首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Defective interfering particles of poliovirus. II. Nature of the defect   总被引:29,自引:0,他引:29  
Poliovirus defective, interfering particles in which about 15% of the standard viral RNA is deleted have been described (Cole et al., 1971). Stocks of DI3 particles more than 99% free of standard poliovirus were prepared by centrifugation of mixed preparations in CsCl gradients. Using purified DI particles, it was found that DI particles can carry out most of the standard poliovirus functions including inhibition of cellular macromolecular synthesis, production of viral RNA and production of virus-specific protein. Neither the kinetics nor extent of viral RNA or protein synthesis differed between DI particle-infected cells and standard virus-infected cells.Newly made virions, capsid proteins, and the capsid protein precursor (NCVP 1) were totally absent in DI particle-infected cells. All of the other viral proteins were present. DI-infected cells briefly labeled with amino acids also contained a new polypeptide, DI-P, which was apparently the residual fragment of NCVP 1 encoded by the DI genome. It was very unstable, being rapidly degraded to acid-soluble fragments. When the cleavage of viral proteins was inhibited with amino acid analogs, precursors of the viral proteins were generated. Those precursors which should have contained NCVP 1 had molecular weights 30,000 to 40,000 daltons lower in DI-infected cells than in standard virus-infected cells. This is the amount of protein encoded by 15% of the standard poliovirus genome which is the per cent of the standard RNA sequence not represented in DI RNA.Poliovirus DI particles therefore appear to be deletion mutants lacking RNA encoding about one-third of the capsid protein precursor. Whether the deletion is internal or terminal remains to be determined.  相似文献   

2.
The genomes of defective-interfering (DI) particles derived from the Sabin strain of type 1 poliovirus (PV1(Sab] were characterized by nuclease S1 mapping using complementary DNA (cDNA) copies of PV1(Sab) genome as probes. The results demonstrated variety in the size and location of the deletions, which were compatible with our previous prediction. The results further indicated that the locations of the deletions were limited within the internal genome region encoding viral capsid proteins and that the deletion sites were clustered in certain areas on the genome. Sequence analysis of a number of cloned cDNAs to the DI genomes revealed that every DI genome retained the correct reading frame for viral protein synthesis. These results strongly suggested that one or all of the viral non-structural proteins might be cis-acting at least at a certain stage in viral replication. A computer search for secondary structures with regard to the deletion sites provided a possible common structure from which, supported by sequences existing on the plus or minus RNA strand of PV1(Sab), deletion regions looped out from the remaining sequences. Replicase might, therefore, skip these transiently formed loop structures with certain frequencies, resulting in the generation of DI genomes. This model could also be considered as a model for genetic recombination in these RNA genomes. Possible "supporting sequences" were also found for every rearranged site on the RNAs of influenza virus and sindbis virus. Thus, we propose a new copy-choice model, designated the "supporting sequence-loop model", for the generation of rearrangements occurring on single-stranded RNA genomes.  相似文献   

3.
In vitro construction of poliovirus defective interfering particles.   总被引:26,自引:21,他引:5       下载免费PDF全文
To construct poliovirus defective interfering (DI) particles in vitro, we synthesized an RNA from a cloned poliovirus cDNA, pSM1(T7)1, which carried a deletion in the genome region corresponding to nucleotide positions 1663 to 2478 encoding viral capsid proteins, by using bacteriophage T7 RNA polymerase. The RNA was designed to retain the correct reading frame in nucleotide sequence downstream of the deletion. HeLa S3 monolayer cells were transfected with the deletion RNA and then superinfected with standard virus as a helper. The DI RNA was observed in the infected cells after three passages at high multiplicity of infection. The sequence analysis of RNA extracted from the purified DI particle clearly showed that this DI RNA had the same deletion in size and location as that in the RNA used for the transfection. Thus, we succeeded in construction of a poliovirus DI particle in vitro. To gain insight into the mechanism for DI generation, we constructed poliovirus cDNAs pSM1(T7)1a and pSM1(T7)1b that, in addition to the same deletion as that in pSM1(T7)1, had insertion sequences of 4 bases and 12 bases, respectively, at the corresponding nucleotide position, 2978. The RNA transcribed from pSM1(T7)1a was not a template for synthesis of poliovirus nonstructural proteins and therefore was inactive as an RNA replicon. On the other hand, the RNA from pSM1(T7)1b replicated properly in the transfected cells. Superinfection of the transfected cells with standard virus resulted in production of DI particles derived from pSM1(T7)1b and not from pSM1(T7)1a. These observations indicate that deletion RNAs that are inactive replicons have little or no possibility of being genomes of DI particles suggesting the existence of a nonstructural protein(s) that has an inclination to function as a cis-acting protein(s). The method described here will provide a useful technique to investigate genetic information essential for poliovirus replication.  相似文献   

