首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Live (Rose Bengal stained) benthic foraminifera were investigated in surface sediment samples from the Okhotsk Sea to reveal the relationship between faunal characteristics and environmental parameters. Live benthic foraminifera were quantified in the size fraction > 125 µm in the upper 8 cm of replicate sediment cores, recovered with a multicorer at five stations along the Sakhalin margin, and at three stations on the southwestern Kamchatka slope. The stations are from water depths between 625 to 1752 m, located close or within the present Okhotsk Sea oxygen minimum zone, with oxygen levels between 0.3 and 1.5 ml l- 1. At the high-productivity and ice-free Kamchatka stations, live benthic foraminifera are characterized by maximal standing stocks (about 1700-3700 individuals per 50 cm2), strong dominance of calcareous species (up to 87-91% of total live faunas), and maximal habitat depths (down to 5.2-6.7 cm depth). Vertical distributions of total faunal abundances exhibit a clear subsurface maximum in sediments. At the Sakhalin stations, which are seasonally ice-covered and less productive, live benthic foraminifera show lower standing stocks (about 200-1100 individuals per 50 cm2), lower abundance of calcareous species (10-64% of total live faunas), and shallower habitat depths (down to 2.5-5.4 cm depth). Faunal vertical distributions are characterized by maximum in the uppermost surface sediments. It is suggested that 1) lower and strongly seasonal organic matter flux, caused by the seasonal sea ice cover and seasonal upwelling, 2) lower bottom water oxygenation (0.3-1.1 ml l- 1), and 3) more pronounced influence of carbonate undersaturated bottom water along the Sakhalin margin are the main factors responsible for the observed faunal differences. According to species downcore distributions and average living depths, common calcareous species were identified as preferentially shallow, intermediate and deep infaunal. Foraminiferal microhabitat occupation correlates with the organic matter flux and the depth of the oxygenated layer in sediments.  相似文献   

2.
Recent benthic foraminifera (> 125 μm) were investigated from multicorer samples on a latitudinal transect of 20 stations between 1°N and 32°S along the upper slope off West Africa. Samples were selected from a narrow water depth interval, between 1200 and 1500 m, so that changes in water masses are minimized, but changes in surface productivity are important and the only significant environmental variable. Live (Rose Bengal stained) benthic foraminifera were counted from the surface sediment down to a maximum of 12 cm. Dead foraminifera were investigated in the top 5 cm of the sediment only. Five live and five dead benthic foraminiferal assemblages were identified using Q-mode principal component analysis, matching distinct primary productivity provinces, characterized by different systems of seasonal and permanent upwelling. Differences in seasonality, quantity, and quality of food supply are the main controlling parameters on species composition and distribution of the benthic foraminiferal faunas.To test the sensitivity of foraminiferal studies based on the uppermost centimeter of sediment only, a comparative Q-mode principal component analysis was conducted on live and dead foraminiferal data from the top 1 cm of sediment. It has been demonstrated that, on the upper slope off West Africa, most of the environmental signals as recorded by species composition and distribution of the “total” live and dead assemblages, i.e., including live and dead foraminifera from the surface sediment down to 12 cm and 5 cm, respectively, can be extracted from the assemblages in the top centimeter of sediment only. On the contrary, subsurface abundance maxima of live foraminifera and dissolution of empty tests strongly bias quantitative approaches based on the calculation of standing stocks and foraminiferal numbers in the topmost centimeter.  相似文献   

