首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R S Phillips 《Biochemistry》1991,30(24):5927-5934
The effects of indole and analogues on the reaction of Escherichia coli tryptophan indole-lyase (tryptophanase) with amino acid substrates and quasisubstrates have been studied by rapid-scanning and single-wavelength stopped-flow spectrophotometry. Indole binds rapidly (within the dead time of the stopped-flow instrument) to both the external aldimine and quinonoid complexes with L-alanine, and the absorbance of the quinonoid intermediate decreases in a subsequent slow relaxation. Indoline binds preferentially to the external aldimine complex with L-alanine, while benzimidazole binds selectively to the quinonoid complex of L-alanine. Indole and indoline do not significantly affect the spectrum of the quinonoid intermediates formed in the reaction of the enzyme with S-alkyl-L-cysteines, but benzimidazole causes a rapid decrease in the quinonoid peak at 512 nm and the appearance of a new peak at 345 nm. Benzimidazole also causes a rapid decrease in the quinonoid peak at 505 nm formed in the reaction with L-tryptophan and the appearance of a new absorbance peak at 345 nm. Furthermore, addition of benzimidazole to solutions of enzyme, potassium pyruvate, and ammonium chloride results in the formation of a similar absorption peak at 340 nm. This complex reacts rapidly with indole to form a quinonoid intermediate very similar to that formed from L-tryptophan. This new intermediate is formed faster than catalytic turnover (kcat = 6.8 s-1) and may be an alpha-aminoacrylate intermediate bound as a gem-diamine.  相似文献   

2.
W F Drewe  S C Koerber  M F Dunn 《Biochimie》1989,71(4):509-519
The reactions of the alpha 2 beta 2 complex of Escherichia coli tryptophan synthase with D- and L-Trp and the presteady-state reaction of L-Ser and beta-mercaptoethanol under different premixing conditions have been investigated by rapid-scanning stopped-flow (RSSF) UV-visible spectroscopy. The reaction of alpha 2 beta 2 with L-Ser and beta-mercaptoethanol occurs in 3 detectable relaxations with rates similar to the 3 relaxations seen in the partial reaction with L-Ser and in the reaction with L-Ser and indole. The presteady-state phase of the reaction of beta-mercaptoethanol with the alpha-aminoacrylate intermediate is characterized by 2 relaxations. The RSSF spectra for this reaction show that the spectral changes that take place in these 2 phases are essentially identical. The L-Trp reaction is biphasic, and the spectral changes occurring in each phase of the reaction also are identical. The 2 new spectral bands formed (lambda max congruent to 420 nm and congruent to 476 nm) are assigned as the L-Trp external aldimine (Schiff's base) and L-Trp quinonoid intermediates, respectively. The reaction of D-Trp also is biphasic. Analysis of first and second derivatives of the RSSF spectral changes give evidence for the formation of spectral bands with lambda max of approximately 423 nm, approximately 450 nm, and approximately 478 nm. The positions and shapes of these bands suggest a D-Trp external aldimine structure (423 nm) and a quinonoidal species (450 and 478 nm). However, product studies do not support this latter assignment. The behavior of the D- and L-Trp reactions and the reaction of beta-mercaptoethanol with the alpha-aminoacrylate strongly indicate the pre-existence of 2 slowly equilibrating forms of the internal aldimine and of the alpha-aminoacrylate.  相似文献   

