted corn as a potential trap crop for ovipositing European corn borer moths. Grain moisture and yields were recorded to determine the economic benefits of Bt corn planted on the different dates, based on European corn borer populations and corn damage data collected before harvest. Data were recorded from three locations in southwestern, central, and northeastern Iowa for three summers (1996-1998). Economic benefits are discussed in relation to EILs and yield results. Adjusting the planting dates of Bt and non-Bt corn provided variable economic differences among planting dates in northern Iowa; however, greater economic benefits were realized when Bt corn was planted late during the planting sequence in central and southwestern Iowa. These results suggest that planting corn should be conducted in a timely manner and, if delayed or required to plant late, planting Bt corn would likely provide greater economic benefits. Although yield and economic variability were high, using Bt corn in combination with planting date adjustments may be a viable option for managing European corn borer.  相似文献   

9.
The Kansas Dipel-resistant and susceptible European corn borer, Ostrinia nubilalis (Hübner), were evaluated in the greenhouse on different Bt transgenic events expressed in corn hybrids. There were important differences in the resistance offered by the different Bt event corn hybrids. Hybrid comparison tests indicate that these Dipel-resistant first-instar European corn borer were not able to survive to adulthood on whorl-stage MON810, Bt11, or 176 Bt event corn plants. Third instars did not survive to adulthood on whorl-stage MON810 or Bt11 event corn plants but a small number of fifth instars were found on whorl-stage DBT418 plants infested with Dipel-resistant larvae. First and third instars of these Dipel-resistant European corn borers caused more leaf-feeding damage and more tunneling on whorl-stage Bt-corn plants than did the Dipel-susceptible European corn borers. However, in the single Bt corn hybrid test, there was no survival of the Dipel-resistant European corn borers on DK580BtX or MAX454 Bt plants 35 to 42 d after they had been infested with first instars. These results demonstrate that the current Kansas selection of Dipel-resistant European corn borer strain cannot establish reproducing populations in the tested Bt corn lines and hybrids.  相似文献   

10.
The efficacy of Bacillus thuringiensis-transformed corn (Zea mays L.) hybrids compared with comparable nontransformed corn hybrids for controlling first- and second-generation European corn borer, Ostrinia nubilalis (Hübner), and second-generation southwestern corn borer, Diatraea grandiosella Dyar, was determined. Yield comparisons were obtained from the same plots of corn hybrids. Both generations of European and the second-generation of southwestern corn borer were effectively controlled, but the Bt hybrids varied in degree of control. Hybrids from Ciba Seeds, DEKALB, and Mycogen had more European corn borer tunneling than those from Novartis or Cargill, and this was generally ascribed to different transgenic events. The Bt-transformed hybrids had virtually no leaf-feeding damage and less tunneling than the non-Bt corn hybrids. Some Bt corn hybrids had no tunneling, whereas other Bt hybrids had a small amount of tunneling. All of the non-Bt hybrids had significant leaf-feeding damage and stalk tunneling from both insects. Only three live European corn borer larvae (stunted) were found in the Bt corn hybrids while splitting stalks to assess tunnel length. When insect damage was significant, and in some evaluations where damage was not significant, differences in yields among hybrids were observed. No significant insect population differences were observed for five genera of beneficial insects for Bt versus non-Bt corn hybrids. Corn hybrids that have been transformed with the Bt gene provide an effective means of control for corn borers and efforts to reduce the likelihood of development of borer resistance are warranted.  相似文献   

11.
Field studies were conducted in 1996 and 1997 to determine injury by and survival of late-instar European corn borer, Ostrinia nubilalis (Hübner), on genetically altered Bacillus thuringiensis Berliner corn, Zea mays L. Cry1Ab events 176, Bt11, MON810, and MON802; Cry1Ac event DBT418; and Cry9C event CBH351 were evaluated. Plants of each corn hybrid were manually infested with two third-, fourth-, or fifth-instar O. nubilalis. Larvae were held in proximity to the internode of the plant above the ear with a mesh sleeve. Larvae were put on the plants during corn developmental stages V8, V16, R1, R3, R4, R5, and R6. This study shows that not all B. thuringiensis hybrids provide the same protection against O. nubilalis injury. Hybrids with B. thuringiensis events Bt11, MON810, MON802, and CHB351 effectively protected the corn against tunneling by late-instar O. nubilalis. Event 176 was effective in controlling late-instar O. nubilalis during V12 and V16 corn developmental stages; however, significant tunneling occurred by fourth instars during R3 and R5. Event DBT418 was not effective in controlling late-instar O. nubilalis during corn vegetative or reproductive stages of development. Whether the B. thuringiensis hybrids satisfied high- and ultra-high-dose requirements is discussed.  相似文献   