3.
Marker events to define the stratotype for the base of the Lutetian Stage are poorly defined. To elucidate such markers and characterize palaeoenvironmental turnovers, we conducted an integrated study of the Ypresian–Lutetian (Y–L; early-middle Eocene) transition at the continuous Agost section (southeastern Spain). This 115-m-thick section, which consists of hemipelagic marls intercalated with hemipelagic limestones and turbidity sandstones, spans from planktic foraminiferal Zones P9 to P12 (E7 to E10) and calcareous nannofossil Zones CP11 to CP14a (NP13 to NP16). We report quantitative analyses of planktic and benthic foraminifera and characterization of trace fossil assemblages that are integrated with mineralogical analyses.Relative to benthic forms, planktic foraminifera constitute more than 80% of the foraminiferal assemblage. We found that the most abundant planktic species belong to the genera Acarinina, Morozovella, Subbotina, and Pseudohastigerina. Benthic foraminiferal assemblages are strongly dominated by calcareous taxa, with bolivinids being the most abundant group. Trace fossils showed the succession Nereites–Zoophycos–Cruziana ichnofacies throughout the Agost section. In addition to changes in palaeobathymetry, we deduced that quantity and quality of organic matter flux influenced by turbidity currents are the main factors controlling benthic assemblages. We distinguished several mineralogical boundaries at the Agost section, each associated with lithological facies changes suggesting a change in provenance rather than changes in weathering conditions. We made three observations that indicate an increase in sea water temperatures or a possible hyperthermal event related to the first occurrence (FO) of hantkeninids (i.e., the P9/P10 boundary): 1) a distinct peak in abundance of the benthic foraminifera Aragonia aragonensis; 2) the low-diversity of benthic foraminiferal assemblages; and 3) the occurrence of the planktic foraminifera Clavigerinella eocenica and Clavigerinella jarvisi. Benthic foraminiferal and trace fossil assemblages also suggest an associated relative fall of sea level from upper-middle bathyal to sublittoral depths. These characteristic indicators point to this boundary as a promising feature for defining the Global Stratotype Section and Point (GSSP) for the base of the Lutetian Stage. However, complementary magnetobiostratigraphic studies carried out at the Agost section point to the FO of calcareous nannofossil Blackites inflatus (base of CP12b), which occurred 3–5 Myr before the P9/P10 boundary, as the most suitable primary marker event. Whatever the marker event chosen, all the successive events recognized at the Agost section allow a complete characterization of the Y–L transition, and thus this section may be a suitable candidate to locate the GSSP for the Ypresian/Lutetian boundary.  相似文献   

4.
Hagedorn  Frank  Bucher  Jürg B.  Tarjan  David  Rusert  Peter  Bucher-Wallin  Inga 《Plant and Soil》2000,224(2):273-286
The objectives of this study were to estimate how soil type, elevated N deposition (0.7 vs. 7 g N m–2y–1) and tree species influence the potential effects of elevated CO2 (370 vs. 570 mol CO2 mol–1) on N pools and fluxes in forest soils. Model spruce-beech forest ecosystems were established on a nutrient-rich calcareous sand and on a nutrient-poor acidic loam in large open-top chambers. In the fourth year of treatment, we measured N concentrations in the soil solution at different depths, estimated N accumulation by ion exchange resin (IER) bags, and quantified N export in drainage water, denitrification, and net N uptake by trees. Under elevated CO2, concentrations of N in the soil solution were significantly reduced. In the nutrient-rich calcareous sand, CO2 enrichment decreased N concentrations in the soil solution at all depths (–45 to –100%). In the nutrient-poor acidic loam, the negative CO2 effect was restricted to the uppermost 5 cm of the soil. Increasing the N deposition stimulated the negative impact of CO2 enrichment on soil solution N in the acidic loam at 5 cm depth from –20% at low N inputs to –70% at high N inputs. In the nutrient-rich calcareous sand, N additions did not influence the CO2 effect on soil solution N. Accumulation of N by IER bags, which were installed under individual trees, was decreased at high CO2 levels under spruce in both soil types. Under beech, this decrease occurred only in the calcareous sand. N accumulation by IER bags was negatively correlated with current-years foliage biomass, suggesting that the reduction of soil N availability indices was related to a CO2-induced growth enhancement. However, the net N uptake by trees was not significantly increased by elevated CO2. Thus, we suppose that the reduced N concentrations in the soil solution at elevated CO2 concentrations were rather caused by an increased N immobilisation in the soil. Denitrification was not influenced by atmospheric CO2 concentrations. CO2 enrichment decreased nitrate leaching in drainage by 65%, which suggests that rising atmospheric CO2 potentially increases the N retention capacity of forest ecosystems.  相似文献   

