首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
T. Noguchi  K. Ueda 《Protoplasma》1985,128(1):64-71
Summary The cell wall formation and its correlation with the plasma membrane and dictyosome were investigated by an electron microscope in the zygote cells ofClosterium ehrenbergii. During zygote maturation, six wall layers were formed outside the plasma membrane. Wall layer III was the thickest layer and consisted of microfibril bundles. Dictyosomes produced flat vesicles during formation of wall layer III. Hexagonal arrays of rosette particles appeared in the plasma membrane in this period, thus confirming the simultaneous occurrence of flat vesicles and hexagonal particle arrays in the formation of microfibril bundles even at different stages of the life cycle. Wall layer VI was second in thickness and consisted of single microfibrils. Neither flat vesicles nor hexagonal particle arrays were observed during formation of this layer.  相似文献   

2.
Vreeland  V.  Grotkopp  E.  Espinosa  S.  Quiroz  D.  Laetsch  W. M.  West  J. 《Hydrobiologia》1993,260(1):485-491
As a first step in understanding the mechanism of algal adhesion, we describe the adhesive process during early development in Fucus gardneri zygotes. These brown algal embryos adhere to the intertidal substrate shortly after fertilization. Zygotes adhered nonspecifically to hydrophilic and hydrophobic substrates and microspheres. Initial binding of microspheres to the zygote surface coincided with initial zygote adhesion to the substrate. Binding of monodisperse dyed microspheres was used for adhesive localization and quantitation. The timing and extent of adhesive development were variable in populations of synchronously-fertilized zygotes. Small adhesive patches first appeared at 3–6 h, indicating secretion of adhesive components from cytoplasmic vesicles. The zygote hemisphere toward the substrate became sticky by 7–8 h. The entire surface was sticky after rhizoid germination at 12 h. Localization of adhesive at both the outer wall surface and along strands attached to the wall implicates cell wall polymers as a glue component. Loss of microspheres from the rhizoid surface in high salt or chelators indicates that initial adhesive attachment to the wall is noncovalent. Formation of adhesive aggregates in medium showed that the mechanism of adhesive formation includes two separable processes, secretion of adhesive components and extracellular interactions between adhesive components and the wall.  相似文献   

3.
How do cell walls regulate plant growth?   总被引:11,自引:0,他引:11  
The cell wall of growing plant tissues has frequently been interpreted in terms of inextensible cellulose microfibrils 'tethered' by hemicellulose polymers attached to the microfibril surface by hydrogen bonds, with growth occurring when tethers are broken or 'peeled' off the microfibril surface by expansins. This has sometimes been described as the 'sticky network' model. In this paper, a number of theoretical difficulties with this model, and discrepancies between predicted behaviour and observations by a number of researchers, are noted. (i) Predictions of cell wall moduli, based upon the sticky network model, suggest that the cell wall should be much weaker than is observed. (ii) The maximum hydrogen bond energy between tethers and microfibrils is less than the work done in expansion and therefore breakage of such hydrogen bonds is unlikely to limit growth. (iii) Composites of bacterial cellulose with xyloglucan are weaker than pellicles of pure cellulose so that it seems unlikely that hemicelluloses bind the microfibrils together. (iv) Calcium chelators promote creep of plant material in a similar way to expansins. (v) Reduced relative 'permittivities' inhibit the contraction of cell wall material when an applied stress is decreased. Revisions of the sticky network model that might address these issues are considered, as are alternatives including a model of cell wall biophysics in which cell wall polymers act as 'scaffolds' to regulate the space available for microfibril movement. Experiments that support the latter hypothesis, by demonstrating that reducing cell wall free volume decreases extensibility, are briefly described.  相似文献   

4.
《Experimental mycology》1991,15(3):206-214
Electron microscopic studies of nematodes infected with the chytridiomycetous fungusCatenaria anguillulae indicated that zoospores of the fungus adhered to the cuticle of nematodes by a layer of extracellular polymers. The chemical composition of the adhesive polymers and their interaction with a solid surface were examined with Fourier transform infrared spectroscopy, using an attenuated total reflectance cell. On-line monitoring of the adhesion of zoospores to a germanium crystal with this technique showed that the adhesive polymers consisted of a protein(s) containing amide I and II bands. The adsorption of these proteins, measured as the increase in the amide II band, had a rapid initial phase of ca. 20 minutes, followed by a slower increase during the course of incubation. Fluorescein isothiocyanate staining of the attached cells at the end of the experiment showed that the adhesion of the zoospores occurred before the formation of the cyst wall.  相似文献   