3.
The binding of substrates and inhibitors to wild-type Proteus vulgaris tryptophan indole-lyase and to wild type and Y71F Citrobacter freundii tyrosine phenol-lyase was investigated in the crystalline state by polarized absorption microspectrophotometry. Oxindolyl-lalanine binds to tryptophan indole-lyase crystals to accumulate predominantly a stable quinonoid intermediate absorbing at 502 nm with a dissociation constant of 35 microm, approximately 10-fold higher than that in solution. l-Trp or l-Ser react with tryptophan indole-lyase crystals to give, as in solution, a mixture of external aldimine and quinonoid intermediates and gem-diamine and external aldimine intermediates, respectively. Different from previous solution studies (Phillips, R. S., Sundararju, B., & Faleev, N. G. (2000) J. Am. Chem. Soc. 122, 1008-1114), the reaction of benzimidazole and l-Trp or l-Ser with tryptophan indole-lyase crystals does not result in the formation of an alpha-aminoacrylate intermediate, suggesting that the crystal lattice might prevent a ligand-induced conformational change associated with this catalytic step. Wild-type tyrosine phenol-lyase crystals bind l-Met and l-Phe to form mixtures of external aldimine and quinonoid intermediates as in solution. A stable quinonoid intermediate with lambda(max) at 502 nm is accumulated in the reaction of crystals of Y71F tyrosine phenol-lyase, an inactive mutant, with 3-F-l-Tyr with a dissociation constant of 1 mm, approximately 10-fold higher than that in solution. The stability exhibited by the quinonoid intermediates formed both by wild-type tryptophan indole-lyase and by wild type and Y71F tyrosine phenol-lyase crystals demonstrates that they are suitable for structural determination by x-ray crystallography, thus allowing the elucidation of a key species of pyridoxal 5'-phosphate-dependent enzyme catalysis.  相似文献   

4.
The bacterial tryptophan synthase alpha(2)beta(2) complex catalyzes the final reactions in the biosynthesis of L-tryptophan. Indole is produced at the active site of the alpha-subunit and is transferred through a 25-30 A tunnel to the beta-active site, where it reacts with an aminoacrylate intermediate. Lane and Kirschner proposed a two-step nucleophilic addition-tautomerization mechanism for the reaction of indole with the aminoacrylate intermediate, based on the absence of an observed kinetic isotope effect (KIE) when 3-[(2)H]indole reacts with the aminoacrylate intermediate. We have now observed a KIE of 1.4-2.0 in the reaction of 3-[(2)H]indole with the aminoacrylate intermediate in the presence of monovalent cations, but not when an alpha-subunit ligand, disodium alpha-glycerophosphate (Na(2)GP), is present. Rapid-scanning stopped flow kinetic studies were performed of the reaction of indole and 3-[(2)H]indole with tryptophan synthase preincubated with L-serine, following the decay of the aminoacrylate intermediate at 350 nm, the formation of the quinonoid intermediate at 476 nm, and the formation of the L-Trp external aldimine at 423 nm. The addition of Na(2)GP dramatically slows the rate of reaction of indole with the alpha-aminoacrylate intermediate. A primary KIE is not observed in the reaction of 3-[(2)H]indole with the aminoacrylate complex of tryptophan synthase in the presence of Na(2)GP, suggesting binding of indole with tryptophan synthase is rate limiting under these conditions. The reaction of 2-methylindole does not show a KIE, either in the presence of Na(+) or Na(2)GP. These results support the previously proposed mechanism for the beta-reaction of tryptophan synthase, but suggest that the rate limiting step in quinonoid intermediate formation from indole and the aminoacrylate intermediate is deprotonation.  相似文献   

5.
Asn185 is an invariant residue in all known sequences of TPL and of closely related tryptophanase and it may be aligned with the Asn194 in aspartate aminotransferase. According to X-ray data, in the holoenzyme and in the Michaelis complex Asn185 does not interact with the cofactor pyridoxal 5'-phosphate, but in the external aldimine a conformational change occurs which is accompanied by formation of a hydrogen bond between Asn185 and the oxygen atom in position 3 of the cofactor. The substitution of Asn185 in TPL by alanine results in a mutant N185A TPL of moderate residual activity (2%) with respect to adequate substrates, L-tyrosine and 3-fluoro-L-tyrosine. The affinities of the mutant enzyme for various amino acid substrates and inhibitors, studied by both steady-state and rapid kinetic techniques, were lower than for the wild-type TPL. This effect mainly results from destabilization of the quinonoid intermediate, and it is therefore concluded that the hydrogen bond between Asn185 and the oxygen at the C-3 position of the cofactor is maintained in the quinonoid intermediate. The relative destabilization of the quinonoid intermediate and external aldimine leads to the formation of large amounts of gem-diamine in reactions of N185A TPL with 3-fluoro-L-tyrosine and L-phenylalanine. For the reaction with 3-fluoro-L-tyrosine it was first possible to determine kinetic parameters of gem-diamine formation by the stopped-flow method. For the reactions of N185A TPL with substrates bearing good leaving groups the observed values of k(cat) could be accounted for by taking into consideration two effects: the decrease in the quinonoid content under steady-state conditions and the increase in the quinonoid reactivity in a beta-elimination reaction. Both effects are due to destabilization of the quinonoid and they counterbalance each other. Multiple kinetic isotope effect studies on the reactions of N185A TPL with suitable substrates, L-tyrosine and 3-fluoro-L-tyrosine, show that the principal mechanism of catalysis, suggested previously for the wild-type enzyme, does not change. In the framework of this mechanism the observed considerable decrease in k(cat) values for reactions of N185A TPL with L-tyrosine and 3-fluoro-L-tyrosine may be ascribed to participation of Asn185 in additional stabilization of the keto quinonoid intermediate.  相似文献   