5.
The Forada section in the Venetian Pre-Alps of northern Italy represents an expanded record of the Paleocene–Eocene Thermal Maximum (PETM) at a depositional paleodepth of about 1 km ± 0.5 km. High-resolution planktonic foraminiferal analysis of this section, in a time interval of approximately 1.3 Myr across the Paleocene/Eocene boundary, reveals striking faunal changes that allow the identification of eight phases (a–h). The late Paleocene was represented by stable, warm and oligotrophic surface water conditions (phase a). Unstable environmental conditions start well before the onset of PETM (ca. 150 kyr, phase b) and involved a change towards eutrophy, as marked by the increase of Subbotina and the concomitant decrease of Morozovella. This step is also characterized by enhanced fragmentation and dissolution.The interval corresponding to the main body of the carbon isotope excursion (CIE) is characterized by a marked increase of Acarinina, though with some differences in the species composition and relative abundance, both in high-and low-latitudes, particularly in the Tethyan area. Forada is no exception to this pattern. However, at Forada, two prominent peaks in abundance of acarininids are recorded ca. 30 kyr prior to the onset of the CIE, thus suggesting an increase in temperature heralding the onset of the PETM (phase c). Interestingly, the lower peak in abundance of Acarinina just precedes the 1‰ carbon isotope negative shift occurring below the onset of the main CIE. The basalmost Eocene, corresponding to the lower part of CIE curve, is represented by intense planktonic foraminiferal dissolution, implying an extraordinary rise of the CCD. This interval has an estimated duration of about 16 kyr (phase d).The dominance of acarininids in the lower part of the CIE (phase e, f; ca. 14 and 22.5 kyr) is interpreted as a consequence of the extreme warmth coupled with eutrophic conditions characterizing the Forada depositional environment at that time. These acarininids include at Forada also the temporally constrained Acarinina sibaiyaensis and A. africana. The morphological similarity between these peculiar species with the radially elongated chambered forms characterizing the Cretaceous anoxic events, suggests the hypothesis that depletion of oxygen in the upper water column might have been one of the factors causing their conspicuous occurrence at the PETM.The recovery in abundance of the specialized morozovellids and of other planktonic foraminiferal groups (e.g., biserials, globanomalinids, igorinids, planorotalids and pseudohastigerinids), occurring in the middle part of the CIE (ca. 30 kyr after the onset of the PETM), indicates an initial environmental recovery (phase g). A new stable state is definitely reached in the upper part of the Forada section where the relative proportions of the main component of planktonic foraminiferal assemblages move towards values similar to those of the late Paleocene conditions (phase h). However, the perturbation during the PETM produced significant changes in the ocean geochemistry that endured after the PETM event, as testified by the prominent high carbonate dissolution characterizing the marly levels, and the large variability in relative abundance among different components of the planktonic foraminiferal assemblages. These striking oscillations were not present in the latest Paleocene.  相似文献   

6.
Forest harvesting induces a step change in the climatic variables (temperature and moisture), that control carbon dioxide (CO 2) production arising from soil organic matter decomposition within soils. Efforts to examine these vertically complex relationships in situ within soil profiles are lacking. In this study we examined how the climatic controls on CO 2 production change within vertically distinct layers of the soil profile in intact and clearcut forest soils of a humid temperate forest system of Atlantic Canada. We measured mineral soil temperature (0, 5, 10, 20, 50 and 100 cm depth) and moisture (0–15 cm and 30–60 cm depth), along with CO 2 surface efflux and subsurface concentrations (0, 2.5, 5, 10, 20, 35, 50, 75 and 100 cm depth) in 1 m deep soil pits at 4 sites represented by two forest-clearcut pairs over a complete annual cycle. We examined relationships between surface efflux at each site, and soil heat, moisture, and mineral soil CO 2 production. Following clearcut harvesting we observed increases in temperature through depth (1–2°C annually; often in excess of 4°C in summer and spring), alongside increases in soil moisture (30%). We observed a systematic breakdown in the expected exponential relationship between CO 2 production and heat with mineral soil depth, consistent with an increase in the role moisture plays in constraining CO 2 production. These findings should be considered in efforts to model and characterize mineral soil organic matter decomposition in harvested forest soils.  相似文献   

7.
Total contribution of six recently discovered submerged coral reefs in northern Australia to Holocene neritic CaCO3 and CO2 is assessed to address a gap in global budgets. CaCO3 production for the reef framework and inter-reefal deposits is 0.26–0.28 Mt. Holocene CO2 production is 0.14–0.16 Mt. Coral and coralline algae are the dominant sources of Holocene CaCO3 although foraminifers and molluscs are the dominant constituents of inter-reefal deposits. The total amount of Holocene neritic CaCO3 produced by the six submerged coral reefs is several orders of magnitude smaller than that calculated using accepted CaCO3 production values because of very low production, a ‘give-up’ growth history, and presumed significant dissolution and exports. The contribution of submerged coral reefs to global Holocene neritic CaCO3 is estimated to be 0.26–0.62 Gt, which yields 0.15–0.37 Gt of CO2. This amount of CO2 is 0.02–0.05% of the 780 Gt added to the atmosphere since 18 kyr BP. Contributions from Australian submerged coral reefs are estimated to be 0.05 Gt CaCO3 and 0.03 Gt CO2 for an emergent reef area of 47.9 × 103 km2. Based on the growth history of the submerged coral reefs in the Gulf of Carpentaria, maximum global Holocene CaCO3 fluxes could have attained 0.3 Gt yr− 1 between 11 and 7 ka BP. This additional CaCO3 would have culminated in a maximum CaCO3 production from all (emergent and submerged) coral reefs of 1.2 Gt yr− 1 and neritic CaCO3 production of 2.75 Gt yr− 1. The dilemma remains that the global area and CaCO3 mass of submerged coral reefs are currently unknown. It is inevitable that many more submerged coral reefs will be found. Our findings imply that submerged coral reefs are a small but fundamental source of Holocene neritic CaCO3 and CO2.  相似文献   

