首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
为了研究中国胜红蓟黄脉病毒(Ageratum yellow vein Chin virus,AYVCNV)和假马鞭曲叶病毒(Stachytarpheta leafcurl virus,StaLCV)C4蛋白的功能,利用烟草脆裂病毒(Tobacco rattle virus,TRV)载体在本氏烟(Nicotianabenthamiana)中分别表达了这两种病毒的C4蛋白,结果发现它们均能在本氏烟中引起类似于病毒侵染的症状,推测AYVCNV和StaLCV的C4蛋白是病毒的致病因子;在RNA沉默的抑制试验中,AYVCNV和StaLCV的C4蛋白均能够在表达gfp基因的转基因本氏烟(16c)上抑制由gfp基因正义链引起的基因沉默的建立,证明它们都是RNA沉默的抑制子。  相似文献   

3.
The region of the rubella virus nonstructural open reading frame that contains the papain-like cysteine protease domain and its cleavage site was expressed with a Sindbis virus vector. Cys-1151 has previously been shown to be required for the activity of the protease (L. D. Marr, C.-Y. Wang, and T. K Frey, Virology 198:586-592, 1994). Here we show that His-1272 is also necessary for protease activity, consistent with the active site of the enzyme being composed of a catalytic dyad consisting of Cys-1151 and His-1272. By means of radiochemical amino acid sequencing, the site in the polyprotein cleaved by the nonstructural protease was found to follow Gly-1300 in the sequence Gly-1299-Gly-1300-Gly-1301. Mutagenesis studies demonstrated that change of Gly-1300 to alanine or valine abrogated cleavage. In contrast, Gly-1299 and Gly-1301 could be changed to alanine with retention of cleavage, but a change to valine abrogated cleavage. Coexpression of a construct that contains a cleavage site mutation (to serve as a protease) together with a construct that contains a protease mutation (to serve as a substrate) failed to reveal trans cleavage. Coexpression of wild-type constructs with protease-mutant constructs also failed to reveal trans cleavage, even after extended in vitro incubation following lysis. These results indicate that the protease functions only in cis, at least under the conditions tested.  相似文献   

4.
Monoclonal antibodies which recognize the cell surface-exposed part of outer membrane protein PhoE of Escherichia coli were used to select for antigenic mutants producing an altered PhoE protein. The selection procedure was based on the antibody-dependent bactericidal action of the complement system. Using two distinct PhoE-specific monoclonal antibodies, seven independent mutants with an altered PhoE protein were isolated. Among these seven mutants, five distinct binding patterns were observed with a panel of 10 monoclonal antibodies. DNA sequence analysis revealed the following substitutions in the 330-residue-long PhoE protein: Arg-201----His (three isolates), Arg-201----Cys, Gly-238----Ser, Gly-275----Ser and Gly-275----Asp. It is argued that amino acid residues 201, 238, and 275 are most likely directly involved in antibody binding and, therefore, exposed at the cell surface. Together with Arg-158, which was previously shown to be cell surface exposed as it is changed in phage TC45-resistant phoE mutants, these four positions show a remarkably regular spacing, being approximately 40 residues apart. A model is suggested in which the PhoE polypeptide repeatedly traverses the outer membrane in an antiparallel beta-pleated sheet structure, exposing eight areas to the outside which are all separated by approximately 40 residues.  相似文献   

5.
Class III ribonucleotide reductase (RNR) is an anaerobic glycyl radical enzyme that catalyzes the reduction of ribonucleotides to deoxyribonucleotides. We have investigated the importance in the reaction mechanism of nine conserved cysteine residues in class III RNR from bacteriophage T4. By using site-directed mutagenesis, we show that two of the cysteines, Cys-79 and Cys-290, are directly involved in the reaction mechanism. Based on the positioning of these two residues in the active site region of the known three-dimensional structure of the phage T4 enzyme, and their structural equivalence to two cysteine residues in the active site region of the aerobic class I RNR, we suggest that Cys-290 participates in the reaction mechanism by forming a transient thiyl radical and that Cys-79 participates in the actual reduction of the substrate. Our results provide strong experimental evidence for a similar radical-based reaction mechanism in all classes of RNR but also identify important differences between class III RNR and the other classes of RNR as regards the reduction per se. We also identify a cluster of four cysteines (Cys-543, Cys-546, Cys-561, and Cys-564) in the C-terminal part of the class III enzyme, which are essential for formation of the glycyl radical. These cysteines make up a CX(2)C-CX(2)C motif in the vicinity of the stable radical at Gly-580. We propose that the four cysteines are involved in radical transfer between Gly-580 and the cofactor S-adenosylmethionine of the activating NrdG enzyme needed for glycyl radical generation.  相似文献   