12.
Dispersal of neonate European corn borers, Ostrinia nubilalis (Hübner), in seed mixtures of transgenic corn expressing Cry1Ab protein (Bt+) and nontransgenic corn (Bt-) was evaluated in a 2-yr field study. The main objective was to determine if larval dispersal limits the effectiveness of seed mixtures as a resistance management strategy. Mixtures evaluated included (1) all Bt+ plants, (2) every fifth plant Bt- with remaining plants Bt+, (3) every fifth plant Bt+ with remaining plants Bt-, and (4) all Bt- plants. The transformation events MON 802 (B73 BC1F2 x Mol7) and MON 810 (B73 BC1F1 x Mo17), which express the Cry1Ab endotoxin isolated from Bacillus thuringiensis subsp. kurstaki, were used as the sources of Bt+ seed in 1994 and 1995, respectively (YieldGard, Monsanto, St. Louis, MO). At corn growth stage V6-V8, subplots within each mixture (15-20 plants each) were infested so that every fifth plant in mixtures 1 and 4, every Bt- plant in mixture 2, and every Bt+ plant in mixture 3 received two egg masses. Larval sampling over a 21-d period indicated increased neonate dispersal off of Bt+ plants, reduced survival of larvae that dispersed from Bt+ plants to Bt- plants, and a low incidence of late-instar movement from Bt- plants to Bt+ plants. Computer simulations based on mortality and dispersal estimates from this study indicate that seed mixtures will delay the evolution of resistant European corn borer populations compared with uniform planting of transgenic corn. However, resistant European corn borer populations likely will develop faster in seed mixes compared with separate plantings of Bt and non-Bt corn.  相似文献   

13.
Abstract:  Dispersal of European corn borer, Ostrinia nubilalis Hübner was examined by release and recapture of the dye marked adults and by capture of the feral adults in and around the large 50 ha center pivot irrigated fields of Bacillus thuringiensis (Bt) maize. Pheromone and black light traps were used to catch the adults. In 1999, 15 094 marked males and 7993 marked females were released, and in 2001, 13 942 marked males and 9977 marked females were released. In 1999, maximum mean recapture beyond the release point was 1.95 and 1.67% for males and females, but in 2001, the recapture rate was 9.97 and 4.37% for males and females. Few males (3.8%) and females (2.07%) were recaptured in neighbourhood maize fields. An exponential decay function explained recapture of marked adults across the dispersal distance. More than 90% of marked adults were recaptured within 300 m of the release point. Large numbers of feral adults were captured throughout the study fields. Feral adult dispersal could be fitted to a linear model. Virgin females (20% marked and 8% feral) were captured throughout the study fields. The recapture of marked insects suggests that the dispersal was limited. However, capture of feral adults throughout Bt-maize fields indicate that the actual dispersal may be more extensive than indicated by recapture of marked adults. Potential refuge sources for the feral adults were 587–1387 m from the edge of the study fields. It is not clear if the dispersal recorded in this study is extensive enough to support the current resistance management strategy for corn borers. There appears to be some dispersal of corn borers from the non-transgenic 'refuge' fields into the transgenic fields that allows some genetic mixing of the two populations.  相似文献   

14.
We simulated the population dynamics and population genetics of two bivoltine species of corn borers, the European corn borer, Ostrinia nubilalis (Hübner), and the southwestern corn borer, Diatraea grandiosella Dyar, in a hypothetical region of irrigated transgenic and nontransgenic corn where insecticide was applied only to the nontransgenic refuge crop. Over the 100-yr time horizon, resistance developed quickly in both species and to both transgenic corn and the insecticide when the allele for resistance to the respective toxin was dominant. When the allele for transgenic resistance was not dominant and the refuge location was constant over the time horizon, spraying the refuge to control southwestern corn borer had no effect on how quickly resistance to the transgenic corn developed. In contrast, the European corn borer developed resistance to transgenic corn much sooner when the refuge was sprayed once per year, and the time to 3% resistance allele frequency decreased as efficacy of the insecticide increased. Only when the refuge was treated less than once every 5 yr (10 generations) did the frequency of application decline enough to permit resistance management for the European corn borer to approximate the effectiveness of an unsprayed refuge. A consistently sprayed refuge <40% of the corn acreage was an inadequate resistance management strategy for the European corn borer even when a low efficacy insecticide (70% mortality) was used. When assumptions about European corn borer adult behavior were changed and the adults behaved similarly to adult southwestern corn borer, the development of resistance to the transgenic crop was slowed significantly.  相似文献   