6.
The cystine lyase (C-DES) of Synechocystis is a pyridoxal-5'-phosphate-dependent enzyme distantly related to the family of NifS-like proteins. The crystal structure of an N-terminal modified variant has recently been determined. Herein, the reactivity of this enzyme variant was investigated spectroscopically in solution and in the crystalline state to follow the course of the reaction and to determine the catalytic mechanism on a molecular level. Using the stopped-flow technique, the reaction with the preferred substrate cystine was found to follow biphasic kinetics leading to the formation of absorbing species at 338 and 470 nm, attributed to the external aldimine and the alpha-aminoacrylate; the reaction with cysteine also exhibited biphasic behavior but only the external aldimine accumulated. The same reaction intermediates were formed in crystals as seen by polarized absorption microspectrophotometry, thus indicating that C-DES is catalytically competent in the crystalline state. The three-dimensional structure of the catalytically inactive mutant C-DES(K223A) in the presence of cystine showed the formation of an external aldimine species, in which two alternate conformations of the substrate were observed. The combined results allow a catalytic mechanism to be proposed involving interactions between cystine and the active site residues Arg-360, Arg-369, and Trp-251*; these residues reorient during the beta-elimination reaction, leading to the formation of a hydrophobic pocket that stabilizes the enolimine tautomer of the aminoacrylate and the cysteine persulfide product.  相似文献   

7.
Phillips RS  Holtermann G 《Biochemistry》2005,44(43):14289-14297
Escherichia coli tryptophan indole-lyase (Trpase) is a bacterial pyridoxal 5'-phosphate (PLP)-dependent enzyme which catalyzes the reversible beta-elimination of l-Trp to give indole and ammonium pyruvate. H463F mutant E. coli Trpase (H463F Trpase) has very low activity with l-Trp, but it has near wild-type activity with other in vitro substrates, such as S-ethyl-l-cysteine and S-(o-nitrophenyl)-l-cysteine [Phillips, R. S., Johnson, N., and Kamath, A. V. (2002) Formation in vitro of Hybrid Dimers of H463F and Y74F Mutant Escherichia coli Tryptophan Indole-lyase Rescues Activity with l-Tryptophan, Biochemistry 41, 4012-4019]. The interaction of H463F Trpase with l-Trp and l-Met, a competitive inhibitor, has been investigated by rapid-scanning stopped-flow, high-pressure, and pressure jump spectrophotometry. Both l-Trp and l-Met bind to H463F Trpase to form equilibrating mixtures of external aldimine and quinonoid intermediates, absorbing at approximately 420 and approximately 505 nm, respectively. The apparent rate constant for quinonoid intermediate formation exhibits a hyperbolic dependence on l-Trp and l-Met concentration. The rate constant for quinonoid intermediate formation from l-Trp is approximately 10-fold lower for H463F Trpase than for wild-type Trpase, but the rate constant for reaction of l-Met is similar for H463F Trpase and wild-type Trpase. The temperature dependence of the rate constants for quinonoid intermediate formation reveals that both l-Trp and l-Met have similar values of DeltaH(++), but l-Met has a more negative value of DeltaS(++). Hydrostatic pressure perturbs the spectra of the H463F l-Trp and l-Met complexes, by shifting the position of the equilibria between different quinonoid and external aldimine complexes. Pressure-jump experiments show relaxations at 500 nm after rapid pressure changes of 100-400 bar with both l-Trp and l-Met. The apparent rate constants for relaxation of l-Trp, but not l-Met, show a significant increase with pressure. From these data, the value of DeltaV(++) for quinonoid intermediate formation from the external aldimine of l-Trp can be estimated to be -26.5 mL/mol, a larger than expected negative value for a proton transfer. These results suggest that there may be a contribution to the deprotonation reaction either from quantum mechanical tunneling or from a mechanical coupling of protein motion and proton transfer associated with the reaction of l-Trp, but not with l-Met.  相似文献   