5.
The mature female conceptacle of Sargassum horneri (Turner) C. Agardh has an ostiole filled with a gelatinous plug. The oogonium in the conceptacle has cell walls that can be differentiated into a dense outer and a less dense inner microfibrillar layer. Just prior to egg release, stalk material is produced inside the outer layer and the inner layer disappears. At this stage the gelatinous plug is extruded and mucilage is released through the ostiole. The released eggs are retained on the receptacle by the stalk and are surrounded by a large amount of the mucilage. Three-celled germlings form a primary wall with a polylamellated structure of microfibril layers. In multicellular germlings that have differentiated into thallus and rhizoids, the peripheral thallus cells have an outer cell wall consisting of a microfibril layer under the primary wall, while the cell wall of the rhizoid tip has an amorphous structure. The germlings are released from the stalk and become attached to the substratum by an adhesive substance secreted from rhizoidal cells.  相似文献   

6.
Field emission scanning electron microscopy (FESEM) preparation techniques have been successfully adapted for visualization of the internal and external ultrastructure of Mougeotia filaments and protoplasts. FESEM of the innermost layer of cell wall in Mougeotia filaments revealed that microfibrils are deposited parallel to each other in an interconnected mesh and are oriented perpendicular to the direction of elongation. For the first time, the surface of protoplasts at different stages of regeneration has been observed using FESEM. Nascent microfibril deposition occurs between 1 and 2 h after isolation and arrangement of these microfibrils is random for at least 8 h. Observation of the inner surface of the plasma membrane in burst protoplasts showed that microtubules are not strongly attached for at least 3 h after protoplast isolation.  相似文献   

7.
J. Cronshaw 《Planta》1966,72(1):78-90
Summary Sterile pith cultures of Nicotiana tabacum have been induced to form localized regions of differentiating tracheids. These localized regions have been examined by phase, fluorescence, and electron microscopy, and polarization optics. Fixation for electron microscopy was with glutaraldehyde-osmium. The differentiating tracheids develop characteristic thick cell walls which are eventually lignified. The lignifications appear to be uniform throughout the secondary wall and little or no lignin appears to be deposited in the primary walls or intercellular layer. At all stages of secondary wall deposition, the peripheral cytoplasm contains a system of microtubules which form a pattern similar to that of the developing thickenings. Within this system the microtubules are oriented, the direction of orientation mirroring that of the fibrils in the most recently deposited parts of the wall. The observations support the view that the microtubules are somehow involved in microfibril orientation. The microtubules appear to be attached to the plasma membrane which has a triple layered structure. The two electron dense layers of the plasma membrane have a particulate structure. In the differentiating tracheids at regions where secondary wall thickening has not yet been deposited numerous invaginations of the plasma membrane are observed which contain loosely organized fibrillar material. It is suggested that these are areas of localized activity of the plasma membrane and that the enzymes concerned with the final organization of the cellulose microfibrils are situated at the surface of the plasma membrane. Dictyosomes in the differentiation cells give rise to vesicles which contain fibrous material and the contents are incorporated into the cell wall. Numerous profiles characteristic of plasmodesmata are evident in sections of the secondary thickenings.Part of this work was carried out at the Osborne Memorial Laboratories, Yale University.  相似文献   

8.
Cell wall structure and biogenesis in the unicellular green alga, Oocystis apiculata, is described. The wall consists of an outer amourphous primary layer and an inner secondary layer of highly organized cellulosic microfibrils. The primary wall is deposited immediately after cytokinesis. Golgi-derived products contribute to this layer. Cortical microtubules underlie the plasma membrane immediately before and during primary wall formation. They function in maintaining the elliptical cell shape. Following primary wall synthesis, Golgi-derived materials accumulate on the cell surface to form the periplasmic layer. This layer functions in the deposition of coating and cross-linking substances which associate with cellulosic microfibrils of the incipient secondary wall. Secondary wall microfibrils are assembled in association with the plasma membrane. Freeze-etch preparations of untreated, living cells reveal linear terminal complexes in association with growing cellulosic microfibrils. These complexes are embedded in the EF fracture face of the plasma membrane. The newly synthesized microfibril lies in a groove of the outer leaflet of the plasma membrane. The groove is decorated on the EF fracture face by perpendicular structures termed “ridges.” The ridges interlink with definitive rows of particles associated with the PF fracture face of the inner leaflet of the plasma membrane. These particles are termed “granule bands,” and they function in the orientation of the newly synthesized microfibrils. Microfibril development in relation to a coordinated multienzyme complex is discussed. The process of cell wall biogenesis in Oocystis is compared to that in higher plants.  相似文献   