6.
Various in vitro mutated human cytochrome c genes which encode displaced amino acid residues at the 14th, 17th, 28th, 37th, 38th, 56th, and/or 84th residues were constructed, and their degrees of complementation of yeast CYC1 deficiency were examined. Invariant Cys-17 and Arg-38 could not be replaced by alanine and tryptophan, respectively, without function impairment. Cytochrome c containing Ala-14 instead of conserved Cys-14, Gly-38 or Lys-38 instead of Arg-38, and Ser-84 instead of invariant Gly-84 were partly functional. These results indicate that these invariant or conserved residues are important. Cytochromes c containing Cys-56 instead of native Gly-56 was partly functional. Cytochrome c containing Arg-37 and Gly-38 instead of Gly-37 and Arg-38 was slightly functional. Replacement of variable Thr-28 and Gly-37 by Ile-28 and Arg-37, respectively, produced no effects. Our results are as a whole consistent with the view that conserved residues are important and variable residues are less important for cytochrome c to function.  相似文献   

7.
Cysteine 29 is the major palmitoylation site on stomatin.   总被引:2,自引:0,他引:2  
L Snyers  E Umlauf  R Prohaska 《FEBS letters》1999,449(2-3):101-104
The 31 kDa membrane protein stomatin was metabolically labeled with tritiated palmitic acid in the human amniotic cell line UAC and immunoprecipitated. We show that the incorporated palmitate is sensitive to hydroxylamine, indicating the binding to cysteine residues. Stomatin contains three cysteines. By expressing a myc-tagged stomatin and substituting the three cysteines by serine, individually or in combination, we demonstrate that Cys-29 is the predominant site of palmitoylation and that Cys-86 accounts for the remaining palmitate labeling. Disruption of Cys-52 alone does not show any detectable reduction of palmitic acid incorporation. Given the organization of stomatin into homo-oligomers, the presence of multiple palmitate chains is likely to increase greatly the affinity of these oligomers for the membrane and perhaps particular lipid domains within it.  相似文献   

8.
9.
10.
Dengue virus (DENV) nonstructural protein 1 (NS1) is a highly conserved 46-kDa protein that contains 2 glycosylation sites (Asn-130 and Asn-207) and 12 conserved cysteine (Cys) residues. Here, we performed site-directed mutagenesis to generate systematic mutants of viral strain TSV01. The results of the subsequent analysis showed that an alanine substitution at the second N-linked glycan Asn-207 in NS1 delayed viral RNA synthesis, reduced virus plaque size, and weakened the cytopathic effect. Three mutants at Cys sites (Cys-4, Cys-55, Cys-291) and a C-terminal deletion (ΔC) mutant significantly impaired RNA synthesis, and consequently abolished viral growth, whereas alanine mutations at Asn-130 and Glu-173 resulted in phenotypes that were similar to the wild-type (WT) virus. Further analysis showed that the Asn-207 mutation slightly delayed viral replication. These results suggest that the three conserved disulfide bonds and the second N-linked glycan in NS1 are required for DENV-2 replication.  相似文献   

11.
12.
13.
The amino acid composition and partial NH2-terminal amino acid sequence of an extracellular phospholipase A2 in human rheumatoid synovial fluid were determined. The predominant amino acids in the phospholipase A2 were cysteine, glycine, arginine, and lysine, suggesting that it is a basic one. The NH2-terminal 34 amino acids were found to be as follows: Asn-Leu-Val-Asn-Phe-His-Arg-Met-Ile-Lys-Leu-Thr-Thr-Gly-Lys-Glu-Ala-Ala-Leu- Ser-Tyr-Gly-Phe-Tyr-Gly-Cys-X-Cys-Gly-Val-Gly-Gly-Arg-Gly The enzyme contains Phe-5, Met-8, Ile-9, Tyr-24, Gly-25, Cys-26, Cys-28, Gly-29, Gly-31, Gly-32, and Gly-34 residues, all of which are conserved in most of the sequenced phospholipase A2. The remarkable feature of this enzyme was the absence of Cys-11, which is conserved in the "Group I" enzyme family. This is the first report concerning partial amino acid sequences of human non-pancreatic phospholipase A2.  相似文献   