8.
Abundance patterns of planktic and benthic foraminifera from a tropical Atlantic drill site (Ocean Drilling Program Site 1259, Demerara Rise, Suriname margin) display a pronounced 400 kyr cyclicity, uninterrupted throughout our  87.8–92 Ma record, between two clearly distinguishable assemblages: (1) a pelagic foraminifer fauna, which represents a deep oxygen minimum zone, and (2) another assemblage representing a shallow oxygen minimum zone where the foraminifer fauna is dominated by a higher diversity population of mostly small clavate and biserial species common in epicontinental seas. The cyclic changes in the long eccentricity band (400 kyr) between these two assemblages are proposed to reflect changes in the mean latitudinal position of the Intertropical Convergence Zone (ITCZ). Associated fluctuations in precipitation and trade wind strength may have influenced the upwelling regime at Demerara Rise leading to the observed cyclicity of planktic foraminiferal assemblages. The severe Turonian to Coniacian paleoclimatic and paleoceanographic changes in the Atlantic Ocean (e.g., gateway opening, cooling, and glaciation), however, seem to have no influence on the composition of tropical planktic foraminiferal faunas. There is no apparent relationship between foraminifer abundances and a major deflection in the stable isotope record interpreted elsewhere as a sign of the growth and decay of a large polar ice sheet.  相似文献   

9.
Benthic foraminifera were collected in the Rhône prodelta (Gulf of Lions, Mediterranean Sea), an enriched zone with high organic matter content. In June 2005, sediment cores were sampled at depths ranging from 20 to 100 m. Four distinct foraminiferal assemblages were determined in the study area, reflecting the geographical distribution of the impact of river supply. The living foraminiferal faunas present a typical picture, with strongly impoverished faunas composed exclusively of stress-tolerant taxa (Fursenkoina fusiformis, Bulimina aculeata, Leptohyalis scottii, and Adelosina longirostra) in the immediate vicinity of the river mouth. This assemblage is well adapted to a high input of continental organic matter and a minimum oxygen penetration depth into the sediment. To the southwest, under the main corridor followed by the river plume, high organic input with a dominantly terrestrial signature (more refractory) may be stressful for many taxa which need organic matter of a more labile quality. In this area, Nonion scaphum, Nonionella turgida and Rectuvigerina phlegeri are present in low densities. On the edge of this area, these taxa show much higher densities. A greater proportion of marine organic carbon could explain their increasing abundances in this area. Towards the east and towards the deepest stations, in the outer part of the enriched zone, biodiversity increases. Faunas at these stations have intermediate densities and contain a number of taxa (Cassidulina carinata, Epistominella vitrea, Valvulineria bradyana, Nonionella iridea/bradyi) at the deepest stations; Bolivina dilatata/spathulata and Textularia porrecta at the eastern stations) that seem to benefit from more marine organic matter. The comparison of geochemical measurements and foraminiferal data strongly suggests that the spatial distribution of foraminifera in the Rhône prodelta is mainly governed by the quality and the quantity of organic matter reaching the sediment–water interface. Since bottom waters are well oxygenated (215–260 µmol/L), and oxygen penetration into the sediment is less than 1 cm at all stations, benthic ecosystem oxygenation appears to have only a minor impact on regional differences in faunal distribution.  相似文献   

10.
Hughes  J.A.  Gooday  A.J.  Murray  J.W. 《Hydrobiologia》2000,440(1-3):227-238
Live (i.e. rose Bengal stained) benthic foraminiferal assemblages in the 0–1 cm layer of multiple core samples were examined at three contrasting sites in the northeast Atlantic as part of the Natural Environment Research Council Deep Ocean Benthic Boundary Layer (BENBO) Thematic Programme. Sites A (3600 m water depth) and C (1900 m) were located in the Rockall Trough while Site B (1100 m) was in the Hatton–Rockall Basin. Wet-sorting sediment residues (>125 m fraction) revealed more abundant (98–190 individuals/10 cm2) and diverse (71–99 species /27 cm2) assemblages than found previously in studies employing dry-sorting techniques. At all three sites, the assemblages were numerically dominated by delicate soft-bodied and agglutinated species, most of which are undescribed. Calcareous taxa formed a relatively small proportion of the assemblages (23% of individuals at Site B, 13% at Site C and 7% at Site A). Conversely, the agglutinated hormosinaceans (mainly Reophax species) became more prominent with increasing depth and accounted for 8% of the assemblage at Site B, 33% at Site C and 51% at Site A. Foraminifera represented 67–81% of the fauna in the samples and greatly outnumbered the metazoans. The assemblage at Site A has similarities with abyssal assemblages, while those at Sites B and C contain characteristic bathyal species. At Site B, Uvigerina peregrina and Melonis barleeanum are abundant, suggesting that there are high organic carbon inputs at this site. Reduced species diversity was observed at Site A following the spring phytodetritus bloom due to the presence of large numbers of juvenile Hoeglundina elegans, although it is not clear whether this species is responding to phytodetritus inputs.  相似文献   