15.
The survival of KS-SC DiPel-resistant and -susceptible European corn borer, Ostrinia nubilalis (Hübner), was evaluated on different tissues from corn, Zea mays L., hybrids, including a nontransgenic and two transgenic corn plants (events MON810 and Bt11) expressing high doses of Bacillus thuringiensis (Bt) Cry1Ab. The survival of Bt-resistant and -susceptible third instars was similar after a 5-d exposure to transgenic plant tissues. Survivors eventually died when returned to Bt corn tissues, but many were able to continue development when transferred to non-Bt corn tissues. Survival of resistant and susceptible larvae also was evaluated in bioassays with dilutions of leaf extracts from the three corn hybrids incorporated in an artificial diet. In these assays, survival was significantly higher for resistant O. nubilalis neonates at three of the five dilutions compared with the susceptible strain, but the resistance ratio was only 2.2- and 2.4-fold for MON810 and Bt11, respectively. The data demonstrate that Bt-resistant and unselected control O. nubilalis larvae were similar in susceptibility to MON810 and Bt11 event corn hybrids. Although we were unable to evaluate the Cry1Ab protein that larvae were exposed to in the transgenic tissue because of company restrictions, Cry1Ab protoxin produced in Escherichia coli was incubated with extracts from non-Bt corn leaves to simulate the in planta effect on the transgenic protein. Cry1Ab protoxin was hydrolyzed rapidly by enzymes in the corn extract into peptide fragments with molecular masses ranging from 132 to 74 kDa, and eventually 58 kDa. Overall, these data suggest that plant enzymes hydrolyze transgenic toxin to one that is functionally activated. Therefore, resistant insect populations with reduced proteinase activity do not seem to pose a threat to the efficacy of commercial MON810 and Bt11 corn hybrids.  相似文献   

16.
A 3-yr, multi-state survey of farmers who had planted transgenic Bacillus thuringiensis (Bt) corn was conducted to evaluate perceptions of Bt corn performance and its utility as a management option for European corn borer, Ostrinia nubilalis (Hübner). A questionnaire was sent to farmers in Illinois, Iowa, Kansas, Minnesota, Nebraska, and Pennsylvania who had grown Bt corn during the growing seasons of 1996, 1997, or 1998. There were 7,427 usable questionnaires returned with the following response percentages: 1996 (42.1%), 1997 (35.0%), and 1998 (22.6%). Adoption rates, based on percentage of acreage planted to Bt corn, increased dramatically from 1996 (10.5%) to 1998 (40.7%). The states growing the highest percentage of Bt corn were Minnesota, Iowa, and then Nebraska However, Illinois, was adopting Bt corn at the fastest rate. Historical use of insecticides did not influence the adoption of Bt corn. In addition, of those farmers who used insecticides to control European corn borer, the percentage that decreased their use of insecticides nearly doubled from 13.2% (1996) to 26.0% (1998) over this 3-yr period. The primary reason farmers planted Bt corn was to eliminate the yield loss caused by European corn borer. Scouting for European corn borers decreased from 91% (scouting 2.2 times a year) in 1996 to 75% (scouting 1.8 times a year) in 1998. The percentage of farmers not scouting for European corn borers increased from 9.6% (1996) to 25% (1998). Most farmers believed yields of Bt hybrids were either similar to or greater than the yields of non-Bt hybrids. Minnesota farmers perceived the greatest yield advantages. Farmers are becoming more aware of insect resistance management guidelines; however, they also clearly show preferences for having the flexibility to use different spatial plantings of Bt and non-Bt corn. Finally, after having planted Bt corn and obtained excellent control of European corn borer, most farmers believed that this insect had been causing more yield loss than they previously had suspected in their non-Bt corn. The data represented here provide an historical foundation for how transgenic Bt corn was used by farmers during the first 3 yr of commercial availability, their initial perceptions on the performance of this technology, and their attitudes regarding management of the European corn borer.  相似文献   