9.
The binding of concanavalin A (Con A) to the cell surface of zoospores and cysts of Phytophthora palmivora was studied by radiometry (125I-Con A), ultraviolet microscopy (fluorescein-Con A) and electron microscopy peroxidase-diaminobenzidine technique). Zoospores were found to secrete during the early stages of encystment a Con A-binding material susceptible to trypsin digestion. This glycoprotein is contained in the so-called peripheral vesicles and is probably responsible for the adhesion of the encysting zoospores to solid surfaces.  相似文献   

10.
Cellulose microfibril orientation patterns in thallus cellsof Chaetomorpha moniligera were studied, and the relationshipbetween the microfibril and the peripheral microtubule arrangementsduring cell-shape modification by colchicine was examined. Inthe cuttings from growing thalli, linearly arranged cylindricalcells developed into cask-shaped cells during 4–6 daysof culture at 27?C. In the cylindrical cells, microfibrils formingthe innermost portion of the wall were arranged alternatelyin longitudinal and transverse directions, but peripheral microtubuleswere always arranged only in a longitudinal direction. Thesefeatures were also noted in the cask-shaped cells. Colchicineat 10–3M and 3?10–3M accelerated both cell expansionand wall thickening with matrix deposition, but the directionsin which both microfibrils and microtubules were arranged werethe same as those of the cylindrical cells. These results indicatethat (1) the microfibril and microtubule arrangements of Chaetomorphaare not necessarily correlated, (2) changes in cell shape ofChaetomorpha are not necessarily accompanied by changes in thearrangement of cell-wall microfibrils, and (3) colchicine playsa role in the loosening and thickening of cell walls by enhancingmatrix deposition. (Received June 2, 1986; Accepted February 13, 1987)  相似文献   

11.
Summary By quantitative analysis of cellulose microfibril orientation at different levels in the primary cell wall of a number of cell types, the development of wall texture was studied. Meristematic, isodiametric and cylindrical parenchyma cells and cells of a suspension culture were used. Within the newly deposited microfibril population, various orientations were recognized on the micrographs. Within subpopulations the orientation of undercrossing and overcrossing microfibrils were measured. These measurements showed a gradual shift in cellulose microfibril orientation in the different levels. Microfibrils showed predominant orientations at particular levels but microfibrils of intermediate orientation also occurred, although at a much lower density. As cellulose microfibrils of intermediate orientation were not closely packed, lamellae were not formed. Interwoven microfibrils were occasionally present, indicating that differently orientated microfibrils are occasionally deposited simultaneously. Also gradual changes in orientation over the entire inner cell wall surface were observed. From these observations it was inferred that microfibril deposition occurs with a small but regular and progressive change in orientation, the rotational motion, related to that of a helicoidal system.Dedicated to Professor Dr. M. M. A. Sassen on the occasion of his 65th birthday  相似文献   

12.
Microfibril deposition on cultured protoplasts ofVicia hajastana   总被引:1,自引:0,他引:1  
Summary Cell wall regeneration by protoplasts fromVicia hajastana suspension cultures was investigated with Calcofluor White ST staining and platinum-palladium surface replicas. Microfibril deposition was initiated after 10–20 minutes of culture and within 20 hours protoplasts were covered with a heavy mat of microfibrils. The early stages of microfibril formation could not be detected with Calcofluor staining.Supported by the National Research Council of Canada, Grant A6304.Supported by Deutsche Forschungsgemeinschaft.  相似文献   