11.
A combined study of foraminifera, diatoms and stable isotopes in marine sediments off North Iceland records major changes in sea surface conditions since about 15 800 cal years (yr) BP. Results are presented from two gravity cores obtained at about 400 m water depth from two separate sedimentary basins on each side of the submarine Kolbeinsey Ridge. The chronology of the sedimentary record is based partly on AMS 14C dates, partly on the Vedde and the Saksunarvatn tephra markers, as well as the historical Hekla AD 1104 tephra. During the regional deglaciation, the planktonic foraminiferal assemblages are characterised by consistently high percentages of sinistrally coiled Neogloboquadrina pachyderma. However, major environmental variability is reflected by changes in stable isotope values and diatom assemblages. Low δ18O values indicate a strong freshwater peak as well as possible brine formation by sea-ice freezing during a pre-Bølling interval (Greenland Stadial 2), corresponding to the Heinrich 1 event. The foraminifera suggest a strong concurrent influence of relatively warm and saline Atlantic water, and both the foraminifera and the diatoms suggest mixing of cold and warm water masses. Similar but weaker environmental signals are observed during the Younger Dryas (Greenland Stadial 1) around the level of the Vedde Ash. Each freshwater peak is succeeded by an interval of severe cooling both at the beginning of the Bølling–Allerød Interstadial Complex (Greenland Interstadial 1) and during the Preboreal, presumably associated with the onset of intense deep water formatiom in the Nordic Seas. The Holocene thermal optimum, between 10 200 and about 7000 cal years (yr) BP, is interrupted by a marked cooling of the surface waters around 8200 cal yr BP. This cold event is clearly expressed by a pronounced increase in the percentages of sinistrally coiled N. pachyderma, corresponding to a temperature decrease of about 3°C. A general cooling in the area is indicated after 7000–6000 cal yr BP, both by the diatom data and by the planktonic foraminiferal data. After a severe cooling around 6000 cal yr BP, the planktonic foraminiferal assemblages suggest a warmer interval between 5500 and 4500 cal yr BP. Minor temperature fluctuations are reflected both in the foraminiferal and in the diatom data in the upper part of the record, but the time resolution of the present data is not high enough to pick up details in environmental changes through the late Holocene.  相似文献   

12.
Benthic foraminiferal assemblages in subrecent deposits are commonly used to reconstruct past sea level. Interpretations are generally made by comparison with either modern dead or total (live plus dead) assemblages. In both cases there will have been post-mortem changes that have differentially affected preservation. It is therefore important to establish the primary ecological controls by analysis of the living assemblages. We have determined the spatial and temporal variability of intertidal benthic foraminifera in the surface (0–1 cm) sediments from a time series survey of 31 sampling stations at Cowpen Marsh, for a period of 12 months. We counted 112,067 live foraminifera assigned to 28 species. The fauna was dominated by two agglutinated species (Jadammina macrescens and Trochammina inflata) on the high and middle marshes, and three calcareous species (Elphidium williamsoni, Haynesina germanica and Quinqueloculina spp.) on the low marsh and tidal flat.The standing crop of the whole intertidal zone, including the high, middle, low marsh and tidal flat habitats, and the individual species varied both temporally and spatially. The standing crop of the intertidal zone as a whole was greatest in the summer months and showed a positive correlation with elevation. The standing crops of the high and middle marshes showed similar temporal variation with peaks in summer and autumn and a trough in winter. The low marsh showed numerous peaks and troughs of standing crop during the year, whereas the tidal flat showed a single peak in summer. The standing crops of Jadammina macrescens and Trochammina inflata on the high and middle marshes peaked from April to May and August to October with troughs in winter. These agglutinated species showed a strong correlation with elevation. Haynesina germanica peaked in May to August and November to January on the low marsh, whereas on the tidal flat there was a single peak in July. The standing crops of E. williamsoni on the low marsh and tidal flat were relatively high in June and May, and July, respectively. Quinqueloculina spp. peaked in May to July on the low marsh and July on the tidal flat. The species was also found in the middle marsh from July to May and high marsh from September to November. Haynesina germanica showed a strong negative correlation with elevation, whereas the other two dominant calcareous species demonstrated weak negative correlations with both elevation and salinity.Reconstructing former sea level depends primarily on the recognition of high and middle marsh assemblages and in this study these are shown to be strongly controlled by elevation rather than salinity. Caution may be needed in interpreting low marsh and tidal flat data as salinity plays a more important role here.  相似文献   