17.
Popcorn was evaluated in a series of experiments conducted over four growing seasons for its potential as a refuge for European corn borer, Ostrinia nubilalis (Hübner). Objectives of these studies were to determine whether more larvae were produced in popcorn than in field corn and to determine how popcorn influenced female oviposition and larval distribution in neighboring field corn. Two varieties of popcorn (M140, 105d and M3374Y, 118d), one mixture of popcorn (50% 105d and 50% 118d), and field corn (DK580, 108d) were evaluated. Number of egg masses, eggs per egg mass, and larvae were significantly higher in popcorn compared with field corn. Moth oviposition and larval distribution were evaluated using 105d popcorn embedded in several cornfields across Iowa. The row of field corn adjacent to popcorn had significantly more larvae compared with background field corn. In larger field experiments, O. nubilalis larval survival after overwintering was significantly different, with 2.2-18.7 times more O. nubilalis larvae surviving in popcorn than field corn. The potential use of popcorn as an O. nubilalis refuge for genetically engineered corn is considered.  相似文献   

18.
The European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), is an economically important insect pest of corn, Zea mays L., in the United States and Canada. The development of genetically modified corn expressing genes derived from Bacillus thuringiensis (Bt) that encodes insecticidal crystalline (Cry) proteins has proven to be effective in controlling this insect. To assess the feeding behavior of neonate O. nubilalis on Bt corn, we examined differences in feeding behavior, based on presence of plant material in the gut, between Cry1Ab Bt corn and non-Bt near isoline corn for four intervals over a 48-h period. Feeding experiments revealed that there was significantly less feeding on Bt corn compared with non-Bt near isoline corn. The behavior of neonates on the plant corresponded with the differences in feeding on the two corn lines. The findings also showed that > 50% of the larvae initially left the plant before there was evidence in the gut of feeding regardless of whether the source was Bt or non-Bt corn. A higher quantity of plant material was found in the gut of larvae recovered from leaves of non-Bt compared with Bt corn. At the end of 48 h among the larvae that had left the plant, a greater proportion from Bt corn had plant material in the gut than did those from non-Bt corn.  相似文献   

19.
The European corn borer, Ostrinia nubilalis (Hübner), is one of the most important insect pests in corn, Zea mays L. Transgenic corn cultivars expressing Bacillus thuringiensis (Bt) toxin provide a promising crop protection strategy against European corn borer; however, management is needed to avoid resistance development of the target pest species. The aim of this work was to establish the baseline susceptibility of different European corn borer populations in Germany to be able to forecast a possible development of resistance at an early stage. To standardize test procedures for future resistance management, the efficiency of Cry1Ab toxins from different suppliers and different production was assessed. Furthermore, two different test methods, surface treatment and the incorporation method, were compared with regard to their practicability and efficiency. Neither method provided significant differences in the baseline susceptibility of populations from different German regions. Overall, the data suggested little differentiation among German populations in terms of their susceptibility to Bt toxin and their genetic background. Future monitoring could therefore use a single European corn borer population as a representative for southwestern Germany. However, toxins from different suppliers and different production batches produced a vast range of LC50 values. Changes because of different toxin batches may be mistaken as a change in baseline susceptibility or even as the start of a resistance development. Thus, it is important throughout insect resistance management that the same toxin batches will be available for baseline susceptibility bioassays and for future tests.  相似文献   

20.
We used a mathematical model with processes reflecting larval mortality resulting from feeding on cross-pollinated ears or Bt ears of corn to analyze the risk of evolution of Cry-toxin resistance in Ostrinia nubilalis (Hübner). In the simulations, evolution of resistance was delayed equally well by both seed mixtures and blocks with the same proportion of refuge. Our results showed that Bt-pollen drift has little impact on the evolution of Bt resistance in O. nubilalis. However, low-toxin expression in ears of transgenic corn can reduce the durability of transgenic corn expressing single toxin, whereas durability of pyramided corn hybrids is not significantly reduced. The toxin-survival rate of heterozygous larvae in Bt-corn ears expressing one or two proteins has more impact on evolution of Bt resistance in O. nubilalis than the parameters related to larval movement to Bt ears or the toxin-survival rate of the homozygous susceptible larvae in Bt ears. Bt resistance evolves slower when toxin mortality is distributed across the first two larval stadia than when only the first instars are susceptible to Bt toxins. We suggest that stakeholders examine toxin-survival rates for insect pests and take into account that instars may feed on different parts of Bt corn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号