14.
Purified collagenase of Clostridium histolyticum was shown to cleave reduced and S-carboxamidomethylated bovine neurophysin between Cys-13 and Gly-14. The scission resulted in formation of two separable fragments: a smaller peptide arising from residues 1 through 13, and a larger peptide comprising the remainder of the residues of the protein. By dansylation procedures, the smaller peptide was shown to have amino-terminal alanine as expected from the sequence of neurophysin II, and the larger peptide had amino-terminal glycine as anticipated. These results show that collagenase indeed cleaves bovine neurophysin II in accord with the specificity postulated for that enzyme, i.e., scission between -X-Gly- in a sequence of -Pro-X-Gly-Pro-Y-. This result, obtained with a non-collagenous protein substrate, is further confirmation of the specificity of collagenase as established by its action on collagens and on synthetic oligopeptides.  相似文献   

15.
We previously isolated spontaneous env gene mutants of Friend spleen focus-forming virus that are nonleukemogenic in adult mice but form leukemogenic revertants in newborns; we found that the revertants contain secondary env mutations. To identify sites in the encoded membrane glycoprotein that are important for its pathogenic function, we molecularly cloned and partially sequenced the env genes of two mutant viruses (clone 63 and clone 4) and one revertant (clone 4REV). Clone 63 contained three noncontiguous point mutations that caused nonconservative amino acid substitutions of Gly-119----Arg-119, Cys-180----Tyr-180, and Gly-203----Arg-203 in the xenotropic-related domain of the env glycoprotein. These substitutions were presumably responsible for the altered electrophoretic and pathogenic properties of the mutant glycoprotein. The presence of these and several other G-A nucleotide substitutions at different sites in one spontaneous mutant provided striking evidence that error-rich proviruses can form during retroviral replication. Clone 4 contained a point mutation that generated a premature termination condon at amino acid residue 304 (Gln-304----Ochre-304). This termination codon was located immediately after the proposed xenotropic-ecotropic recombination site and eliminated the ecotropic-related domain, including the putative membrane anchor of the glycoprotein. Clone 4REV was a true revertant derived from clone 4 in which the premature termination codon had back-mutated to re-form the wild-type sequence. These results confirm an essential role for the env gene in Friend spleen focus-forming virus pathogenesis and suggest that the encoded membrane glycoprotein contains different domains that contribute to its pathogenic function.  相似文献   

16.
Viruses encode RNA silencing suppressors to counteract host antiviral silencing. In this study, we analyzed the suppressors encoded by potato virus M (PVM), a member of the genus Carlavirus. In the conventional green fluorescent protein transient coexpression assay, the cysteine-rich protein (CRP) of PVM inhibited both local and systemic silencing, whereas the triple gene block protein 1 (TGBp1) showed suppressor activity only on systemic silencing. Furthermore, to elucidate the roles of these two suppressors during an active viral infection, we performed PVX vector-based assays and viral movement complementation assays. CRP increased the accumulation of viral RNA at the single-cell level and also enhanced viral cell-to-cell movement by inhibiting RNA silencing. However, TGBp1 facilitated viral movement but did not affect viral accumulation in protoplasts. These data suggest that CRP inhibits RNA silencing primarily at the viral replication step, whereas TGBp1 is a suppressor that acts at the viral movement step. Thus, our findings demonstrate a sophisticated viral infection strategy that suppresses host antiviral silencing at two different steps via two mechanistically distinct suppressors. This study is also the first report of the RNA silencing suppressor in the genus Carlavirus.  相似文献   

17.
The common gamma-chain (gamma(c)) that functions both in ligand binding and signal transduction is a shared subunit of the multichain receptors for interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15, and IL-21. The structural basis by which the ectodomain of gamma(c) contributes to binding six distinct cytokines is only partially defined. In the present study, epitope mapping of antagonistic anti-gamma(c) monoclonal antibodies led to the identification of Asn-128 of mouse gamma(c) that represents another potential contact residue that is required for binding IL-2, IL-7, and IL-15 but not IL-4. In addition, Tyr-103, Cys-161, Cys-210, and Cys-211, previously identified to contribute to binding IL-2 and IL-7, were also found to be involved in binding IL-4 and IL-15. Collectively, these data favor a model in which gamma(c) utilizes a common mechanism for its interactions with multiple cytokines, and the binding sites are largely overlapping but not identical. Asn-128 and Tyr-103 likely act as contact residues whereas Cys-161, Cys-210, and Gly-211 may stabilize the structure of the proposed ligand-interacting surface formed by the two extracytoplasmic domains.  相似文献   