8.
Jhee KH  Niks D  McPhie P  Dunn MF  Miles EW 《Biochemistry》2001,40(36):10873-10880
Our studies of the reaction mechanism of cystathionine beta-synthase from Saccharomyces cerevisiae (yeast) are facilitated by the spectroscopic properties of the pyridoxal phosphate coenzyme that forms a series of intermediates in the reaction of L-serine and L-homocysteine to form L-cystathionine. To characterize these reaction intermediates, we have carried out rapid-scanning stopped-flow and single-wavelength stopped-flow kinetic measurements under pre-steady-state conditions, as well as circular dichroism and fluorescence spectroscopy under steady-state conditions. We find that the gem-diamine and external aldimine of aminoacrylate are the primary intermediates in the forward half-reaction with L-serine and that the external aldimine of aminoacrylate or its complex with L-homocysteine is the primary intermediate in the reverse half-reaction with L-cystathionine. The second forward half-reaction of aminoacrylate with L-homocysteine is rapid. No primary kinetic isotope effect was obtained in the forward half-reaction with L-serine. The results provide evidence (1) that the formation of the external aldimine of L-serine is faster than the formation of the aminoacrylate intermediate, (2) that aminoacrylate is formed by the concerted removal of the alpha-proton and the hydroxyl group of L-serine, and (3) that the rate of the overall reaction is rate-limited by the conversion of aminoacrylate to L-cystathionine. We compare our results with cystathionine beta-synthase with those of related investigations of tryptophan synthase and O-acetylserine sulfhydrylase.  相似文献   

9.
M Roy  S Keblawi  M F Dunn 《Biochemistry》1988,27(18):6698-6704
The reactions of the indole analogues indoline and aniline with the Escherichia coli tryptophan synthase alpha-aminoacrylate Schiff base intermediate have been characterized by UV-visible and 1H NMR absorption spectroscopy and compared with the interactions of indole and the potent inhibitor benzimidazole. Indole, via the enamine functionality of the pyrrole ring, reacts with the alpha-aminoacrylate intermediate, forming a transient quinonoid species with lambda max 476 nm as the new C-C bond is synthesized. Conversion of this quinonoid to L-tryptophan is the rate-limiting step in catalysis [Lane, A., & Kirschner, K. (1981) Eur. J. Biochem. 120, 379-398]. Both aniline and indoline undergo rapid N-C bond formation with the alpha-aminoacrylate to form quinonoid intermediates; benzimidazole binds rapidly and tightly to the alpha-aminoacrylate but does not undergo covalent bond formation. The indoline and aniline quinonoids (lambda max 464 and 466 nm, respectively) are formed via nucleophilic attack on the electrophilic C-beta of the alpha-aminoacrylate. The indoline quinonoid decays slowly, yielding a novel, new amino acid, dihydroisotryptophan. The aniline quinonoid is quasi-stable, and no new amino acid product was detected. We conclude that nucleophilic attack requires the precise alignment of bonding orbitals between nucleophile and the alpha-aminoacrylate intermediate. The constraints imposed by the geometry of the indole subsite force the aromatic rings of indoline, aniline, and benzimidazole to bind in the same plane as indole; thus nucleophilic attack occurs with the N-1 atoms of indoline and aniline.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
E B Watkins  R S Phillips 《Biochemistry》2001,40(49):14862-14868
The interactions of 2-azatyrosine and 3-azatyrosine with tyrosine phenol-lyase (TPL) from Citrobacter freundii have been examined. 2-Aza-DL-tyrosine and 3-aza-DL-tyrosine were synthesized by standard methods of amino acid synthesis, while the L-isomers were prepared from 3-hydroxypyridine and 2-hydroxypyridine, respectively, with TPL (Watkins, E. B., and Phillips, R. S. (2001) Bioorg. Med. Chem. Lett. 11, 2099-2100). 3-Azatyrosine was examined as a potential transition state analogue inhibitor of TPL. Both compounds were found to be competitive inhibitors of TPL, with K(i) values of 3.4 mM and 135 microM for 3- and 2-aza-L-tyrosine, respectively. Thus, 3-azatyrosine does not act as a transition state analogue, possibly due to the lack of tetrahedral geometry at C-1. However, 2-aza-L-tyrosine is the most potent competitive inhibitor of TPL found to date. The K(i) value of 2-aza-L-tyrosine is half that of 2-aza-DL-tyrosine, indicating that the D-enantiomer is inactive as an inhibitor. Neither azatyrosine isomer was shown to be a substrate for beta-elimination, based on coupled assays with lactate dehydrogenase and on HPLC measurements. Both isomers of azatyrosine form equilibrium mixtures of external aldimine and quinonoid intermediates when they bind to TPL. However, 2-azatyrosine reacts about 10-fold faster to form a quinonoid intermediate than does 3-azatyrosine. Since 2-azatyrosine is in the zwitterion or phenolate ion form at all the pH values examined, the strong binding of this compound suggests that L-tyrosine may be bound to the active site of TPL as the phenolate anion.  相似文献   