13.
A method to estimate the CO2 derived from buffering lactic acid by HCO3 during constant work rate exercise is described. It utilizes the simultaneous continuous measurement of O2 uptake ( O2) and CO2 output ( CO2), and the muscle respiratory quotient (RQm). The CO2 generated from aerobic metabolism of the contracting skeletal muscles was estimated from the product of the exercise-induced increase in O2 and RQm calculated from gas exchange. By starting exercise from unloaded cycling, the increase in CO2 stores, not accompanied by a simultaneous decrease in O2 stores, was minimized. The total CO2 and aerobic CO2 outputs and, by difference, the millimoles (mmol) of lactate buffered by HCO3 (corrected for hyperventilation) were estimated. To test this method, ten normal subjects performed cycling exercise at each of two work rates for 6 min, one below the lactic acidosis threshold (LAT) (50 W for all subjects), and the other above the LAT, midway between LAT and peak O2 [mean (SD), 144 (48) W]. Hyperventilation had a small effect on the calculation of mmol lactate buffered by HCO3 [6.5 (2.3)% at 6 min in four subjects who hyperventilated]. The mmol of buffer CO2 at 6 min of exercise was highly correlated (r = 0.925, P < 0.001) with the increase in venous blood lactate sampled 2 min into recovery (coefficient of variation = ±0.9 mmol·l–1). The reproducibility between tests done on different days was good. We conclude that the rate of release of CO22 from HCO3 can be estimated from the continuous analysis of simultaneously measured CO2, O2, and an estimate of muscle substrate.  相似文献   

14.
In this study we investigate the species composition and spatial distribution patterns of Rose Bengal stained and unstained benthic foraminifera from the central part of the Sunda Shelf in the south-western South China Sea in relation to environmental factors. The uppermost centimetre of the surface sediments (> 150 μm) from 45 sites from inner (60 m) to outer shelf (226 m) water depths revealed 584 species including 443 stained species.The univariate analyses of individual species abundances and community parameters and next canonical correspondence analysis were used to relate the faunal data to a set of measured environmental parameters. Four biofacies recognised on the Sunda Shelf are most strongly correlated to water depth, primary production and sediment type of the habitat. The inner shelf biofacies (CCA cluster A), defined by Ammomassilina alveoliniformis and Asterorotalia pulchella, occurs in fine grained sediments classified as modern terrigenous mud in the region with the highest primary production values. The high-energy inner shelf biofacies (CCA cluster B), defined by Heterolepa dutemplei and Textularia lythostrota, occurs in modern terrigenous sand and silt dominated sediments, northeast from the Natuna Island. The high-energy outer shelf biofacies (CCA cluster C), defined by Cibicidoides pachyderma and Textularia bocki, is sandwiched between assemblages of biofacies D. It occurs in the region characterised by neritic relict sand. In the shallow-waters on the Sunda Shelf the relationship of benthic foraminiferal faunal composition to grain size of sediments indirectly signals the prevailing bottom hydrodynamic conditions. The dominance of the epibenthic foraminifera attached to bigger particles (e.g. Cibicides lobatulus, Planulina arimiensis) and much higher abundances of empty tests suggest greater current velocities northeast of Natuna Island. The outer shelf biofacies (CCA cluster D) is defined by Facetocochlea pulchra and Bulimina marginata. It occurs in an area covered with modern terrigenous silt and mud and is characterised by lower annual primary production, but seasonally influenced by weak upwelling.  相似文献   

15.
The pore-water geochemistry and benthic foraminiferal assemblages of sediments from two slope sites and within the central portion of the Santa Barbara Basin were characterized between February 1988 and July 1989. The highest foraminiferal numerical densities (1197 cm–3 as determined by an ATP assay) occurred at a slope site in June 1988 (550 m) in partially laminated sediments. In continuously laminated sediments from the central basin, foraminifera were found living (as determined by ATP assay) in October 1988 to depths of 4 cm, and specimens prepared for transmission electron microscopy were found with intact organelles to 3 cm, indicating their inhabitation of anoxic pore waters. Ultrastructural data from Nonionella stella is consistent with the hypothesis that this species can survive by anaerobic respiration. However, the benthic foraminifera appear unable to survive prolonged anoxia. The benthic foraminiferal population was completely dead in July 1989 when bottom water O2 was undetectable.  相似文献   