4.
Viral attenuation may be due to lowered efficiency of certain steps essential for viral multiplication. For the construction of less neurovirulent strains of poliovirus in vitro, we introduced deletions into the 5' noncoding sequence (742 nucleotides long) of the genomes of the Mahoney and Sabin 1 strains of poliovirus type 1 by using infectious cDNA clones of the virus strains. Plaque sizes shown by deletion mutants were used as a marker for rate of viral proliferation. Deletion mutants of both the strains thus constructed lacked a genome region of nucleotide positions 564 to 726. The sizes of plaques displayed by these deletion mutants were smaller than those by the respective parental viruses, although a phenotype referring to reproductive capacity at different temperatures (rct) of viruses was not affected by introduction of the deletion. Monkey neurovirulence tests were performed on the deletion mutants. The results clearly indicated that the deletion mutants had much less neurovirulence than with the corresponding parent viruses. Production of infectious particles and virus-specific protein synthesis in cells infected with the deletion mutants started later than in those infected with the parental viruses. The rate at which cytopathic effect progressed was also slower in cells infected with the mutants. Phenotypic stability of the deletion mutant for small-plaque phenotype and temperature sensitivity was investigated after passaging the mutant at an elevated temperature of 37.5 degrees C. Our data strongly suggested that the less neurovirulent phenotype introduced by the deletion is very stable during passaging of the virus.  相似文献   

5.
We quantitatively analyzed the interference interactions between defective interfering (DI) particles and mutants of cloned vesicular stomatitis virus passaged undiluted hundreds of times in BHK-21 cells. DI particles which predominated at different times in these serial passages always interfered most strongly (and very efficiently) with virus isolated a number of passages before the isolation of the DI particles. Virus isolated at the same passage level as the predominant DI particles usually exhibited severalfold resistance to these DI particles. Virus mutants (Sdi- mutants) isolated during subsequent passages always showed increasing resistance to these DI particles, followed by decreasing resistance as new DI particles arose to predominate and exert their own selective pressures on the virus mutant population. It appears that such coevolution of virus and DI particle populations proceeds indefinitely through multiple cycles of selection of virus mutants resistant to a certain DI particle (or DI particle class), followed by mutants resistant to a newly predominant DI particle, etc. At the peak of resistance, virus mutants were isolated which were essentially completely resistant to a particular DI particle; i.e., they were several hundred thousand-fold resistant, and they formed plaques of normal size and numbers in the presence of extremely high multiplicities of the DI particle. However, they were sensitive to interference by other DI particles. Recurring population interactions of this kind can promote rapid virus evolution. Complete sequencing of the N (nucleocapsid) and NS (polymerase associated) genes of numerous Sdi- mutants collected at passage intervals showed very few changes in the NS protein, but the N gene gradually accumulated a series of stable nucleotide and amino acid substitutions, some of which correlated with extensive changes in the Sdi- phenotype. Likewise, the 5' termini (and their complementary plus-strand 3' termini) continued to accumulate extensive base substitutions which were strikingly confined to the first 47 nucleotides. We also observed addition and deletion mutations in noncoding regions of the viral genome at a level suggesting that they probably occur at a high frequency throughout the genome, but usually with lethal or debilitating consequences when they occur in coding regions.  相似文献   