18.
The molecular chaperone heat shock protein 90 (Hsp90) is involved in multiple cellular processes including protein maturation, complex assembly and disassembly, and intracellular transport. We have recently shown that a disruption of Hsp90 activity in cultured Drosophila melanogaster cells suppresses Flock House virus (FHV) replication and the accumulation of protein A, the FHV RNA-dependent RNA polymerase. In the present study, we investigated whether the defect in FHV RNA polymerase accumulation induced by Hsp90 suppression was secondary to an effect on protein A synthesis, degradation, or intracellular membrane association. Treatment with the Hsp90-specific inhibitor geldanamycin selectively reduced FHV RNA polymerase synthesis by 80% in Drosophila S2 cells stably transfected with an inducible protein A expression plasmid. The suppressive effect of geldanamycin on protein A synthesis was not attenuated by proteasome inhibition, nor was it sensitive to changes in either the mRNA untranslated regions or protein A intracellular membrane localization. Furthermore, geldanamycin did not promote premature protein A degradation, nor did it alter the extremely rapid kinetics of protein A membrane association. These results identify a novel role for Hsp90 in facilitating viral RNA polymerase synthesis in Drosophila cells and suggest that FHV subverts normal cellular pathways to assemble functional replication complexes.  相似文献   

19.
The roles of the four cysteine residues of the integral inner membrane Hg2+-binding protein, MerC, have been examined using site-directed mutagenesis. Residues Cys-22 and Cys-25 have previously been predicted to lie within the membrane. Substitution of each of these residues in turn with alanine resulted in complete abolition of specific Hg2+ uptake by vesicles. In contrast, substitution by alanine of the other two cysteine residues, Cys-127 and Cys-132, predicted to lie with within a C-terminal cytoplasmic tail, did not significantly affect Hg2+ uptake. Since previous results indicated that native MerC tends to form intermolecular disulfide-bonded dimers, the effects of these substitutions on dimer formation were also examined. Only the Cys-127 and Cys-132 variants spontaneously formed significant amounts of disulfide-bonded dimer. Further experiments using copper-1,10-phenanthroline indicated that each variant with an unpaired cysteine residue was more susceptible to dimer formation than native MerC.  相似文献   

20.
Regulator of G-protein signaling (RGS) proteins are potent inhibitors of heterotrimeric G-protein signaling. RGS4 attenuates G-protein activity in several tissues. Previous work demonstrated that cysteine palmitoylation on residues in the amino-terminal (Cys-2 and Cys-12) and core domains (Cys-95) of RGS4 is important for protein stability, plasma membrane targeting, and GTPase activating function. To date Cys-2 has been the priority target for RGS4 regulation by palmitoylation based on its putative role in stabilizing the RGS4 protein. Here, we investigate differences in the contribution of Cys-2 and Cys-12 to the intracellular localization and function of RGS4. Inhibition of RGS4 palmitoylation with 2-bromopalmitate dramatically reduced its localization to the plasma membrane. Similarly, mutation of the RGS4 amphipathic helix (L23D) prevented membrane localization and its G(q) inhibitory function. Together, these data suggest that both RGS4 palmitoylation and the amphipathic helix domain are required for optimal plasma membrane targeting and function of RGS4. Mutation of Cys-12 decreased RGS4 membrane targeting to a similar extent as 2-bromopalmitate, resulting in complete loss of its G(q) inhibitory function. Mutation of Cys-2 did not impair plasma membrane targeting but did partially impair its function as a G(q) inhibitor. Comparison of the endosomal distribution pattern of wild type and mutant RGS4 proteins with TGN38 indicated that palmitoylation of these two cysteines contributes differentially to the intracellular trafficking of RGS4. These data show for the first time that Cys-2 and Cys-12 play markedly different roles in the regulation of RGS4 membrane localization, intracellular trafficking, and G(q) inhibitory function via mechanisms that are unrelated to RGS4 protein stabilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号