11.
Cystathionine beta-synthase catalyzes the condensation of serine and homocysteine to give cystathionine in a pyridoxal phosphate (PLP)-dependent reaction. The human enzyme contains a single heme per monomer that is bound in an N-terminal 69 amino acid extension that is missing from the otherwise highly homologous yeast enzyme. The heme dominates the UV-visible spectrum and obscures kinetic characterization of the PLP-bound reaction intermediates. In this study, we have engineered a hemeless mutant of human cystathionine beta-synthase by deletion of the N-terminal 69 amino acids. The resulting variant displays approximately 40% of the activity seen with the wild type enzyme, binds stoichiometric amounts of PLP, and permits spectral characterization of PLP-based intermediates. The enzyme as isolated exhibits an absorption maximum at 412nm corresponding to a protonated internal aldimine. Addition of serine shifts the lambdamax to 420nm (assigned as the external aldimine) with a broad shoulder between 450 and 500nm (assigned as the aminoacrylate intermediate). Addition of the product, cystathionine, also leads to formation of an external aldimine (420nm). Homocysteine elicits a red shift (and a decrease in absorption) in the spectrum from 412 to 424nm and an increase in absorption at 330nm, presumably due to formation of a dead-end complex. Mutation of K119, the residue that forms the Schiff base, to alanine results in a approximately 10(3)-fold decrease in activity, which increases approximately 2-fold in the presence of an exogenous base, ethylamine. Spectral shifts (412 --> 420nm) consistent with the formation of external aldimines are observed in the presence of serine or cystathionine, but an aminoacrylate intermediate is not formed at detectable levels. These results are consistent with an additional role for K119 as a general base in the reaction catalyzed by human cystathionine beta-synthase.  相似文献   