13.
Thimm JC  Burritt DJ  Ducker WA  Melton LD 《Planta》2000,212(1):25-32
Atomic force microscopy (AFM) was used to image celery (Apium graveolens L.) parenchyma cell walls in situ. Cellulose microfibrils could clearly be distinguished in topographic images of the cell wall. The microfibrils of the hydrated walls appeared smaller, more uniformly distributed, and less enmeshed than those of dried peels. In material that was kept hydrated at all times and imaged under water, the microfibril diameter was mainly in the range 6–25 nm. The cellulose microfibril diameters were highly dependent on the water content of the specimen. As the water content was decreased, by mixing ethanol with the bathing solution, the microfibril diameters increased. Upon complete dehydration of the specimen we observed a significant increase in microfibril diameter. The procedure used to dehydrate the parenchyma cells also influenced the size of cellulose microfibrils with freeze-dried material having larger diameters than air-dried material. Received: 16 November 1999 / Accepted: 7 March 2000  相似文献   

14.
A fine structure of cell wall lamellae in a coenocytic green algaBoergesenia forbesii was examined by electron microscopy. The wall has a polylamellate structure containing cellulose microfibrils 25 to 30 nm in diameter. The outer surface of the cell was covered by a thin structureless lamella, underneath which existed a lamella containing randomly-oriented microfibrils. The major part of the wall consisted of two types of lamellae, multifibrillar lamella and a transitional, matrix-rich one. In the former, microfibrils were densely arranged more or less parallel with each other. In the transitional lamella, existing between the multifibrillar ones, the microfibril orientation shifted about 30° within the layer. The fibril orientation also shifted 30° between adjacent transitional and multifibrillar layers, and consequently the microfibril orientation in the neighboring multifibrillar layers shifted 90°. It was concluded that the orientation rotated counterclockwise when observed from inside the cell. Each lamella in the thallus wall become thinner with cell expansion, but no reorientation of microfibrils in the outer old layers was observed. In the rhizoid, the outer lamellae sloughed off with the tip growth.  相似文献   

15.
The cell-wall formation in the egg of Pelvetia fastigiata (J.G. Agardh) DeToni (Fucaceae) was studied with freeze-fracture. 1. The wall is lamellated with microfibrils approximately parallel in each lamella. The average orientation of microfibrils turns about 35° in each subsequent lamella. This slow turn gives rise to bow-shaped arcs when the wall is obliquely cross fractured. 2. The organization of the fibrils in the innermost lamellae is visualized by their imprints on the plasma membrane. These imprints are the result of both turgor pressure and adhesion of fibrils to the membrane. 3. Strings of membrane particles appear on the plasma membrane shortly after fertilization. They seem to be formed by a fertilization-induced aggregation of isolated membrane particles. Later each string comes to lie under a fibril and along its imprint. Peculiar lateral rips indicate that some strings are tightly bound to a fibril and may be involved in its orientation. 4. Wall formation in Pelvetia is marked by pronounced secretory activities. Following fertilization, the fusion of cortical vesicles and other vesicles make numerous loci in the plasma membrane. In older embryos, fibril-free patches in the plasma membrane mark the position of microfibril elongation centers in the wall matrix. Prior to germination, these elongation centers and their corresponding membrane patches reach a high density at the presumptive rhizoid end.We wish dedicate this paper to R.D. Preston  相似文献   

16.
Expansins are plant cell wall-loosening proteins that promote cell growth and are essential for many critical developmental processes and stress responses. The molecular basis for expansin action is uncertain. Recently, it has been proposed that expansins loosen the wall by means of the generation of mobile conformational defects at the surface of cellulose microfibrils. The present work addresses this hypothesis by elaborating three assumptions: (1) microfibril–matrix interfaces cause steep stress gradients on the microfibril surface, (2) stress gradients drive the motion of conformational defects along the microfibril surface toward the microfibril–matrix interfaces, and (3) the approach of the defects to the microfibril–matrix interfaces facilitates the dissociation of matrix polysaccharides from cellulose microfibrils.  相似文献   

