首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The predominant mode of growth of bacteria in the environment is within sessile, matrix-enclosed communities known as biofilms. Biofilms often complicate chronic and difficult-to-treat infections by protecting bacteria from the immune system, decreasing antibiotic efficacy, and dispersing planktonic cells to distant body sites. While the biology of bacterial biofilms has become a major focus of microbial research, the regulatory mechanisms of biofilm development remain poorly defined and those of dispersal are unknown. Here we establish that the RNA binding global regulatory protein CsrA (carbon storage regulator) of Escherichia coli K-12 serves as both a repressor of biofilm formation and an activator of biofilm dispersal under a variety of culture conditions. Ectopic expression of the E. coli K-12 csrA gene repressed biofilm formation by related bacterial pathogens. A csrA knockout mutation enhanced biofilm formation in E. coli strains that were defective for extracellular, surface, or regulatory factors previously implicated in biofilm formation. In contrast, this csrA mutation did not affect biofilm formation by a glgA (glycogen synthase) knockout mutant. Complementation studies with glg genes provided further genetic evidence that the effects of CsrA on biofilm formation are mediated largely through the regulation of intracellular glycogen biosynthesis and catabolism. Finally, the expression of a chromosomally encoded csrA'-'lacZ translational fusion was dynamically regulated during biofilm formation in a pattern consistent with its role as a repressor. We propose that global regulation of central carbon flux by CsrA is an extremely important feature of E. coli biofilm development.  相似文献   

7.
8.
The barA and sirA genes of Salmonella enterica serovar Typhimurium encode a two-component sensor kinase and a response regulator, respectively. This system increases the expression of virulence genes and decreases the expression of motility genes. In this study, we examined the pathways by which SirA affects these genes. We found that the master regulator of flagellar genes, flhDC, had a positive regulatory effect on the primary regulator of intestinal virulence determinants, hilA, but that hilA had no effect on flhDC. SirA was able to repress flhDC in a hilA mutant and activate hilA in an flhDC mutant. Therefore, although the flhDC and hilA regulatory cascades interact, sirA affects each of them independently. A form of BarA lacking the two N-terminal membrane-spanning domains, BarA198, autophosphorylates in the presence of ATP and transfers the phosphate to purified SirA. Phosphorylated SirA was found to directly bind the hilA and hilC promoters in gel mobility shift assays but not the flhD, fliA, hilD, and invF promoters. Given that the CsrA/csrB system is known to directly affect flagellar gene expression, we tested the hypothesis that SirA affects flagellar gene expression indirectly by regulating csrA or csrB. The sirA gene did not regulate csrA but did activate csrB expression. Consistent with these results, phosphorylated SirA was found to directly bind the csrB promoter but not the csrA promoter. We propose a model in which SirA directly activates virulence expression via hilA and hilC while repressing the flagellar regulon indirectly via csrB.  相似文献   

9.
10.
11.
The RNA-binding protein CsrA (carbon storage regulator) of Escherichia coli is a global regulator of gene expression and is representative of the CsrA/RsmA family of bacterial proteins. These proteins act by regulating mRNA translation and stability and are antagonized by binding to small noncoding RNAs. Although the RNA target sequence and structure for CsrA binding have been well defined, little information exists concerning the protein requirements for RNA recognition. The three-dimensional structures of three CsrA/RsmA proteins were recently solved, revealing a novel protein fold consisting of two interdigitated monomers. Here, we performed comprehensive alanine-scanning mutagenesis on csrA of E. coli and tested the 58 resulting mutants for regulation of glycogen accumulation, motility, and biofilm formation. Quantitative effects of these mutations on expression of glgCA'-'lacZ, flhDC'-'lacZ, and pgaA'-'lacZ translational fusions were also examined, and eight of the mutant proteins were purified and tested for RNA binding. These studies identified two regions of the amino acid sequence that were critical for regulation and RNA binding, located within the first (beta1, residues 2-7) and containing the last (beta5, residues 40-47) beta-strands of CsrA. The beta1 and beta5 strands of opposite monomers lie adjacent and parallel to each other in the three-dimensional structure of this protein. Given the symmetry of the CsrA dimer, these findings imply that two distinct RNA binding surfaces or functional subdomains lie on opposite sides of the protein.  相似文献   

12.
13.
14.
Swimming motility allows the bacterial wilt pathogen Ralstonia solanacearum to efficiently invade and colonize host plants. However, the bacteria are essentially nonmotile once inside plant xylem vessels. To determine how and when motility genes are expressed, we cloned and mutated flhDC, which encodes a major regulator of flagellar biosynthesis and bacterial motility. An flhDC mutant was nonmotile and less virulent than its wild-type parent on both tomato and Arabidopsis; on Arabidopsis, the flhDC mutant also was less virulent than a nonmotile fliC flagellin mutant. Genes in the R. solanacearum motility regulon had strikingly different expression patterns in culture and in the plant. In culture, as expected, flhDC expression depended on PehSR, a regulator of early virulence factors; and, in turn, FlhDC was required for fliC (flagellin) expression. However, when bacteria grew in tomato plants, flhDC was expressed in both wild-type and pehR mutant backgrounds, although PehSR is necessary for motility both in culture and in planta. Both flhDC and pehSR were significantly induced in planta relative to expression levels in culture. Unexpectedly, the fliC gene was expressed in planta at cell densities where motile bacteria were not observed, as well as in a nonmotile flhDC mutant. Thus, expression of flhDC and flagellin itself are uncoupled from bacterial motility in the host environment, indicating that additional signals and regulatory circuits repress motility during plant pathogenesis.  相似文献   

15.
Legionella pneumophila can replicate inside amoebae and also alveolar macrophages to cause Legionnaires' Disease in susceptible hosts. When nutrients become limiting, a stringent-like response coordinates the differentiation of L. pneumophila to a transmissive form, a process mediated by the two-component system LetA/S and the sigma factors RpoS and FliA. Here we demonstrate that the broadly conserved RNA binding protein CsrA is a global repressor of L. pneumophila transmission phenotypes and an essential activator of intracellular replication. By analysing csrA expression and the phenotypes of csrA single and double mutants and a strain that expresses csrA constitutively, we demonstrate that, during replication in broth, CsrA represses every post-exponential phase phenotype examined, including cell shape shortening, motility, pigmentation, stress resistance, sodium sensitivity, cytotoxicity and efficient macrophage infection. At the transition to the post-exponential phase, LetA/S relieves CsrA repression to induce transmission phenotypes by both FliA-dependent and -independent pathways. For L. pneumophila to avoid lysosomal degradation in macrophages, CsrA repression must be relieved by LetA/S before phagocytosis; conversely, before intracellular bacteria can replicate, CsrA repression must be restored. The reciprocal regulation of replication and transmission exemplified by CsrA likely enhances the fitness of microbes faced with fluctuating environments.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号