12.
Sulfur mobilization represents one of the key steps in ubiquitous Fe-S clusters assembly and is performed by a recently characterized set of proteins encompassing cysteine desulfurases, assembly factors, and shuttle proteins. Despite the evolutionary conservation of these proteins, some degree of variability among organisms was observed, which might reflect functional specialization. L-Cyst(e)ine lyase (C-DES), a pyridoxal 5'-phosphatedependent enzyme identified in the cyanobacterium Synechocystis, was reported to use preferentially cystine over cysteine with production of cysteine persulfide, pyruvate, and ammonia. In this study, we demonstrate that C-DES sequences are present in all cyanobacterial genomes and constitute a new family of sulfur-mobilizing enzymes, distinct from cysteine desulfurases. The functional properties of C-DES from Synechocystis sp. PCC 6714 were investigated under pre-steady-state and steady-state conditions. Single wavelength and rapid scanning stopped-flow kinetic data indicate that the internal aldimine reacts with cystine forming an external aldimine that rapidly decays to a transient quinonoid species and stable tautomers of the alpha-aminoacrylate Schiff base. In the presence of cysteine, the transient formation of a dipolar species precedes the selective and stable accumulation of the enolimine tautomer of the external aldimine, with no formation of the alpha-aminoacrylate Schiff base under reducing conditions. Effective sulfur mobilization from cystine might represent a mechanism that allows adaptation of cyanobacteria to different environmental conditions and to light-dark cycles.  相似文献   

13.
Jhee KH  Niks D  McPhie P  Dunn MF  Miles EW 《Biochemistry》2002,41(6):1828-1835
Our studies of the reaction mechanism of cystathionine beta-synthase from yeast (Saccharomyces cerevisiae) are facilitated by the spectroscopic properties of the pyridoxal phosphate coenzyme. The enzyme catalyzes the reaction of L-serine with L-homocysteine to form L-cystathionine through a series of pyridoxal phosphate intermediates. In this work, we explore the substrate specificity of the enzyme by use of substrate analogues combined with kinetic measurements under pre-steady-state conditions and with circular dichroism and fluorescence spectroscopy under steady-state conditions. Our results show that L-allothreonine, but not L-threonine, serves as an effective substrate. L-Allothreonine reacts with the pyridoxal phosphate cofactor to form a stable 3-methyl aminoacrylate intermediate that absorbs maximally at 446 nm. The rapid-scanning stopped-flow results show that the binding of L-allothreonine as the external aldimine is faster than formation of the 3-methyl aminoacrylate intermediate. The 3-methyl aminoacrylate intermediate reacts with L-homocysteine to form a new amino acid, 3-methyl-L-cystathionine, which was characterized by nuclear magnetic resonance spectroscopy. This new amino acid may be a useful analogue of L-cystathionine.  相似文献   

14.
In the PLP-requiring alpha2beta2 tryptophan synthase complex, recognition of the substrate l-Ser at the beta-site includes a loop structure (residues beta110-115) extensively H-bonded to the substrate alpha-carboxylate. To investigate the relationship of this subsite to catalytic function and to the regulation of substrate channeling, two loop mutants were constructed: betaThr110 --> Val, and betaGln114 --> Asn. The betaT110V mutation greatly impairs both catalytic activity in the beta-reaction, and allosteric communication between the alpha- and beta-sites. The crystal structure of the betaT110V mutant shows that the modified l-Ser carboxylate subsite has altered protein interactions that impair beta-site catalysis and the communication of allosteric signals between the alpha- and beta-sites. Purified betaQ114N consists of two species of mutant protein, one with a reddish color (lambdamax = 506 nm). The reddish species is unable to react with l-Ser. The second betaQ114N species displays significant catalytic activities; however, intermediates obtained on reaction with substrate l-Ser and substrate analogues exhibit perturbed UV/vis absorption spectra. Incubation with l-Ser results in the formation of an inactive species during the first 15 min with lambdamax approximately 320 nm, followed by a slower conversion over 24 h to the species with lambdamax = 506 nm. The 320 and 506 nm species originate from conversion of the alpha-aminoacrylate external aldimine to the internal aldimine and alpha-aminoacrylate, followed by the nucleophilic attack of alpha-aminoacrylate on C-4' of the internal aldimine to give a covalent adduct with PLP. Subsequent treatment with sodium hydroxide releases a modified coenzyme consisting of a vinylglyoxylic acid moiety linked through C-4' to the 4-position of the pyridine ring. We conclude that the shortening of the side chain accompanying the replacement of beta114-Gln by Asn relaxes the steric constraints that prevent this reaction in the wild-type enzyme. This study reveals a new layer of structure-function interactions essential for reaction specificity in tryptophan synthase.  相似文献   