6.
The deletions in RNAs of three defective interfering (DI) particles of poliovirus type 1 have been located and their approximate extent determined by three methods. (1) Digestion with RNase III of DI RNAs yields the same 3′-terminal fragments as digestion with RNase III of standard virus RNA. The longest 3′-terminal fragment has a molecular weight of 1.55 × 106. This suggests that the deletions are located in the 5′-terminal half of the polio genome. (2) Fingerprints of RNase T1-resistant oligonucleotides of all three DI RNAs are identical and lack four large oligonucleotides as compared to the fingerprints of standard virus, an observation suggesting that the deletions in all three DI RNAs are located in the same region of the viral genome. The deletion-specific oligonucleotides have also been shown to be within the 5′-terminal half of the viral genome by alkali fragmentation of the RNA and fingerprinting poly (A)-linked (3′-terminal) fragments of decreasing size. (3) Virion RNA of DI(2) particles was annealed with denatured double-stranded RNA (RF) of standard virus and the hybrid heteroduplex molecules examined in the electron microscope. A single loop, approximately 900 nucleotides long and 20% from one end of the molecules, was observed. Both the size and extent of individual deletions is somewhat variable in different heteroduplex molecules, an observation suggesting heterogeneity in the size of the deletion in RNA of the DI(2) population. Our data show that the DI RNAs of poliovirus contain an internal deletion in that region of the viral genome known to specify the capsid polypeptides. This result provides an explanation as to why poliovirus DI particles are unable to synthesize viral coat proteins.  相似文献   

7.
Defective interfering (DI) RNA genomes of poliovirus which contain in-frame deletions in the P1 capsid protein-encoding region have been described. DI genomes are capable of replication and can be encapsidated by capsid proteins provided in trans from wild-type poliovirus. In this report, we demonstrate that a previously described poliovirus DI genome (K. Hagino-Yamagishi and A. Nomoto, J. Virol. 63:5386-5392, 1989) can be complemented by a recombinant vaccinia virus, VVP1 (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 65:2088-2092, 1991), which expresses the poliovirus capsid precursor polyprotein, P1. Stocks of defective polioviruses were generated by transfecting in vitro-transcribed defective genome RNA derived from plasmid pSM1(T7)1 into HeLa cells infected with VVP1 and were maintained by serial passage in the presence of VVP1. Encapsidation of the defective poliovirus genome was demonstrated by characterizing poliovirus-specific protein expression in cells infected with preparations of defective poliovirus and by Northern (RNA) blot analysis of poliovirus-specific RNA incorporated into defective poliovirus particles. Cells infected with preparations of defective poliovirus expressed poliovirus protein 3CD but did not express capsid proteins derived from a full-length P1 precursor. Poliovirus-specific RNA encapsidated in viral particles generated in cells coinfected with VVP1 and defective poliovirus migrated slightly faster on formaldehyde-agarose gels than wild-type poliovirus RNA, demonstrating maintenance of the genomic deletion. By metabolic radiolabeling with [35S]methionine-cysteine, the defective poliovirus particles were shown to contain appropriate mature-virion proteins. This is the first report of the generation of a pure population of defective polioviruses free of contaminating wild-type poliovirus. We demonstrate the use of this recombinant vaccinia virus-defective poliovirus genome complementation system for studying the effects of a defined mutation in the P1 capsid precursor on virus assembly. Following removal of residual VVP1 from defective poliovirus preparations, processing and assembly of poliovirus capsid proteins derived from a nonmyristylated P1 precursor expressed by a recombinant vaccinia virus, VVP1 myr- (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 66:4556-4563, 1992), in cells coinfected with defective poliovirus were analyzed. Capsid proteins generated from nonmyristylated P1 did not assemble detectable levels of mature virions but did assemble, at low levels, into empty capsids.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Infection of HeLa cells by mixtures of standard poliovirus and defective, interfering (DI) poliovirus particles leads to a higher ratio of DI particles in the progeny than in the inoculum. The extent of this enrichment could be varied by various manipulations of the co-infected cells. At any time during the infection cycle, virions made within short times after addition of radioactive uridine were hyperenriched in DI particles; this transient hyperenrichment fell to the equilibrium enrichment level within 45 min after uridine addition. A shift of the temperature of infection from 37 to 31 C also led to a hyperenrichment of DI particles and pulse-labeling revealed a superimposed transient hyperenrichment. By contrast, cells continuously infected at 31 C showed a severe decrement in DI particles apparently because poliovirus DI particles behave as cold-sensitive mutants for RNA synthesis. Cycloheximide treatment early in the infection cycle also led to hyperenrichment. Study of the cycloheximide effect showed that the drug acted as if to change the input ratio of standard to DI particles. These effects on enrichment can be explained as aspects of two different phenomena: enrichment due to preferential DI RNA synthesis and enrichment due to preferential encapsidation of DI RNA. Both mechanisms probably play a role in the normal level of enrichment.  相似文献   