16.
Information from field studies investigating the responses of roots to increasing atmospheric CO2 is limited and somewhat inconsistent, due partly to the difficulty in studying root systems in situ. In this report, we present standing root biomass of species and root length and diameter after five years of CO2 enrichment (∽720 μmol mol−1) in large (16 m2 ground area) open-top chambers placed over a native shortgrass steppe in Colorado, USA. Total root biomass in 100 cm long×20 cm wide×75 cm depth soil monoliths and root biomass of the three dominant grass species of the site were not significantly affected by elevated CO2. Root biomass of Stipa comata in the 0–20 cm soil depth was nearly 100% greater in elevated vs. ambient CO2 chambers, but this was not statistically significant (P=0.14). However, there was a significant 37% increase in fine root length under elevated CO2 in the 0–10 cm soil depth layer. Other reports from this study suggest that the increase in fine roots is primarily from improved seedling recruitment of S. comata under elevated CO2. Few treatment differences in root length or diameter were detected in lower 10 cm depth increments, to 80 cm. These results reflect the root status integrated over two wet, two dry and one normal precipitation years and approximately one complete cycle of root turn-over on the shortgrass steppe. We conclude that increasing atmospheric CO2 will have only small effects on standing root biomass and root length and diameter of most shortgrasss steppe species. However, the potential increased competitive ability of Stipa comata, a low forage quality species, could alter the ecosystem from the current dominant, high forage quality species, Bouteloua gracilis. B. gracilis is very well adapted to the frequent droughts of the shortgrass steppe. Increased competitive ability of less desirable plant species under increasing atmospheric CO2 will have large implications for long-term sustainability of grassland ecosystems.  相似文献   

17.
Planktic foraminiferal assemblages are well known to vary in accordance with seasonal fluctuations in ocean properties, periodic reproduction cycles, and variations between water masses. Here we report that storms also can significantly influence foraminiferal assemblages. During the RV Meteor cruise 21 to the Northeast Atlantic Ocean ( area), from March to May 1992, planktic foraminifera were sampled using a multiple opening-closing net. While sampling, two storms with wind forces up to 12 Beaufort caused intensified surface layer mixing with shifts in the depth of the upper ocean mixed-layer from 20–40 m to 170–240 m. Subsequently, planktic foraminiferal growth rates increased, resulting in an elevated quantity of small (100–150 μm) tests (Phase 1). When the wind strength increased a second time, the mixed-layer deepened to a depth below the former position of the pycnocline, and again the abundance of small tests increased (Phase 2). During Phase 2, the weight of calcite in specimens of the productive zone reached its maximum. In the export zone, an associated increase in empty tests occurred with a lag time depending on the test sinking velocity. In the upper export zone, down to 700 m water depth, CaCO3 flux increased from 9.3 to 49.8 mg CaCO3 m−2 d−1 after the first storm and from 8.9 to 19.9 mg CaCO3 m−2d−1 after the second storm. In the 700 to 2500 m depth interval, the flux increased from 5.1 mg CaCO3 m−2 d−1 to about 9.2 mg CaCO, m−2 d−1. Thus, the standing stock of living foraminifera and export of empty tests from the productive zone increased after the storms, leading to pulses of CaCO3 exported from the surface to deep water.  相似文献   

18.
A marine Cretaceous succession (Barremian–Albian) of a cored borehole (BGS 81/40), located in the Central North Sea Basin, has been examined with respect to its planktic and benthic foraminiferal content, as well as for calcareous nannofossils. The distribution patterns of foraminifera and calcareous nannofossils allow for a two fold division of the investigated interval. (1) The Barremian–earliest Aptian interval, which reflects a marine, temporary restricted setting. This is indicated by sporadic occurrences of planktic foraminifera with very rare planispiral forms suggesting short-term connections of the Boreal and Tethyan Realms. The benthic foraminiferal assemblages indicate aerobic, sometimes dysaerobic bottom-water conditions. High abundances of nannoconids in the Barremian suggest enhanced stratification and/or warm, oligotrophic surface water. (2) The late Aptian–early Albian interval, which was characterised by an open-oceanic environment with cool and aerobic surface water conditions. Planktic foraminifera are more abundant and diverse than in the lower interval. Trochospiral hedbergellids dominate the foraminiferal assemblages. The episodic occurrences of planispiral, clavate and trochospiral-flattened planktic morphotypes indicate the existence of a seaway between the Boreal and the Tethyan Realms. Aerobic to dysaerobic bottom-water conditions are suggested by the composition of the benthic foraminiferal assemblages. High abundances of cool-water taxa within the calcareous nannofossil assemblages indicate a cooling trend across the latest Aptian and earliest Albian.  相似文献   