15.
The enzymology and kinetics of tyrosine phenol lyase (TPL) from Erwinia herbicola, and tyrosine decarboxylase (TDC) from Streptococcus faecalis have been investigated for potential use in a coimmobilized multienzyme biocatalytic system for the production of dopamine. In this multienzyme biotransformation using whole cells optimized for each of the respective enzymes, TPL catalyzes the production of 3,4-dihydroxyphenyl-L-alanine (L-dopa) from catechol, pyruvate, and ammonium, and this is subsequently decarboxylated by TDC to produce dopamine. Performing the reactions simultaneously, thereby removing L-dopa, is one option for overcoming the TPL equilibrium constraints. The enzymes have different optimal pH values, so the reaction kinetics at a compromise pH of 7.1, where both enzymes could be operated simultaneously, were investigated. For the concentration range investigated, TPL followed pseudo-first-order kinetics with respect to catechol, pyruvate, and ammonium. TDC exhibited significant product inhibition as well as inhibition by combinations of catechol and pyruvate.  相似文献   

16.
Lys-258 of aspartate aminotransferase forms a Schiff base with pyridoxal phosphate and is responsible for catalysis of the 1,3-prototropic shift central to the transamination reaction sequence. Substitution of arginine for Lys-258 stabilizes the otherwise elusive quinonoid intermediate, as assessed by the long wavelength absorption bands observed in the reactions of this mutant with several amino acid substrates. The external aldimine intermediate is not detectable during reactions of this mutant with amino acids, although the inhibitor alpha-methylaspartate does slowly and stably form this species. These results suggest that external aldimine formation is one of the rate-determining steps of the reaction. The pyridoxamine-5'-phosphate-like enzyme form (330-nm absorption maximum) is unreactive toward keto acid substrates, and the coenzyme bound to this species is not dissociable from the protein.  相似文献   

17.
W F Drewe  M F Dunn 《Biochemistry》1986,25(9):2494-2501
The pre-steady-state reaction of indole and L-serine with the alpha 2 beta 2 complex of Escherichia coli tryptophan synthase has been investigated under different premixing conditions with rapid-scanning stopped-flow (RSSF) UV-visible spectroscopy for the spectral range 300-550 nm. When alpha 2 beta 2 was mixed with indole and L-serine, the reaction of alpha 2 beta 2 was found to occur in three detectable relaxations (1/tau 1 greater than 1/tau 2 greater than 1/tau 3) with rate constants identical with the three relaxations seen in the partial reaction with L-serine [Drewe, W.F., Jr., & Dunn, M.F. (1985) Biochemistry 24, 3977-3987]. Kinetic isotope effects due to substitution of 2H for the alpha-1H of serine were found to be similar to the effects observed in the reaction with serine only. The observed spectral changes and isotope effects indicate that the aldimine of L-serine and PLP and the first quinoid derived from this external aldimine are transient species that accumulate during tau 1. Conversion of these intermediates to the alpha-aminoacrylate Schiff base during tau 2 and tau 3 limits the rate of formation of the second quinoidal species (lambda max 476 nm) generated via C-C bond formation between indole and the alpha-aminoacrylate intermediate. The pre-steady-state reaction of the alpha 2 beta 2-serine mixture with indole is comprised of four relaxations (1/tau 1* greater than 1/tau 2* greater than 1/tau 3* greater than 1/tau 4*).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Hur O  Niks D  Casino P  Dunn MF 《Biochemistry》2002,41(31):9991-10001
Reactions catalyzed by the beta-subunits of the tryptophan synthase alpha(2)beta(2) complex involve multiple covalent transformations facilitated by proton transfers between the coenzyme, the reacting substrates, and acid-base catalytic groups of the enzyme. However, the UV/Vis absorbance spectra of covalent intermediates formed between the pyridoxal 5'-phosphate coenzyme (PLP) and the reacting substrate are remarkably pH-independent. Furthermore, the alpha-aminoacrylate Schiff base intermediate, E(A-A), formed between L-Ser and enzyme-bound PLP has an unusual spectrum with lambda(max) = 350 nm and a shoulder extending to greater than 500 nm. Other PLP enzymes that form E(A-A) species exhibit intense bands with lambda(max) approximately 460-470 nm. To further investigate this unusual tryptophan synthase E(A-A) species, these studies examine the kinetics of H(+) release in the reaction of L-Ser with the enzyme using rapid kinetics and the H(+) indicator phenol red in solutions weakly buffered by substrate L-serine. This work establishes that the reaction of L-Ser with tryptophan synthase gives an H(+) release when the external aldimine of L-Ser, E(Aex(1)), is converted to E(A-A). This same H(+) release occurs in the reaction of L-Ser plus the indole analogue, aniline, in a step that is rate-determining for the appearance of E(Q)(Aniline). We propose that the kinetic and spectroscopic properties of the L-Ser reaction with tryptophan synthase reflect a mechanism wherein the kinetically detected proton release arises from conversion of an E(Aex(1)) species protonated at the Schiff base nitrogen to an E(A-A) species with a neutral Schiff base nitrogen. The mechanistic and conformational implications of this transformation are discussed.  相似文献   