9.
10.
S Kuge  N Kawamura    A Nomoto 《Journal of virology》1989,63(3):1069-1075
An insertion sequence of 72 nucleotides prepared from a polylinker sequence of plasmid pUC18 was introduced at nucleotide position 702 of the 5' noncoding sequence (742 nucleotides long) of the genome of the Sabin strain of poliovirus type 1 by using an infectious cDNA clone of the virus strain. The insertion mutant thus obtained showed a small-plaque phenotype compared with that of the parent virus. Apparent revertants (large-plaque variants) were easily generated from the insertion mutant. Nucleotide sequence analysis was performed on the revertant genomes to determine the mutation(s) by which the plaque size of the parent virus was regained. Some large-plaque variants lacked genomic sequences including all or a part of the insertion sequence. A computer-aided search for secondary structures with respect to the deletion sites detected possible supporting sequences which provided fairly stable secondary structures at the deletion sites. This result was consistent with our supporting sequence-loop model which had been proposed as a new copy-choice model for the generation of genetic rearrangements occurring on single-stranded RNA genomes (S. Kuge, I. Saito, and A. Nomoto, J. Mol. Biol. 192:473-487, 1986). The other large-plaque variants had point mutations at any one of three positions of an AUG existing in the insertion sequence. A small-plaque phenotype was observed when an AUG codon was inserted in frame or out of frame with regard to the initiation site of viral polyprotein synthesis. Our data strongly suggest that an AUG sequence in this genome region is deleterious for efficient poliovirus replication.  相似文献   

11.
12.
E J Wolffe  S N Isaacs    B Moss 《Journal of virology》1993,67(8):4732-4741
The structure, formation, and function of the virion membranes are among the least well understood aspects of vaccinia virus replication. In this study, we investigated the role of gp42, a glycoprotein component of the extracellular enveloped form of vaccinia virus (EEV) encoded by the B5R gene. The B5R gene was deleted by homologous recombination from vaccinia virus strains IHD-J and WR, which produce high and low levels of EEV, respectively. Isolation of recombinant viruses was facilitated by the insertion into the genome of a cassette containing the Escherichia coli gpt and lacZ genes flanked by the ends of the B5R gene to provide simultaneous antibiotic selection and color screening. Deletion mutant viruses of both strains formed tiny plaques, and those of the IHD-J mutant lacked the characteristic comet shape caused by release of EEV. Nevertheless, similar yields of intracellular infectious virus were obtained whether cells were infected with the B5R deletion mutants or their parental strains. In the case of IHD-J, however, this deletion severely reduced the amount of infectious extracellular virus. Metabolic labeling studies demonstrated that the low extracellular infectivity corresponded with a decrease in EEV particles in the medium. Electron microscopic examination revealed that mature intracellular naked virions (INV) were present in cells infected with mutant virus, but neither membrane-wrapped INV nor significant amounts of plasma membrane-associated virus were observed. Syncytium formation, which occurs in cells infected with wild-type WR and IHD-J virus after brief low-pH treatment, did not occur in cells infected with the B5R deletion mutants. By contrast, syncytium formation induced by antibody to the viral hemagglutinin occurred, suggesting that different mechanisms are involved. When assayed by intracranial injection into weanling mice, both IHD-J and WR mutant viruses were found to be significantly attenuated. These findings demonstrate that the 42-kDa glycoprotein of the EEV is required for efficient membrane enwrapment of INV, externalization of the virus, and transmission and that gp42 contributes to viral virulence in strains producing both low and high levels of EEV.  相似文献   