17.
J. Burgess  P. J. Linstead 《Planta》1979,146(2):203-210
A study has been made of the wall fibrils produced by tobacco protoplasts, using scanning electron microscopy in conjunction with negative staining. It has been shown that the fibres seen in scanning electron microscopy correspond to aggregates of microfibrils. These aggregates are only visible where they are lifted clear of the protoplast surface. Negative staining of fixed protoplasts shows that the aggregation of microfibrils into the fibres visible in scanning electron microscopy is probably produced by air-drying. Gentle disruption of microfibrils produces both random broken fragments and bundles of short pieces of fibrillar material about 60 nm in length. This material is present in undisrupted young walls, but not in undisrupted older walls. The microfibrils in young walls seem much more fragile and liable to breakage than those in older walls. These results are discussed in terms of the interpretation of scanning electron microscope images and the mechanism of cellulose microfibril formation by higher plants.Abbreviations SEM Scanning electron microscopy  相似文献   

18.
Encystation and excystation of Acanthamoeba castellanii were studied by transmission electron microscopy. The differentiation process was induced in asynchronous cultures grown axenically. Cytoplasmic vesicles containing a dense fibrous material very similar in appearance to the cyst wall were observed in trophozoites induced to encyst. When these trophozoites were incubated with calcofluor white m2r, fluorescence was observed in cytoplasmic vesicles, suggesting that the material contained in these vesicles corresponded to cyst wall precursors. Semithin cryosections of mature cysts with the same treatment showed fluorescence in the ectocyst and a less intense fluorescence in the endocyst, suggesting the presence of cellulose in both structures of the cyst wall. In mature cysts induced to excystation, small structures very similar to electron-dense granules (EDG) previously described in other amoebae were frequently observed. The EDGs were either sparsely distributed in the cytoplasm or associated with the cytoplasmic face of the plasma membrane. Many of them were located near the ostiole. In advanced phases of excystation, endocytic activity was suggested by the formation of endocytic structures and the presence of vacuoles with fibrous content similar to that of the cyst wall. Electron-dense granules in the process of dissolution were also observed in these vacuoles. Furthermore, the formation of a pseudopod suggests a displacement of the amoeba toward the ostiole.  相似文献   

19.
The cysts (statospores) of Ochromonas tuberculata Hibberd are produced within a cytoplasmic silica deposition vesicle (SDV) whose membrane (silicalemma) appears to be formed by the coalescence of golgi vesicles. Silica is first deposited as small nodules and the collar and spines develop by centrifugal growth only after a complete but still thin wall has been laid down. Small vesicles appear to be attached to the SDV only in the region overlying the developing collar; a cap of radially arranged, moderately electron-dense material occurs at the tip of the growing spines. The cyst pore is formed at the anterior end of the flagellate cell, by lack of silica deposition over a small region of the SDV and rupture of the SDV and other membranes crossing this region. When the cyst wall is complete, an extracystic plug is formed in the pore, resulting in the loss of some extracystic cytoplasm and the plasmalemma, and the inner SDV membrane becomes the functional plasmalemma. The plug develops first by coalescence with the cell membrane of golgi-derived vesicles containing dense but apparently nonsiliceous spicules surrounded by amorphous material. During later stages of plug formation only fibrous material is deposited, some of which may be extruded through the pore forcing out some of the spiculate component. Scanning electron micrographs of the mature wall show it is smooth except for the concentrically wrinkled inner face of the flared collar and that the real pore diameter is only ca. half that of the collar. At germination the plug completely disappears in an unknown way and a single cell, similar to a normal vegetative cell emerges through the pore. Chrysophycean cyst formation generally resembles cell wall formation in diatoms, but differs in some details.  相似文献   

20.
A turbulent channel flow apparatus was used to determine the adhesion strength of the three perimetamorphic stages of the asteroid Asterina gibbosa, i.e. the brachiolaria larvae, the metamorphic individuals and the juveniles. The mean critical wall shear stresses (wall shear stress required to dislodge 50% of the attached individuals) necessary to detach larvae attached by the brachiolar arms (1.2 Pa) and juveniles attached by the tube feet (7.1 Pa) were one order of magnitude lower than the stress required to dislodge metamorphic individuals attached by the adhesive disc (41 Pa). This variability in adhesion strength reflects differences in the functioning of the adhesive organs for these different life stages of sea stars. Brachiolar arms and tube feet function as temporary adhesion organs, allowing repetitive cycles of attachment to and detachment from the substratum, whereas the adhesive disc is used only once, at the onset of metamorphosis, and is responsible for the strong attachment of the metamorphic individual, which can be described as permanent adhesion. The results confirm that the turbulent water channel apparatus is a powerful tool to investigate the adhesion mechanisms of minute organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号