19.
Phillips RS  Johnson N  Kamath AV 《Biochemistry》2002,41(12):4012-4019
Y74F and H463F mutant forms of Escherichia coli tryptophan indole-lyase (Trpase) have been prepared. These mutant proteins have very low activity with L-Trp as substrate (kcat and kcat/Km values less than 0.1% of wild-type Trpase). In contrast, these mutant enzymes exhibit much higher activity with S-(o-nitrophenyl)-L-cysteine and S-ethyl-L-cysteine (kcat/Km values about 1-50% of wild-type Trpase). Thus, Tyr-74 and His-463 are important for the substrate specificity of Trpase for L-Trp. H463F Trpase is not inhibited by a potent inhibitor of wild-type Trpase, oxindolyl-L-alanine, and does not exhibit the pK(a) of 6.0 seen in previous pH dependence studies [Kiick, D. M., and Phillips, R. S. (1988) Biochemistry 27, 7333]. These results suggest that His-463 may be the catalytic base with a pK(a) of 6.0 and Tyr-74 may be a general acid catalyst for the elimination step, as we found previously with tyrosine phenol-lyase [Chen, H., Demidkina, T. V., and Phillips, R. S. (1995) Biochemistry 34, 12776]. H463F Trpase reacts with L-Trp and S-ethyl-L-cysteine in rapid-scanning stopped-flow experiments to form equilibrating mixtures of external aldimine and quinonoid intermediates, similar to those observed with wild-type Trpase. In contrast to the results with wild-type Trpase, the addition of benzimidazole to reactions of H463F Trpase with L-Trp does not result in the formation of an aminoacrylate intermediate. However, addition of benzimidazole with S-ethyl-L-cysteine results in the formation of an aminoacrylate intermediate, with lambda(max) at 345 nm, as was seen previously with wild-type Trpase [Phillips, R. S. (1991) Biochemistry 30, 5927]. This suggests that His-463 plays a specific role in the elimination step of the reaction of L-Trp. Refolding of equimolar mixtures of H463F and Y74F Trpase after unfolding in 4 M guanidine hydrochloride results in a dramatic increase in activity with L-Trp, indicating the formation of a hybrid H463F/Y74F dimer with one normal active site.  相似文献   

20.
Aspects of reaction engineering associated with multienzyme reactions have been studied in a system where dopamine is produced from catechol, pyruvate and ammonium by sequential enzymatic reactions catalyzed by tyrosine phenol lyase (TPL) and tyrosine decarboxylase (TDC). Microbial cells containing TPL activity (Erwinia herbicola) and TDC activity (Streptococcus faecalis) were coimmobilized in glutaraldehyde cross-linked porcine gelatin beads with a mean diameter of 2.8 mm for use in the reactions. Measurement of the transport properties in the beads indicate that the gelatin matrix does not significantly increase the diffusion resistance and that dopamine partitions into the matrix (K = 2). A packed-bed reactor containing the coimmobilized cell beads successfully produced dopamine, although with a low conversion. Using computer simultaneous it is shown that separate, sequential TPL and TDC, rather than simultaneous, reactions, would require smaller reactors overall for the same conversion. (c) 1992 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号