13.
Defective-interfering (DI) viruses arise spontaneously by deletion mutations. The shortened genomes of the DI particles cannot replicate unless they coinfect a cell with a wild-type virus. Upon coinfection, the DI genome replicates more quickly and outcompetes the wild type. The coinfected cell produces mostly DI viruses. At the population level, the abundances of DI and wild-type viruses fluctuate dramatically under some conditions. In other cases, the DI viruses appear to mediate persistent infections with relatively low levels of host cell death. This moderation of viral damage has led some to suggest DI particles as therapeutic agents. Previous mathematical models have shown that either fluctuation or persistence can occur for plausible parameter values. I develop new mathematical models for the population dynamics of DI and wild-type viruses. My work extends the theory by developing specific predictions that can be tested in the laboratory. These predictions, if borne out by experiment, will explain the key processes that control the diversity of observed outcomes. The most interesting prediction concerns the rate at which killed host cells are replaced. A low rate of replacement causes powerful epidemics followed by a crash in viral abundance. As the rate of replacement increases, the frequency of oscillations increases in DI and wild-type viral abundances, but the severity (amplitude) of the fluctuations declines. At higher replacement rates for host cells, nearly all cells become infected by DI particles and a low level of fluctuating, wild-type viremia persists.  相似文献   

14.
A class of defective interfering (DI) poliovirus particles has been identified. The first was found as a contaminant of a viral stock; others have been isolated by serial passage at a high multiplicity of infection. The DI particles are less dense than standard virus and sediment more slowly. Their ribonucleic acid (RNA) sediments more slowly than standard RNA and has a higher electrophoretic mobility. Competition hybridization experiments with double-stranded viral RNA indicate that DI RNA is 80 to 90% of the length of standard RNA. The proteins of DI particles are indistinguishable from those of standard poliovirus.  相似文献   

15.
When the entire adeno-associated virus (AAV) genome is inserted into a bacterial plasmid, infectious AAV genomes can be rescued and replicated when the recombinant AAV-plasmid DNA is transfected into human 293 cells together with helper adenovirus particles. We have taken advantage of this experimental system to analyze the effects of several classes of mutations on replication of AAV DNA. We obtained AAV mutants by molecular cloning in bacterial plasmids of naturally occurring AAV variant or defective-interfering genomes. Each of these mutants contains a single internal deletion of AAV coding sequences. Also, some of these mutant-AAV plasmids have additional deletions of one or both AAV terminal palindromes introduced during constructions in vitro. We show here that AAV mutants containing internal deletions were defective for replicative form DNA replication (rep-) but could be complemented by intact wild-type AAV. This indicates that an AAV replication function, Rep, is required for normal AAV replication. Mutants in which both terminal palindromes were deleted (ori-) were also replication defective but were not complementable by wild-type AAV. The cis-dominance of the ori- mutation shows that the replication origin is comprised in part of the terminal palindrome. Deletion of only one terminal palindrome was phenotypically wild-type and allowed rescue and replication of AAV genomes in which the deleted region was regenerated apparently by an intramolecular correction mechanism. One model for this correction mechanism is proposed. An AAV ori- mutant also complemented replication of AAV rep- mutants as efficiently as did wild-type AAV. These studies also revealed an unexpected additional property of the deletion mutants in that monomeric single-stranded single-stranded DNA accumulated very inefficiently even though monomeric single-stranded DNA from the complementing wild-type AAV did accumulate.  相似文献   

16.
Guanidine-resistant defective interfering particles of poliovirus.   总被引:2,自引:2,他引:0       下载免费PDF全文
A mixture containing standard poliovirus and D3 particles (mutants with deletions in the capsid locus) was serially passaged in the presence of guanidine. Within five growth cycles, the standard virus was guanidine resistant, but the D3 particles were guanidine sensitive, even after 21 passages with the inhibitor. By passage 40 with guanidine, D3 particles were eliminated, and a new deletion mutant (DX) appeared in the virus population. D3 particles contained a 15% deletion, and DX particles contained a 6% deletion in the capsid locus. Although neither mutant induced the synthesis of NCVP1a or a complete complement of capsid proteins after infection, cells infected with DX particles produced two novel proteins, which had molecular weights of approximately 68,000 and 25,000.  相似文献   