19.
Middle Miocene (14.8–11.9 Ma) deep-sea sediments from ODP Hole 747A (Kerguelen Plateau, southern Indian Ocean) contain abundant, well-preserved and diverse planktonic foraminiferal assemblages. A detailed study of the climatic and hydrographic changes that occurred in this region during the Middle Miocene Climatic Transition led to the identification of an intense cooling phase (the Middle Miocene Shift). Abundance fluctuations of planktonic foraminiferal species with different paleoclimatic affinities, and oxygen and carbon stable isotopes have been integrated in a multi-proxy approach. Reconstruction of changes in foraminiferal faunal composition and diversity through time were the basis for identification of three foraminiferal biofacies. The most prominent faunal change took place at 13.8 Ma, when a fauna with warm-water affinity (marked by high abundance of Globorotalia miozea group and Globoturborotalita woodi plexus) was replaced by an oligotypic, opportunistic fauna with typical polar characters and dominated by neogloboquadrinids. This faunal change is interpreted as the result of foraminiferal migration from adjacent bioprovinces, caused by modifications in climate and hydrography. A positive 2.0‰ shift in δ18O (interpreted as the Mi3 event) and a related positive 1.0‰ shift in δ13C (corresponding to the CM6 event) accompanied this faunal turnover. These are interpreted to reflect substantial reorganization of Southern Ocean waters, the northward migration of the Polar Front and a strong increase in primary productivity. The second faunal change took place at 12.9 Ma and was characterized by the gradual decrease in abundance of the neogloboquadrinids and the recovery of Globorotalia praescitula/scitula group and Globigerinita glutinata. A positive 1.5‰ shift in δ18O (interpreted as the Mi4 event) and a concurrent gradual negative shift in δ13C accompanied this faunal change, witnessing further modifications of the climate/ocean system. Variations in sea surface temperature, considered as the main factor causing changes of surface hydrography at the Kerguelen Plateau, seem to have been driven by obliquity and long-term eccentricity, thus suggesting a key role played by the astronomical forcing on the evolution of Southern Ocean dynamics during the Middle Miocene. Also an evident 1.2 Myr modulation of the δ13C record suggests a main control of the long-term obliquity cycles on the carbon cycle dynamics. Particularly, the Mi3/CM6 events exactly fit with a node of the 1.2 Myr modulation cycles. This confirms the key role played by orbital parameters on high-latitude temperatures and Antarctic ice volume, and indirectly on global carbon burial and/or productivity. This climatic transition was marked also by changes in surface hydrography. From 14.8 to 13.8 Ma an intermediate-strength thermocline controlled by seasonality developed just below the photic zone. Weaker seasonality characterized the interval from 13.8 to 12.9 Ma, when the thermocline became shallower and sharper and favored intermediate-water foraminifers. From 12.9 Ma, seasonality increased again and an intermediate-strength thermocline re-developed.  相似文献   

20.
The vertical variation in soil microbial respiratory activity and its relationship to organic carbon pools is critical for modeling soil C stock and predicting impacts of climate change, but is not well understood. Mineral soil samples, taken from four Scottish soils at different depths (0–8, 8–16, 16–24, 24–32 cm), were analyzed and incubated in the laboratory under constant temperature and environmental conditions. The vegetation type/plant species showed significant effects on the absolute concentration of C components and microbial activity, but the relative distribution of C and respiration rate with soil depth are similar across sites. Soil C pools and microbial respiratory activity declined rapidly with soil depth, with about 30% of total organic carbon (TOC) and dissolved organic carbon (DOC), and about half microbial carbon (Cmic) and respired CO2 observed in the top 8 cm. The ratio of CO2:TOC generally decreased with soil depth, but CO2:DOC was significantly higher in the top 8 cm of soil than in the subsoil (8–32 cm). No general pattern between qCO2 (CO2:Cmic) and soil depth was found. The vertical distributions of soil C pools and microbial respiratory activity were best fitted with a single exponential equation. Compared with TOC and DOC, Cmic appears to be an adequate predictor for the variation in microbial respiration rate with soil depth, with 95% of variation in normalized respiration rate accounted for by a linear relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号