17.
18.
The p12 region of the Moloney murine leukemia virus (M-MuLV) Gag protein contains a PPPY motif important for efficient virion assembly and release. To probe the function of the PPPY motif, a series of insertions of homologous and heterologous motifs from other retroviruses were introduced at various positions in a mutant gag gene lacking the PPPY motif. The assembly defects of the PPPY deletion mutant could be rescued by insertion of a wild-type PPPY motif and flanking sequences at several ectopic positions in the Gag protein. The late assembly domain (L-domain) of Rous sarcoma virus (RSV) or human immunodeficiency virus type 1 (HIV-1) could also fully or partially restore M-MuLV assembly when introduced into matrix, p12, or nucleocapsid domains of the mutant M-MuLV Gag protein lacking the PPPY motif. Strikingly, mutant viruses carrying the RSV or the HIV-1 L-domain at the original location of the deleted PPPY motif were replication competent in rodent cells. These data suggest that the PPPY motif of M-MuLV acts in a partially position-independent manner and is functionally interchangeable with L-domains of other retroviruses. Electron microscopy studies revealed that deletion of the entire p12 region resulted in the formation of tube-like rather than spherical particles. Remarkably, the PPPY deletion mutant formed chain structures composed of multiple viral particles linked on the cell surface. Many of the mutants with heterologous L-domains released virions with wild-type morphology.  相似文献   

19.
We have constructed a series of deletion mutants spanning the genome of duck hepatitis B virus in order to determine which regions of the viral genome are required in cis for packaging of the pregenome into capsid particles. Deletion of sequences within either of two nonadjacent regions prevented replication of the mutant viral genomes expressed in a permissive avian hepatoma cell line in the presence of functionally active viral core and P proteins. Extraction of RNA from cells transfected with these replication-defective mutants showed that the mutants retained the capacity to be transcribed into a pregenomic-size viral RNA, but that these RNA species were not packaged into viral capsids. The two regions defined by these deletions are located 36 to 126 (region I) and 1046 to 1214 (region II) nucleotides downstream of the 5' end of the pregenome and contain sequences which are required in cis for encapsidation of the duck hepatitis B virus pregenome.  相似文献   

20.
S Kuge  A Nomoto 《Journal of virology》1987,61(5):1478-1487
A number of deletion and insertion sequences were introduced into the 5' noncoding sequence (742 nucleotides long) of the genome of the Sabin strain of type 1 poliovirus by using an infectious cDNA clone of the virus strain. The genomes of all three poliovirus serotypes contained highly homologous sequences (nucleotide positions 509 to 639) as well as highly variable sequences (positions 640 to 742) in the 5' noncoding region. The viability of mutant viruses was tested by transfecting mutant cDNA clones into African green monkey kidney cells and then estimating the plaque sizes displayed on the cells. The results suggested that the highly variable sequence next to the VP4 coding region did not play an important role, at least in the in vitro culture system used, that the loci of highly conserved nucleotide sequences were not always expected to be the genome regions essential for viral replication, that the sequence between positions 564 and 599 carried genetic information to maintain the efficiency of certain steps in viral replication, and that the sequence between positions 551 to 563 might play an essential role in viral replication. Four-base deletion or insertion mutations were introduced into relatively variable sequences in the genome region upstream of position 509. The results suggest that variable sequences do not always indicate that the corresponding genome regions are less important. Apparent revertants (large-plaque variants) were easily generated from one of the viable mutants with the small-plaque phenotype. The determination of nucleotide sequences of the revertant genomes revealed the second mutation site. The results suggested that the different loci at around positions 200 and 500 might specifically interact with each other. This interaction may result in the formation of a functional structure that influences the efficiency of certain steps in the viral replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号